Extraction of Large-Scale Coherent Structures from Large Eddy Simulation of Supersonic Jets for Shock-Associated Noise Prediction

Weiqi Shen, Trushant K. Patel, and Steven A. E. Miller
Theoretical Fluid Dynamics and Turbulence Group
University of Florida
AIAA SciTech 2020
Orlando, FL
Acknowledgements

This work is supported by Office of Naval Research Grant N00014-17-1-2583.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Office of Naval Research.
Outline

➢ Introduction
➢ Mathematical Methods
➢ Numerical Methods
➢ Results
➢ Summary and Conclusions
Introduction

Motivation and backgrounds

- Failure of modern hearing protections
- Service-related health concerns
- Cost over 1 billion dollars each year
- Future supersonic commercial airliner

Peak jet noise levels of modern high-performance aircrafts. Figure from NRAC Report 2009.

Supersonic jet noise

Noise components of supersonic jets.

Typical noise spectrum of a supersonic jet.

\[\phi = 130^\circ \]
Previous studies on BBSAN

- Harper-Bourne and Fisher [1]: discrete shock-vortex interaction
- Tam [2]: stochastic model for BBSAN
- Morris and Miller [3]: RANS based acoustic analogy
- Liu et al. [4]: numerical investigation of BBSAN using LES
- Miller [5]: cross spectral acoustic analogy
- Suzuki [6]: wave-packet like model for BBSAN using LES data

Present approach

Decomposition of N-S equations → BBSAN source terms → Reconstructed flow-field → Source analysis → BBSAN spectra

Time resolved flow-field → Acoustic prediction → Experimental measurement

High-order LES solver → Time resolved flow-field

Combined analysis

validate
Mathematical Methods

Decomposition of N-S equations \[^1\]

\[q = \overline{q} + q' + \hat{q} + \bar{q}, \quad \bar{q} = \overline{q} + \hat{q} + \bar{q} \]

\[
\frac{\partial q'}{\partial t} + \frac{\partial}{\partial x_j} \left(\rho' u_j + \rho u_j' \right) = \Theta_0
\]

\[
\frac{\partial}{\partial t} \left(\rho' u_i + \rho u_i' \right) + \frac{\partial}{\partial x_j} \left[\rho' u_i u_j + \rho u_i' u_j + \rho u_j u_i' + p' \delta_{ij} - \tau_{ij}' \right] = \Theta_i
\]

\[
\frac{\partial q'}{\partial t} + \frac{\gamma - 1}{2} \frac{\partial}{\partial t} \left(\rho' u_k u_k + 2 \rho u_k' u_k \right) \\
+ \frac{\gamma - 1}{2} \frac{\partial}{\partial x_j} \left[\left(\rho' u_j u_k u_k + \rho u_j' u_k u_k + 2 \rho u_j u_k' u_k \right) \right] \\
+ \gamma \frac{\partial}{\partial x_j} \left[(u_j' p + u_j p') \right] - (\gamma - 1) \frac{\partial}{\partial x_j} \left[-q'_j + u_i \tau'_{ij} + u_i \tau_{ij} \right] = \Theta_4
\]

Field-variables are decomposed into:

\(\overline{\cdot}\) – time averaged
\(\cdot'\) – acoustic perturbation
\(\hat{\cdot}\) – anisotropic turbulent fluctuation
\(\bar{\cdot}\) – isotropic turbulent fluctuation

Equivalent source terms

\[\Theta_0 = - \frac{\partial p}{\partial t} - \frac{\partial (\rho u_j)}{\partial x_j} \]

\[\Theta_i = - \frac{\partial}{\partial t} \left(\rho u_j \right) - \frac{\partial}{\partial x_j} \left(\rho u_j u_j + p \delta_{ij} - \tau_{ij} \right) \]

\[\Theta_4 = - \frac{\partial p}{\partial t} \frac{\gamma - 1}{2} \frac{\partial (\rho u_k u_k)}{\partial t} - \frac{\partial}{\partial x_j} \left[\frac{\gamma - 1}{2} \rho u_j u_k u_k + \gamma u_j p \right] - (\gamma - 1) \frac{\partial}{\partial x_j} \left[q_j - u_i \tau_{ij} \right] \]

Decomposition of N-S equations

Acoustic pressure is calculated by

\[p'(x, t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sum_{n=0}^{4} g^n_p(x, y; t, \tau) \Theta_n(y, \tau) d\tau dy \]

Where \(g^n_p \) is the vector Green’s function of acoustic pressure.

