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Introduction: Background

Motivation

Goal: Understand how turbulence alters sonic boom metrics

Reasons:
I Knowledge of metrics at ground level is required to develop noise standards,

plan community response surveys, etc.
I Turbulence in the atmospheric boundary layer (ABL) randomly alters sonic

boom signals

Process: Perform numerical simulations of sonic boom through turbulence,
examine probability distributions and mean values of sonic boom metrics

Reasons:
I Computational approaches provide a cheap alternative to flight test

measurements or laboratory experiments
I Parameters of simulated turbulent fields can be controlled
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Introduction: Background

Background

Sonic boom metrics:
I Stevens’ Mark VII Perceived level [1] (PL)
I Weighted Sound Exposure Levels (A-E weighted SEL)
I Indoor Sonic Boom Annoyance Predictor [2] (ISBAP)

Flight test measurements:
I Bradley et al. [3] (SonicBAT): Average PL and ISBAP decrease with

propagation distance

Laboratory scale experiments:
I Lipkens and Blackstock [4]: Rise time increases as N-wave propagates through

turbulence

Computational simulations:
I Stout [5]: Average PL and ISBAP decrease in propagation direction,

supported by SonicBAT measurements

Additional background: Averiyanov et al. [6], Yuldashev et al. [7], Luquet [8]
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Introduction: Approach

Approach

1 Simulate isotropic velocity fields on structured grid

2 Numerically solve FLHOWARD equation [8] (Eqn. 1) with Strang split step
[9]

3 Each physical effect is computed with different numerical method (for more
info see [8, 5, 10])

4 Extract sonic boom signals at 342 locations along the x1 direction, and 25
locations in the transverse directions

5 Compute sonic boom metrics at each microphone location for each simulation

6 Compute average and standard deviations at each x1 location across 500
simulations (12,500 microphones)
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Introduction: Approach

Initial Waveforms
Two waveforms are considered:

I N-wave
I C609 waveform of NASA X-59 QueSST Aircraft
I Sampled at 12.8 kHz
I Initially propagated from aircraft to 5000 ft (7000 ft for C609) above the

ground in PCBoom
Spatial domain

I 0 m ≤ x1 ≤ 2046 m, (∆x1 = 2 m)
I -510 m ≤ x2,3 ≤ 510 m, (∆x2,3 = 4 m)

(a) N-wave (b) C609

Figure 1: Initial waveforms.
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Introduction: Approach

Turbulent Field
Isotropic turbulent field simulated with method of Frehlich [11]
Temperature fluctuations are not considered
Longitudinal integral scale Lf and rms velocity σu are prescribed for each
propagation case considered
N-wave and C609 signals are propagated through 500 randomly generated
fields for each case

(a) 2D slice of u1 velocity field (b) Longitudinal and Lateral correlations

Figure 2: a) Turbulent field generated for σu = 1.0 m/s and Lf = 100 m. b) Comparison of average longitudinal and lateral correlations with

correlation functions associated with the von Kármán spectral model.
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Introduction: Approach

Parameter Space

According to Bradley et al. [3], turbulence intensity levels in the ABL can be
categorized by the rms velocity

Table 1: Categories of turbulence intensity based on rms velocity

Turbulence intensity σu m/s

Low 0.31

Medium 1.10

High 1.89

Based on these categories and other experiments [4, 6]:

I RMS velocity: 0.2 m/s ≤ σu ≤ 3.0 m/s
I Integral scale: 100 m ≤ Lf ≤ 200 m
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Computational Results: Distributions

Pre-Shock Noise

Noise before the initial shock formed in the medium to high intensity
propagation cases

Effect of pre-shock noise was examined on a few waveforms

Metrics of original waveforms were computed and compared to the same
waveform with pre-shock noise eliminated

Increase in PL and ISBAP. ASEL and CSEL were not altered by more than
±0.6 dB

Figure 3: Two waveforms sampled from test simulations with σu = 1.8
m/s and Lf = 100 m. The pre-shock noise that originally occured in the

waveforms is shown as dashed lines.

