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Sonic boom waveforms measured at ground level exhibit variability due to scattering

and diffraction caused by the presence of turbulence in the atmospheric boundary layer

(ABL). Sonic boom propagation in the ABL is considered in the context of a partially

one-way equation for a finite amplitude pressure perturbation that incorporates turbulence

effects. This equation is shown to simplify to several well known equations in nonlinear

acoustics, if certain assumptions are made. A wide-angle parabolic approximation is

applied to the heterogeneous terms of the governing equation. The forward solution along

the propagation direction is computed with a split-step method. The solution at each

propagation plane is the composition of solutions to subproblems that account for each

physical effect: nonlinear distortion, diffraction, atmospheric absorption, and the effects

of mean flow and turbulence. Simulation results for benchmark acoustic problems are

compared to the corresponding analytical solutions to validate the code. Turbulence is

synthesized in the computational domain with Fourier synthesis techniques that have

been used previously for sound propagation simulations. The turbulent kinetic energy

spectrum is approximated by a von Kármán model. Simulations of traditional N-wave and

shaped booms are performed through homogeneous turbulence, as well as inhomogeneous

turbulence that is representative of daytime conditions in the atmospheric boundary

layer. A length scale is proposed to non-dimensionalize the propagation distance and

collapse the probability density functions of the caustic locations obtained from the
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N-wave simulations. For the simulations performed through homogeneous turbulence, the

average loudness levels for both waveforms are shown to decrease along the propagation

direction due to turbulence effects. The standard deviation of the loudness metrics

increases linearly for small non-dimensional distances. The maximum standard deviation

of each loudness metric considered for both waveforms fell between 2 to 4 dB. For the

simulations performed through inhomogeneous turbulence, the effects of ABL height

and convection level on a traditional N-wave and shaped waveform are considered. An

empirical modification to the scaling length is proposed to account for the varying ABL

height altering the turbulence integral length scales in the mixed layer region. Results

for the loudness metrics are shown to follow a normal distribution for both waveforms

when the non-dimensional distance is less than 2, beyond which the observations become

increasingly skewed to the right of a normal distribution. Results indicate that the

loudness metric distributions of both waveforms are likely to be normally distributed

in the region undertrack of the flight path for weak to strong convection levels in the

ABL. Additional simulations are conducted of sonic boom decay into the shadow zone

region. Results indicate that loudness levels of both waveforms in the shadow zone region

are sensitive to the turbulence levels in the ABL. As the turbulence level increases, the

average of each loudness metric increases.
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CHAPTER 1
INTRODUCTION

1.1 Background and Motivation

In 1973, the Federal Aviation Administration (FAA), acting upon the powers given to

them by the Noise Abatement Act of 1968, finalized a regulation to restrict the operation

of civil aircraft at speeds greater than Mach one [1]. These restrictions were imposed

on supersonic airliners in response to the apparent effects that “sonic booms” have on

communities across the nation. Shocks and expansion waves form around an aircraft

flying at speeds greater than Mach one, contributing to the near-field pressure signature.

Sonic booms are a result of the near-field pressure signature of an aircraft propagating

through the atmosphere in a nonlinear fashion until reaching ground level, where they

can cause structural damage and very loud human-perceived noise levels. It was due to

these restrictions, and similar ones imposed in Europe, that supersonic commercial aircraft

such as the Aérospatiale/BAC Concorde and the Tupolev Tu-144 were limited in their

operations. The majority of the Concorde’s flight routes were trans-Atlantic, and were

completed in less than half of the time of its competitors. Even with these restrictions, the

Concorde remained in operation until 2003 [2]. Figure 1-1 shows the Concorde (Fig. 1-1A

photograph by Airbus, obtained from National Geographic [3]) and Tupolev TU-144 (Fig.

1-1B image credit: Science Photo Library [4], obtained from BBC Future [5]).

A B

Figure 1-1. Photographs of the Concorde and Tupolev. A) Concorde on take-off from
Toulouse. B) The CCCP Tupolev TU-144.
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The United States Department of Transportation (U.S. DOT) estimates that by

the year 2045, America’s population will grow by 70 million with urban areas absorbing

up to 75% of the population [6]. It is also estimated by the FAA that within the next

twenty years, enplanements for domestic flights will continue to grow at a pace of 1.7%

per year [7]. The growing burden on commercial air travel is expected to increase air

congestion and wait times at some of America’s busiest airports, which already see flight

delays occurring at a rate of 22-30% [6]. Supersonic commercial travel can alleviate some

of the expected strains on the commercial aviation industry by reducing travel time

between destinations, and generate a new market based on low-boom designs. In lieu of

potential shortcomings in the U.S. transportation infrastructure, congress has given the

FAA the ability to “exercise leadership in the creation of federal and international policies,

regulations, and standards relating to the certification and safe and efficient operation

of civil supersonic aircraft” [1]. Current efforts by NASA and Lockheed-Martin have

resulted in the design of a new “low-boom” demonstrator aircraft in hopes of minimizing

community noise effects of supersonic over-land flight [8]. Other companies, such as Boom

Supersonic and Spike Aerospace, are also developing supersonic aircraft for the future [9].