Power spectral density of acoustic pressure is

\[S_p(x, f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\sum_{m=0}^{4} \sum_{n=0}^{4} G^n_p(x, y; f) G^m_p(x, z; f) \int_{-\infty}^{\infty} R_{mn}(y, z; \Delta\tau) e^{-i2\pi f(\Delta\tau)} d\Delta\tau \right] dy dz \]

\[R_{mn}(y, z; \Delta\tau) = \int \Theta_m(y, \tau + \Delta\tau) \Theta_n(z, \tau) d\tau \]

where \(G^m_p \) is the Fourier transformed vector Green’s function of acoustic pressure,

\(R_{mn} \) is the two-point cross-correlation of source terms.
BBSAN source term

- **Noise source of BBSAN** \(^{[1]}\)
 \[\Theta_s = -\gamma \hat{u}_j \frac{\partial \bar{p}}{\partial x_j} \]

- **Simplified to wave equation**
 \[\frac{1}{c_\infty^2} \frac{\partial^2 p'}{\partial t^2} - \frac{\partial^2 p'}{\partial x_i^2} = \frac{\partial \Theta_s}{c_\infty^2 \partial t} \]

- **BBSAN power spectrum**
 \[S_p(x, f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G_p^s(x, y; f) G_p^s*(x, z; f) S_{ss}(y, z, f) dy \, dz \]

Where
 \[S_{ss}(y, z, f) = \hat{\Theta}_s(y, f) \hat{\Theta}_s^*(z, f) \]

\[G_p^s(x, y; f) = \frac{\exp(-2\pi if|x - y|/c_\infty)}{2c_\infty^2|x - y|} \]

Proper orthogonal decomposition

- \[\int S(x, x'; f)\Phi(x', f)dx' = \lambda(f)\Phi(x, f) \] \[\text{[1]} \]
- Computational procedure by Towne et al. \[\text{[2]} \]

Preprocess raw data

\[
\begin{bmatrix}
q_1, q_2, q_3, \ldots, q_{N_f}, q_{N_f+1}, \ldots, q_{2N_f-N_0}, \ldots, q_N
\end{bmatrix} \rightarrow \begin{bmatrix}
Q^{(1)}, Q^{(2)}, \ldots, Q^{(N_b)}
\end{bmatrix}
\] \[\text{(1)} \]

\[
\hat{q}_k^{(l)} = \sum_{j=1}^{N_f} \omega_j q_j^{(l)} e^{-2\pi i (j-1)(k-1)/N_f} \rightarrow \hat{q}_{fk} = \frac{1}{\sqrt{N_f \sum_{j=1}^{N_f} \omega_j^2}} \begin{bmatrix}
\hat{q}_k^{(1)}, \hat{q}_k^{(2)}, \ldots, \hat{q}_k^{(N_b)}
\end{bmatrix}
\]

\[
\frac{1}{\sqrt{N_b}} \sqrt{W} \hat{Q}_{fk} = \begin{bmatrix} \sqrt{W} \Phi_{fk}^* \end{bmatrix} \Sigma_{fk} \Psi_{fk}^H
\]

\[
a^*_fk = \hat{Q}_{fk}^H \Phi_{fk} \rightarrow q^{(l)}(x, k\Delta t) = \sum_{m=1}^{N_f} \sum_{n=1}^{N_b} a^{(l)}_{mn} \Phi_{mn} e^{2\pi i (m-1)(k-1)/N_f}
\]

Numerical Methods

High Fidelity LES solver – HiFiLES \[^1\]

- 2/3D compressible Navier-Stokes solver
 - Energy-stable flux reconstruction scheme
 - Support unstructured hybrid mesh
 - 5 types of elements (tri, quad, tet, pris, hex)
 - Explicit time stepping LSRK45
 - Parallelization through MPI

- Large eddy simulation
 - Smagorinsky model
 - WALE model
 - Similarity models

- Modifications \[^2\]
 - Shock capturing method
 - HLLC Riemann solver
 - Numerical probes

\[^2\] Weiqi Shen, Steven A. E. Miller, "Validation of a High-order Large Eddy Simulation Solver for Acoustic Prediction of Supersonic Jet Flow", Journal of Theoretical and Computational Acoustics, 2020 (Submitted for publication)
Governing equations

- Favre-filtered N-S equation

\[
\frac{\partial \bar{\rho}}{\partial t} + \frac{\partial \bar{\rho} \bar{u}_j}{\partial x_j} = 0
\]

\[
\frac{\partial \bar{\rho} \bar{u}_i}{\partial t} + \frac{\partial \bar{\rho} \bar{u}_i \bar{u}_j}{\partial x_j} + \bar{\rho} \delta_{ij} - \bar{\tau}_{ij} - \tau_{ij}^{sgs} = 0
\]

\[
\frac{\partial \bar{\rho} \bar{e}_o}{\partial t} + \frac{\partial \bar{\rho} \bar{e}_o \bar{u}_j}{\partial x_j} = 0
\]