Waveform ∆PL ∆ISBAP

1 2.2 × 10−5 −7.2 × 10−4

2 0.96 0.72
3 1.64 1.58
4 0.09 0.06
5 1.37 1.32
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Computational Results: Distributions

Distributions of Sonic Boom Metrics I

PL closely follows a normal distribution for lower turbulence levels

Distribution is skewed to the right at higher turbulence levels

Figure 4 shows distribution of PL for N-wave

(a) σu = 0.2 m/s (b) σu = 1.8 m/s

Figure 4: Quantile-Quantile plots of PLdB for the N-wave at x1 = 2046 m compared to a normal distribution (solid line) for two different turbulence
intensities.
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Computational Results: Distributions

Distributions of Sonic Boom Metrics II

N-wave:
I Similar trend occurs for all metrics, except for ASEL and DSEL
I ASEL is normal for low turbulence levels, skewed to the right for medium

turbulence levels, and returns to normal for high turbulence levels
I DSEL results show skewness at lower turbulence intensities

C609 waveform:
I All metrics follow same trend as PL, except ASEL, CSEL and DSEL
I ASEL follows same trend as N-wave
I CSEL remains normal for all turbulence levels
I DSEL is normal at medium turbulence intensities, skewed to the right at low

and high intensities
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Computational Results: Expected Values

Expected Values I
Examine average PL as a function of propagation distance and turbulence
intensity

Mean PL computed from several cases conducted at low, medium, and high
turbulence intensities

Nonlinear relationship with x1 when x1 ≤ 500 m

Beyond 1000 meters, decrease in PL is approximately linear

(a) N-wave (b) Low Boom waveform

Figure 5: Average value of PL dB as a function of propagation distance for both waveforms.
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Computational Results: Expected Values

Expected Values II
Model mean values beyond x1 = 1000 m

First, examine decrease with respect to turbulence rms velocity

Solid lines represent exponential decay model with fitted parameters

PL(σu) = C1 [C3 + exp(−C2σu)] (2)

Exponential decay model does not capture additional dip seen in C609
waveform results and some N-wave results

(a) N-wave (b) C609 waveform

Figure 6: Average value of PLdB as a function of rms velocity for two waveforms.
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Computational Results: Expected Values

Expected Values III

ISBAP shows similar trend to PL

Mismatch in the range 0.6 ≤ σu ≤ 1.8 m/s for N-wave

Mismatch for 0.2 ≤ σu ≤ 0.6 m/s for C609 waveform

Additional metrics (ASEL and CSEL) are shown in the extra slides

(a) N-wave (b) C609 waveform

Figure 7: Average ISBAP as a function of σu for a) N-wave and b) C609, compared to exponential decay model.
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Summary:

Summary and Conclusions

Computational results suggest the following:
I Sonic boom metrics are normally distributed at low turbulence intensities
I As σu increases, distributions become skewed to the right
I Average values of PL and ISBAP are approximately constant with respect to
σu when σu > 2 m/s

I The decrease in average PL and ISBAP with respect to σu can be
approximated by an exponential decay curve

Future work:
I Resolve issues with pre-shock noise
I Investigate changes to sonic boom metrics when integral scale is increased
I Present data for standard deviations and 95% confidence intervals in future

publication
I Propagation through inhomogeneous turbulence

alexander.carr@nasa.gov June 9, 2021 15 / 15



Summary:

Thank you
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Extra Slides:

Cases I
These are all of the cases conducted for both N-wave and C609

Table 2: Test Cases for Propagation through Isotropic Turbulence (Suite 1)

Test Cases σ m/s Lf m d1 d2,3 ∆x1 ∆x2,3 fs kHz
Case 1 0.0 0.0 2046 m 1020 m 2 m 4 m 12.8
Case 2 0.2 100.0 2046 m 1020 m 2 m 4 m 12.8
Case 3 0.6 100.0 2046 m 1020 m 2 m 4 m 12.8
Case 4 1.0 100.0 2046 m 1020 m 2 m 4 m 12.8
Case 5 1.4 100.0 2046 m 1020 m 2 m 4 m 12.8
Case 6 1.8 100.0 2046 m 1020 m 2 m 4 m 12.8
Case 7 2.2 100.0 2046 m 1020 m 2 m 4 m 12.8
Case 8 2.6 100.0 2046 m 1020 m 2 m 4 m 12.8
Case 9 3.0 100.0 2046 m 1020 m 2 m 4 m 12.8
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Extra Slides:

Cases II

Table 3: Test Cases for Propagation through Isotropic Turbulence (Suite 3)