Sonic boom predictions that utilize standard geometrical acoustics are limited in

their ability to predict turbulence effects and noise levels in the shadow zone region

[10–13]. The shadow zone is a region where acoustic waves do not propagate. In the case

of sonic boom, the shadow zone forms beyond the primary carpet region due to density

stratification of the atmosphere and the presence of the ground, acting as a barrier. The

sonic boom carpet will be discussed further in Sec. 1.5.1. Atmospheric turbulence causes

random spikes in the overpressure of sonic boom signals [14]. Variability of the waveform

pressure signal on the ground in turn causes variability in perceived noise levels. However,
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many sonic boom propagation codes in use today, such as PCBoom [11, 12] or sBOOM

[13], do not incorporate the effects of turbulence in predictions.1

Recent advancements in sonic boom predictions have incorporated turbulence

effects using parabolic formulations of the governing wave equation [15–18]. For

example, the NASA Sonic Booms in Atmospheric Turbulence (SonicBAT) program

was a combined effort with industry and academia to numerically predict sonic boom

waveform propagation through turbulence and compare results with field measurements

[19]. An important outcome of the SonicBAT program [20] was the work of Stout [18] in

developing a propagation code based on the modified KZK equation to predict waveform

propagation through turbulence. Two shortcomings of the method of Stout [18] are; 1) the

prohibitive cost of 3D computations and 2) ground effects are not captured. Luquet [17]

outlined a numerical approach to sonic boom propagation in a turbulent atmosphere using

a wave equation derived by Coulouvrat [15]. The computational approach by Luquet is an

efficient 3D computation that accounts for a rigid surface on the ground. The approach

of Luquet [17] is suitable for prediction of the sonic boom waveform in the shadow zone.

However, a comprehensive parametric study of the effects of turbulence on traditional

sonic booms and new “shaped” booms in the primary carpet region and shadow zone

region has yet to be performed.

1.2 Scope and Objectives

It is important to support the development of noise standards for future supersonic

aircraft with a validated and accurate sonic boom prediction code that includes

atmospheric turbulence effects. Numerical simulations of sonic boom propagation near

the ground will support flight test measurements and provide a low cost method to obtain

1 Turbulence effects are included in PCBoom as a finite impulse response filter, that
can be used as a post-processor on the predicted waveform to estimate turbulence effects.
However, the direct computation of sonic boom scattering by turbulence is not included in
the propagation.
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sonic boom predictions in various atmospheric boundary layer turbulence conditions. In

addition, in this dissertation, prediction capabilities are extended beyond the lateral cutoff

to the shadow zone.2 The objectives of the research presented in this dissertation are; 1)

to perform a parametric study of the effect of atmospheric boundary layer turbulence on

traditional sonic boom N-waves and shaped booms, and 2) to study sonic boom beyond the

lateral cutoff in a turbulent atmosphere with numerical simulations.

The research presented here will build upon the approach of Luquet [17], Dagrau et

al. [16] and Coulouvrat [15] to develop a 2D and 3D solver for sonic boom propagation

in the atmospheric boundary layer. The governing equation is obtained by decomposing

the Navier-Stokes equations, the Kirchoff-Fourier energy equation [21], and the equation

of state into hydrodynamic fluctuations associated with the mean flow and turbulence,

and acoustic fluctuations. A partially one-way equation for the acoustic pressure is then

derived, which accounts for nonlinear effects, absorption, diffraction, and flow effects.

The solver computes the forward propagating solution of this equation with a split-step

approach. The solver is meant to take input waveforms from a ray theory code, such as

PCBoom, at the edge of the boundary layer and propagate them in a fast efficient way

through a computational domain with flow characteristics meant to represent the ABL. To

achieve suitable speed of computations, the code uses the MPI interface to operate across

many different processors. Kinematic turbulence is generated with the generalized random

phase method [22], and both homogeneous fields and inhomogeneous fields that represent

the ABL are considered.