Where

\[
\tau_{ij}^{sgs} = 2\mu_{\tau} \left(\bar{S}_{ij} - \frac{1}{3} \bar{S}_{mm} \delta_{ij} \right) - \frac{2}{3} \bar{\rho} k \delta_{ij}
\]

\[
\bar{\tau}_{ij} = 2\mu \left(\bar{S}_{ij} - \frac{1}{3} \bar{S}_{mm} \delta_{ij} \right)
\]

\[
\bar{q}_j = -\gamma \left(\frac{\mu}{Pr} \right) \frac{\partial \bar{\varepsilon}}{\partial x_j}
\]

\[
q_j^{sgs} = -\gamma \left(\frac{\mu_{\tau}}{Pr_{\tau}} \right) \frac{\partial \bar{\varepsilon}}{\partial x_j}
\]

- LES Sub-grid scale model

TKE term taken into pressure

\[
\frac{2}{3} \bar{\rho} k \delta_{ij} \rightarrow \bar{\rho} \delta_{ij}
\]

Wall adapted local eddy-viscosity (WALE) model \[1\]

\[
\mu_{\tau} = \rho \Delta_s^2 \frac{(s_{ij}^d s_{ij}^d)^{\frac{3}{2}}}{(s_{ij}^d s_{ij}^d)^{\frac{5}{2}} + (s_{ij}^d s_{ij}^d)^{\frac{5}{4}}}
\]

Where

\[
s_{ij}^d = \frac{1}{2} \left(\bar{g}_{ij}^2 + \bar{g}_{ji}^2 \right) - \frac{1}{3} \bar{g}_{mm}^2 \delta_{ij}
\]

\[
\bar{g}_{ij}^2 = \frac{\partial u_i}{\partial x_k} \frac{\partial u_k}{\partial x_j}
\]

\[
\Delta_s = C_w V^{1/3}
\]

\[
C_w = 0.325
\]

FWH acoustic solver

Ffowcs-Williams and Hawkings equation \[1\]

\[
\left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x_i^2} \right) [p' \mathcal{H}(f)] = \frac{\partial}{\partial t} [\rho_\infty U_n \delta(f)] - \frac{\partial}{\partial x_i} [L_i \delta(f)] + \frac{\partial^2}{\partial x_i \partial x_j} [T_{ij} \mathcal{H}(f)]
\]

Where

\[U_i = \left(1 - \frac{\rho_*}{\rho_\infty}\right) v_i + \frac{\rho_* u_i}{\rho_\infty}\]

\[L_i = p' n_i + \rho_* u_i (u_n - v_n)\]

Density correction for hot jets by Spalart and Shur \[2\]

\[\rho_* = \rho_\infty + p'/c^2_\infty\]

Solution by Farassat \[3\]

\[p'(x, t) = \frac{1}{4\pi} \int \left[\frac{\rho_\infty U_n}{r} + \frac{L_r}{c_\infty r} + \frac{L_r}{r^2} \right]_{ret} dS\]

- Integrand evaluated at retarded time
- Notations
 - \(r\) – distance between source and observer
 - \(\Delta\) – derivative with respect to source time
 - \(n\) – surface normal direction component
 - \(r\) – observer direction component

Results

Simulation setup
- Hot under-expanded supersonic jet
- Converging nozzle (SMC000)
- $M_j = 1.47$, TTR=3.2
- Experimental data from SHJAR [1]
- Conical frustum domain

Boundary conditions
- Nozzle walls: adiabatic non-slip wall
- Outer boundaries: Riemann invariant far-field

Simulation setup

<table>
<thead>
<tr>
<th>$\Delta x/D$ Flow region</th>
<th>$\Delta x/D$ Near field</th>
<th>No. DOFs ($\times 10^6$)</th>
<th>No. cells ($\times 10^6$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x/D = 0$</td>
<td>$x/D = 25$</td>
<td>$x/D = 0$</td>
<td>$x/D = 35$</td>
</tr>
<tr>
<td>0.025</td>
<td>0.35</td>
<td>0.075</td>
<td>0.45</td>
</tr>
</tbody>
</table>

- 2.5M tetrahedra elements
- Polynomial order $\mathcal{P}=3$
- $St_{\text{max}} = \frac{(P+1)C_{\infty}D}{8\Delta x U_j} \leq 1.5$
- $y^+ \sim 280$ on nozzle internal wall
- Isotropic elements in freestream

Parameters of computational grids.

