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Visualization of the flow around the propeller 
in hover computed by DUST simulations



Growth of eVTOL and sUAS
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• Increase in demand for the use of electric 
motors and propellers to drive propulsors 
across a range of small air vehicle classes

• Applications of eVTOL and sUAS within 
urban environments

• Concern for increased urban noise pollution

• High demand for a low computational cost 
method of predicting the tonal and 
broadband acoustics for electrically driven 
rotors 
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Archer’s Maker aircraft (via. Archer.com)

AAM in urban environment
(via. appel.nasa.gov)



Proposed Solution
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An affordable and reliable method of acoustic simulation will be
developed. Once validated, this tool will provide quick and
accurate simulation results to study preliminary designs of electric
rotors.
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Overview of Tonal Simulation
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DUST

Ffowcs Williams and 
Hawkings (FWH) 
acoustic solver

Digital Signal 
Processing for PSD

• Open-sourced flexible medium-fidelity aerodynamic 
solver (by Politecnico di Milano and A3 by Airbus)

• Sets up geometry and flight conditions
• Models aerodynamic flow-field

• Farassat 1A solution is used
• Yields loading pressure, thickness pressure, and 

total pressure at different observer locations for 
each time step

• Decomposes the pressure fluctuations in the time 
domain into the frequency domain

• Allows for data comparison with experimental data



Overview of Broadband Simulation

7May 2022 UF MAE, Gustavo Coelho, gresendecoelho@ufl.edu

Boundary layer 
characterizing 

parameters

Turbulent boundary 
layer pressure spectrum 

at trailing edge

Trailing edge broadband 
acoustics

Optimize to match in-
house experimental 

measurements

• Obtained through pyXLIGHT, a Python 
implementation of XFOIL by MDO lab

• Found for every section of each blade element

• Utilizes empirical wall pressure spectrum model 
developed by Dr. Seongkyu Lee

• Function of boundary layer parameters

• Optimized scaling of coefficients in wall pressure 
spectrum model

• Calibrated coefficients to results 10° below rotor plane

• Formulation by S. Sinayoko et al. for trailing edge 
acoustics of rotating blades

• Broadband acoustics for elements of a segmented 
blade are summed



Hover at nominal RPM for two different observer 
locations 10° below rotor plane

Tonal Prediction
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(Advancing Side) (Retreating Side)

Δ 10$% Δ 10$%
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∆"# at the blade pass frequency (BPF) between 
experimental data and simulation results:

Tonal Prediction



Broadband Predictions
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Frequency / BPF Optimized Delta dB
5.2 0.5
7.8 -0.1
10.5 -0.6
13.1 -0.7
15.7 0.4
18.3 0.4
20.9 -0.3
23.6 0.1
26.2 -0.6
31.4 1.3
36.6 -0.3
41.8 -0.2

• Residual (sum of squares)
• Lee Base: 35.1 ∆dB!
• Optimized scaling: 3.7 ∆dB!

• Comparison Points
• Worst: 1.3 ∆dB

• SPL amplitude predictions 
improved at all additional 
observer locations



Combined Prediction
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Note: Broadband model only predicts high frequency due to
capturing only the trailing edge component.



Summary and Conclusion
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• Effective and fast way to predict noise 

• Tonal simulation 

• Predicts BPF acoustic radiation within 2.8% at the 
nominal RPM at hover condition

• DUST predicts rotor’s CT within 2% of experimental data

• Less accurate at higher speed flight conditions

• RPM does not affect tonal model

• Broadband simulation 

• Empirical coefficients set by optimization algorithm for 
one setpoint at the observer location Φ = 80 & , =
0, reduced error residuals by 89% at that location for the 
optimized case

• Future work: expand optimization to improve results at 
additional observer locations



Thank you.

Questions?
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Extra Slides
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