A comprehensive parametric study of traditional N-wave and shaped boom

propagation through turbulence is performed. A length scale is proposed to account

for the effect of turbulence on the sonic boom waveforms. This length scale is used

2 For more information on the sonic boom carpet and shadow zone, see Maglieri et al.
[14]. The sonic boom carpet and lateral cutoff are defined in Section 1.5.
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to non-dimensionalize the propagation distance of the sonic boom waveforms through

turbulence. Variability of the sonic boom loudness levels are shown to increase linearly

when the non-dimensional propagation distance through turbulence is small. Additionally,

the distributions of the loudness metrics follow a normal distribution for small non-dimensional

propagation distances. Thus, the results obtained here indicate the potential to

parameterize the sonic boom loudness distributions in the region of the carpet directly

undertrack of the flight path.

1.3 Contributions of the Present Work

There are several important outcomes of the research presented here. The first is the

development of a code to predict sonic boom propagation through a turbulent ABL and

into the shadow zone region. The solver foregoes the use of a parabolic approximation on

the diffraction terms, and thus retains full accuracy of the lowest order terms. The solver

takes input waveforms directly from PCBoom output files, therefore it can be used in

conjunction with PCBoom for sonic boom predictions. The second is the parameterization

of the effect of ABL turbulence on the sonic boom waveforms by means of a length scale

that describes the effective focal length of a turbulent field. The simulations performed

here suggest that this parameterization of the turbulence is effective at collapsing the

predictions for the variability of the overpressure and loudness metrics for locations

directly undertrack of the flight path for weak to moderate convection levels in the ABL.

In addition, the simulations indicate that the loudness metrics in this region of the sonic

boom carpet follow a normal distribution. These predictions provide justification for the

use of a normal distribution to described the loudness metric statistics for the purposes

of sonic boom flight test planning and community surveys. Finally, the effects of ABL

turbulence on the sonic boom signals and loudness metrics in the shadow zone region are

quantified with numerical simulations. The sonic boom signals are shown to significantly

attenuate with increasing distance beyond the lateral cutoff. The ABL turbulence acts

to scatter the sonic boom signal from the wave region into the shadow zone region. As
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the turbulence integral length scale and root-mean-square (rms) velocity increases, the

post-boom pressure fluctuations increase in magnitude relative to the initial boom, and

contribute significantly to the loudness. Loudness levels several kilometers into the shadow

zone region are mostly influenced by the turbulent scattering of the waveform.

1.4 A History of Supersonic Flight

After World War II, flight research focused heavily on breaking the sound barrier.

Advances in structural and engine design of aircraft before World War II had resulted

in aircraft that could approach the transonic region (Mach 0.7) [23]. However, because

of shortcomings in the design of high-speed wind tunnels, problems faced when flying in

the transonic region such as standing shocks and intense structural loading could not be

adequately examined. Attempts were made to study supersonic flow on the wing of fighter

aircraft by performing a dive maneuver [24]. However, this was dangerous to perform at

low altitudes. Research began to focus on developing a new airplane that could fly at high

altitudes, powered by air-breathing jet or rocket engines [23].

In 1945, two research programs were initiated to achieve the goal of high-altitude

supersonic flight, the Air Force sponsored Bell X-1 and the Navy sponsored Douglas

D-558 [23]. The contract for the X-1 was awarded by the Air Force to Bell Aircraft in

Buffalo, New York. In December 1945, the Bell X-1 had completed manufacturing. The

Bell X-1 was powered by a liquid rocket propulsion engine. It could not take off from the

ground, and had to be flown up to altitude by a B-29 before being released to fly on its

own [23]. This presented additional risk to the project and the test pilot. Regardless, in

1946 Gen. Charles Yeager became the first person to fly faster than the speed of sound in

the Bell X-1 [25]. Figure 1-2 is a photograph of the Bell X-1 in flight (Credit: NASA [26]).

Development continued in subsequent years on rocket and turbojet aircraft that flew at

speeds greater than Mach 1, some of which could also takeoff from a runway [23].

In the 1940s and 50s the first human made sonic booms from aircraft were produced

by military aircraft in the United States, like the Bell X-1 [25]. In the decade and a half
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Figure 1-2. Bell X-1 in flight.

before the Oklahoma City tests the military was flying more than ten different kinds of

supersonic aircraft and received many noise complaints during this period. Due to the

military flights, frustration grew among the public even before the Oklahoma City tests

[27]. In spite of public frustration, the United States government argued that supersonic

flight was an essential technological advancement that would further affirm America’s

standing as a power in the international community [28, 29]. During the Cold War, this

was a convincing argument, as many Americans feared the spread of communism around

the world. Due in part to the fear that the United States would fall behind the USSR in

supersonic flight, President John F. Kennedy approved the supersonic civilian transport

(SST) program in 1963 [27, 30].