Grid refinement schematic.

Computational grid.
Simulation setup

- FWH surface

FWH surface with x-momentum

<table>
<thead>
<tr>
<th>x-momentum</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0E+02</td>
</tr>
<tr>
<td>6.2E+02</td>
</tr>
<tr>
<td>5.4E+02</td>
</tr>
<tr>
<td>4.6E+02</td>
</tr>
<tr>
<td>3.8E+02</td>
</tr>
<tr>
<td>3.0E+02</td>
</tr>
<tr>
<td>2.2E+02</td>
</tr>
<tr>
<td>1.5E+02</td>
</tr>
<tr>
<td>6.6E+01</td>
</tr>
<tr>
<td>1.4E+01</td>
</tr>
<tr>
<td>3.3E+01</td>
</tr>
</tbody>
</table>

FWH surface with mesh

- Encompass all the noise sources
- Placed within the refinement region
- End cap averaging technique [1]
 - 11 endcaps
 - Reduce spurious noise $0.008 < St < 0.08$

Simulation results

- Instantaneous flow-field

Fluctuating pressure

Density
Simulation results

- **Acoustic validation**

 - Sampling interval: 5.5×10^{-6} sec
 - Max accessible Strouhal number: $St_{\text{max}} = 6.5$
 - Azimuthal averaged over 12 stations

Results

- Good agreement at upstream and downstream angles
- BBSAN, large-scale mixing noise, and screech well captured
- Overprediction of noise at $\phi = 70^\circ$
 - Insufficient grid resolution
 - Laminar nozzle boundary layer

FWH surface sampling setup

Simulation results

Data sampling volume

- $x/D \in [0.1,13]$, $y/D = z/D \in [-3,3]$
- $\Delta x = \Delta y = \Delta z = 0.1D$

• Velocity vector ([u v w])
• 512 snapshots per block with 50% overlap
• Low rank behavior around $St=0.21$ (screech)

POD eigenvalues as a function of Strouhal number, normalized by total flow energy.
Leading POD modes

St=0.09

St=0.30 (peak BBSAN frequency at 130°)

St=0.21 (screech frequency)

St=0.50 (peak BBSAN frequency at 90°)
Spectral shape and amplitude of BBSAN well predicted
Fundamental screech captured in the BBSAN spectra
BBSAN spectra calculated with different number of POD modes

- Fewer POD modes needed to preserve the spectral shape of the primary lobe at larger observation angles where the width of the lobe are smaller.
- Peak frequencies predicted with only the leading POD mode
BBSAN source distribution
\(\Phi = 90^\circ, St = 0.5 \)

\[
I_p(x, y; f) = |G_p^s(x, y; f)| \int_{-\infty}^{\infty} G_p^{*}(x, z; f)S_{ss}(y, z, f) \, dz
\]

- Source locations agree with previous measurements by Podboy \(^1\)

Normalized cross-correlation of axial fluctuating velocity at source locations

\[R_{uu}(\mathbf{y}, \mathbf{z}; \tau) = \int u(\mathbf{y}, t + \tau)u(\mathbf{z}, t)dt \]

- Correlation length scale and time scale increase as flow propagates downstream
- Increasement of convective velocity in the downstream direction
Normalized cross-correlation of axial fluctuating velocity at source locations

\[R_{uu} \text{ RANS } x/D=3.0 \]

- Ribner’s model \[^1\] : \[R = \exp(-|\tau|/\tau_s) \exp(-\left(\eta - u_c \tau\right)^2/l^2) \]
- RANS predicts smaller correlation length scales and larger correlation time scales

Source term correlations at source locations

\[R_{SS}(y, z; \tau) = \int \Theta_S(y, t + \tau) \Theta_S(z, t) dt \]

- \(R_{SS} \) of LES at \(x/D = 3.0 \)
 - Strong positive correlation paired with negative correlation due to the shock wave shear layer interaction.

- \(R_{SS} \) of RANS at \(x/D = 3.0 \)
Source term correlations at source locations

- R_{SS} of LES at $x/D=4.5$
 - Correlation with the neighboring shock wave are observed in LES due to growth in time scales

- R_{SS} of RANS at $x/D=4.5$
Summary and Conclusion

- Simulated and validated an off-design heated supersonic jet
- Used POD to extract large-scale structures from the flow-field
- Validated BBSAN source term by comparing BBSAN spectra with total spectra
- Sources of BBSAN are located on the shock waves and at the end of the potential core
- Stronger source correlation between shocks waves as the flow proceeds downstream

Future Work

- Investigate the overprediction of BBSAN at low frequencies.
Thank you. Questions?