Test Cases σ m/s Lf m d1 d2,3 ∆x1 ∆x2,3 fs kHz
Case 18 0.2 150.0 2046 m 1020 m 2 m 4 m 12.8
Case 19 0.6 150.0 2046 m 1020 m 2 m 4 m 12.8
Case 20 1.0 150.0 2046 m 1020 m 2 m 4 m 12.8
Case 21 1.4 150.0 2046 m 1020 m 2 m 4 m 12.8
Case 22 1.8 150.0 2046 m 1020 m 2 m 4 m 12.8
Case 23 2.2 150.0 2046 m 1020 m 2 m 4 m 12.8
Case 24 2.6 150.0 2046 m 1020 m 2 m 4 m 12.8
Case 25 3.0 150.0 2046 m 1020 m 2 m 4 m 12.8
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Extra Slides:

Cases III

Table 4: Test Cases for Propagation through Isotropic Turbulence (Suite 5)

Test Cases σ m/s Lf m d1 d2,3 ∆x1 ∆x2,3 fs kHz
Case 34 0.2 200.0 2046 m 1020 m 2 m 4 m 12.8
Case 35 0.6 200.0 2046 m 1020 m 2 m 4 m 12.8
Case 36 1.0 200.0 2046 m 1020 m 2 m 4 m 12.8
Case 37 1.4 200.0 2046 m 1020 m 2 m 4 m 12.8
Case 38 1.8 200.0 2046 m 1020 m 2 m 4 m 12.8
Case 39 2.2 200.0 2046 m 1020 m 2 m 4 m 12.8
Case 40 2.6 200.0 2046 m 1020 m 2 m 4 m 12.8
Case 41 3.0 200.0 2046 m 1020 m 2 m 4 m 12.8
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Extra Slides: Probability Distributions

ISBAP N-wave

Similar trend to PL

ISBAP is skewed to the right at higher turbulence levels

(a) σu = 0.2 m/s (b) σu = 1.8 m/s

Figure 8: Quantile-Quantile plots of ISBAP dB for the N-wave at x1 = 2046 m compared to a normal distribution (solid line) for two different
turbulence intensities.

alexander.carr@nasa.gov June 9, 2021 21 / 15



Extra Slides: Probability Distributions

ASEL N-wave

ASEL differs from PL because it follows a normal distribution at high
turbulence levels

At σu = 3.0 m/s ASEL is much closer to the theoretical normal distribution
than other metrics

(a) σu = 0.2 m/s (b) σu = 3.0 m/s

Figure 9: Quantile-Quantile plots of ASEL dB for the N-wave at x1 = 2046 m compared to a normal distribution (solid line) for two different
turbulence intensities.

alexander.carr@nasa.gov June 9, 2021 22 / 15



Extra Slides: Probability Distributions

BSEL N-wave

Similar trend to PL

BSEL is skewed to the right at higher turbulence levels

(a) σu = 0.2 m/s (b) σu = 1.8 m/s

Figure 10: Quantile-Quantile plots of BSEL dB for the N-wave at x1 = 2046 m compared to a normal distribution (solid line) for two different
turbulence intensities.
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Extra Slides: Probability Distributions

CSEL N-wave

Similar trend to PL

CSEL is skewed to the right at higher turbulence levels

(a) σu = 0.2 m/s (b) σu = 1.8 m/s

Figure 11: Quantile-Quantile plots of CSEL dB for the N-wave at x1 = 2046 m compared to a normal distribution (solid line) for two different
turbulence intensities.
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Extra Slides: Probability Distributions

DSEL N-wave

DSEL is skewed to the right at all turbulence levels

(a) σu = 0.2 m/s (b) σu = 1.8 m/s

Figure 12: Quantile-Quantile plots of DSEL dB for the N-wave at x1 = 2046 m compared to a normal distribution (solid line) for two different
turbulence intensities.
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Extra Slides: Probability Distributions

ESEL N-wave

Similar trend to PL

ESEL is skewed to the right at higher turbulence levels

(a) σu = 0.2 m/s (b) σu = 1.8 m/s

Figure 13: Quantile-Quantile plots of ESEL dB for the N-wave at x1 = 2046 m compared to a normal distribution (solid line) for two different
turbulence intensities.
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Extra Slides: Probability Distributions