To study the effects of sonic boom on communities, the government began a campaign

of flight tests over Oklahoma City that lasted six months. The objective of these tests

were to study the long term effects of sonic boom on the community. The city experienced

1, 253 booms over the span of the study [27]. During the testing, there were reports of

windows shattering, ceilings cracking, and pictures falling off of walls [31]. The FAA

studied several different impacts of the sonic booms such as building damage and public
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annoyance. In order to test building damage, the FAA rented out 11 buildings around

the city and outfitted them with structural sensors. The FAA also engaged with a local

insurance company to evaluate claims of building damage and to understand the amount

of damage costs covered by insurance. To understand the public’s opinion of sonic boom,

the government hired a group to conduct 10,000 interviews with residents of the city

[27]. During the testing itself, the community became so frustrated with the sonic booms

that the city council voted to ask the FAA to stop testing, however political and public

pressure from those who thought the SST program was essential to national security

eventually caused the council to repeal their vote [32].

Some of the results from the Oklahoma tests show quantitatively the negative

impacts of sonic boom in communities. Nearly all of those who responded to requests for

interviews reported that sonic booms had some effect on their daily lives [33]. More than

25% said they could not live with eight sonic booms per day indefinitely, and around 40%

said that there was some damage caused to their home [33]. By the end of the testing,

the FAA and Air Force received more than 15,000 complaints and 10,000 damage claims.

The public response study estimated that these numbers were lower than the actual

amount of people that wanted to complain, because 70% of people did not know where

to submit a complaint [33, 34]. Opposition to sonic booms were so strong that people in

the Oklahoma City community believed them to be an infringement upon their rights

to privacy and property. After the Oklahoma City tests, President Johnson asked the

National Academy of Sciences to review the impacts of sonic boom [35]. Their reviews

did not prove promising for the program, and several years later in 1971 the program was

defunded [27].

Across the Atlantic, the French and British had joined forces to develop a new

supersonic commercial aircraft, called the Concorde. The program began in 1962 after

an agreement was reached on some of the aircraft characteristics. The initial objective

of the project was to transport around 80 passengers with a range between 3000 to 4500
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km [36]. The next step was to then determine the cruise Mach number. Engineers had

to consider stagnation temperatures that the aircraft would experience and the effects it

would have on the structure, fuel tank lining, and air conditioning. The maximum cruise

Mach number was chosen to be M = 2.2, which kept stagnation temperatures below

120◦ Celsius [36]. Features of the preliminary design included a low mounted modified

delta wing, a constant cross section fuselage that was tailless, and four engines mounted

under the wing. The aircraft was designed and built with transatlantic flight in mind, and

the engineers made sure that noise levels during subsonic flight were comparable to the

subsonic jets of the time [36].

An initial cost-benefit analysis of the Concorde program estimated that approximately

200 aircraft would be built and sold to airlines [37]. Only twenty aircraft were built, and

six were prototypes and developmental aircraft. In operation, the aircrafts were relatively

fuel inefficient and expensive to maintain. These operational costs led to ticket prices

that exceeded $5000. By 2003, operations of the Concorde had ceased due to a lack of

economic viability, and a landing gear accident [38]. Clearly many factors, including public

annoyance and high fuel costs, led the Concorde program to eventually cease operations.

The restriction of available routes due to the overland flight ban of supersonic aircraft

made it difficult for operations of the Concorde to be profitable.

NASA and Lockheed Martin are currently developing the latest generation of the

X-plane, the X-59 QueSST (Quiet SuperSonic Technology), which is a supersonic overland

flight demonstration aircraft. The objective of the X-59 project is to reduce sonic booms

to a quiet “thump” by adjusting the design of the aircraft [19]. Current FAA regulations

prevent over-land flight of supersonic commercial aircraft. The demonstration of an

aircraft design with a significantly lower perceived noise level could open the door to new

flight regulations permitting over-land flight of aircraft that can operate below certain

noise metrics. Community flights will begin to gather data on the public’s perception of

the sonic “thump” [19] once the X-59 construction is completed. Figure 1-3 (NASA Image
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adapted from Page and Loubeau [19]) shows an artist’s rendition of the X-59 QueSST

design. The unique features of the X-59 QueSST were designed to minimize sonic boom

perceived noise levels on the ground. Aspects of the design, such as the flat elongated nose

and the aft-mounted engine, are some examples of noise minimizing features.

Figure 1-3. Artist’s rendition of the X-59 QueSST.