PL C609 Waveform

Similar trend of PL for the N-wave

PL is skewed to the right at higher turbulence levels

Figure 14 for C609 waveform at two turbulence intensities

(a) σu = 0.2 m/s (b) σu = 1.8 m/s

Figure 14: Quantile-Quantile plots of PL dB for the C609 waveform at x1 = 2046 m compared to a normal distribution (solid line) for two different
turbulence intensities.
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Extra Slides: Probability Distributions

ISBAP C609 Waveform

Similar trend to PL

ISBAP is skewed to the right at higher turbulence levels

(a) σu = 0.2 m/s (b) σu = 1.8 m/s

Figure 15: Quantile-Quantile plots of ISBAP dB for the C609 Waveform at x1 = 2046 m compared to a normal distribution (solid line) for two different
turbulence intensities.
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Extra Slides: Probability Distributions

ASEL C609 Waveform

ASEL differs from PL because it follows a normal distribution at high
turbulence levels

At σu = 1.8 m/s ASEL only has a slight skewness, and is much closer to the
theoretical normal distribution than other metrics

(a) σu = 0.2 m/s (b) σu = 1.8 m/s

Figure 16: Quantile-Quantile plots of ASEL dB for the C609 Waveform at x1 = 2046 m compared to a normal distribution (solid line) for two different
turbulence intensities.
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Extra Slides: Probability Distributions

BSEL C609 Waveform

Similar trend to PL

BSEL is skewed to the right at higher turbulence levels

(a) σu = 0.2 m/s (b) σu = 1.8 m/s

Figure 17: Quantile-Quantile plots of BSEL dB for the C609 Waveform at x1 = 2046 m compared to a normal distribution (solid line) for two different
turbulence intensities.
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Extra Slides: Probability Distributions

CSEL C609 Waveform

Similar trend to PL

CSEL is skewed to the right at higher turbulence levels

(a) σu = 0.2 m/s (b) σu = 1.8 m/s

Figure 18: Quantile-Quantile plots of CSEL dB for the C609 Waveform at x1 = 2046 m compared to a normal distribution (solid line) for two different
turbulence intensities.
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Extra Slides: Probability Distributions

DSEL C609 Waveform

DSEL is normal at medium turbulence intensities and skewed for low and
high turbulence

(a) σu = 0.2 m/s (b) σu = 1.8 m/s

Figure 19: Quantile-Quantile plots of DSEL dB for the C609 Waveform at x1 = 2046 m compared to a normal distribution (solid line) for two different
turbulence intensities.
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Extra Slides: Probability Distributions

ESEL C609 Waveform

Similar trend to PL

ESEL is skewed to the right at higher turbulence levels

(a) σu = 0.2 m/s (b) σu = 1.8 m/s

Figure 20: Quantile-Quantile plots of ESEL dB for the C609 Waveform at x1 = 2046 m compared to a normal distribution (solid line) for two different
turbulence intensities.
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Extra Slides: Mean Values

Average ISBAP I
ISBAP follows same trend as PL with respect to increasing turbulence
intensity

Can be approximated with exponential decay model

Not valid at low turbulence intensity for the C609 waveform

(a) N-wave (b) Low Boom waveform

Figure 21: Average ISBAP as a function of σu for a) N-wave and b) C609, compared to exponential decay model.
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Extra Slides: Mean Values

Average ISBAP II

Same trends as PL

Approximately linear for x1 > 1000 m for low and high turbulence intensities

(a) N-wave (b) Low Boom waveform

Figure 22: Average ISBAP as a function of x1 for a) N-wave and b) C609.
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Extra Slides: Mean Values

Average ASEL

ASEL follows same trend as PL for the N-wave

For the C609 waveform, there is a significant drop in ASEL for medium
turbulence levels

At higher turbulence levels, the ASEL metric approaches a constant value

(a) N-wave (b) C609

Figure 23: Average ASEL as a function of σu for the N-wave and C609 waveform.
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Extra Slides: Mean Values

Average CSEL

CSEL does not follow PL or ISBAP trends

For C609 waveform, CSEL is monotonically decreasing

For the N-wave, CSEL approaches a constant value when σu > 2.0 m/s

(a) N-wave (b) C609

Figure 24: Average CSEL as a function of σu for the N-wave and C609 waveform.
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