1.5 Sonic Boom Theory and Application

1.5.1 Theoretical Developments

With the development of jet aircraft during World War II, interest in research

pertaining to high-speed flow, particularly around aircraft, grew. In 1945, the Russian

physicist Lev Landau published a paper regarding the properties of shock waves that have

traveled large distances from their origin [39]. Considering the case of a body moving

faster than the speed of sound along an axis, Landau found that at a large distance away

from the axis (large r) there exists two shock waves propagating in the medium [39].

The constraint that the acoustic potential must be finite at r = 0 and that the pressure

decreases as r−1/2 for large r implies that the integral of the acoustic pressure for all time

be equal to zero,

lim
t1→∞

∫ t1

−t1

p(τ)dτ = 0, (1-1)
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where p is the acoustic pressure perturbation, t1 is some instance in time, and τ is the

variable of integration. Equation 1-1, along with the knowledge that two shock waves

are present far from the body of revolution, implies that a sudden increase in pressure

must be accompanied by a gradual decrease (rarefaction) and then once again a sudden

increase. The two shocks present in the waveform are due to the leading and trailing edge

of the supersonic body. Many standard acoustics textbooks and research works on sonic

boom refer to this as an N-wave profile (because it is shaped like the letter “N”). Figure

1-4 provides an illustration of the pressure fluctuation of an N-wave as a function of the

delayed time τ = t− c−1r, where c is the speed of sound of the surrounding medium.

Figure 1-4. Illustration of an N-wave profile.

Hayes [40], in his thesis, addressed some developments of linearized supersonic flow

theory. The importance of Hayes’ work to the field of sonic boom is the development

of a supersonic area rule,3 where a non-axisymmetric body flying in a straight line can

be considered as a system of sources along the axis that define an equivalent body of

3 Not to be confused with Whitcomb’s [41] area rule, which concerns the wave drag
produced by a wing-body combination in supersonic flight.

33



revolution. The case of the pressure signature around a supersonic body of revolution

was considered by Whitham [42] in 1950. Whitham argued that the existing linearized

theory could not accurately predict the shape of the shocks at distances large from the

axis of revolution. He extended the existing linearized theory by means of an asymptotic

expansion of the velocities. This technique leads to several results regarding the properties

of the flow at distances far from the axis of a slender body of revolution, perhaps one of

the most important results is the ability to express the velocities and pressure in terms

of an integral of the F-function. This function is later demonstrated by Whitham [43, 44]

to be applicable in the more general case of weak shocks from non-axisymmetrical bodies.

Common sonic boom propagation codes today, such as PCBoom [10] can take Whitham’s

F-function for a given source as input to the computation.

Carlson [45] tested the theories of Hayes and Whitham in the NASA Langley 4x4

foot supersonic wind tunnel. Seven models of different shapes and sizes were tested at

a Mach number of 2.01 and Reynolds number of 2.5 × 106. Measurements were taken

at eight body lengths away in the sideline direction from the largest models and 32

body lengths from the smallest model. Results suggest that Whitham’s theory predicts

the far-field overpressures within 25% of measurement. The results also indicated that

non-axisymmetric bodies can be replaced by equivalent bodies of revolution using Hayes’

supersonic area rule, suggesting that the field becomes symmetric about the axis as the

distance from the body increases.

Hubbard et al. [46] conducted flight tests and obtained measurements of sonic

boom for a F-104 Starfighter and B-58 Hustler aircraft at Edwards Air Force Base. The

measurements were made for Mach numbers from 1.1 to 2.0 over various flight conditions.

Measurements of pressure on the ground indicated that the waveforms all had an N-wave

type profile as predicted by Landau [39], however, each measured wave had unique

variations in the profile. These variations were due to the interaction of atmospheric

turbulence with the waveform. Measurements of Hubbard et al. [46] provide insight into
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the importance of the sonic boom interaction with turbulence and its effect on perceived

noise levels at the ground. A comparison was made between the overpressures recorded

at the ground with the theory of Whitham [42]. For all measurements, Whitham’s theory

under-predicted the maximum overpressure at the ground. The theory does not account

for a distribution of sources due to lifting forces. In the appendix of Hubbard et al. [46],

a technical note written by Carlson presents a numerical procedure for calculating sonic

boom at the ground that includes the effects of lifting forces.

Seebass [47] built upon the work of Whitham to develop a first order sonic boom

theory that incorporates the cumulative effects of second order perturbations, which

indeed become first order far from the aircraft. By first order, it is meant that the ratio

of some perturbed quantity over its undisturbed value is proportional to the slenderness

ratio of the aircraft. Seebass considered the case of an ideal atmosphere without winds and

found the shock pressure rise as a function of propagation length [47].

The intersection of ray paths emanating from an aircraft in supersonic flight with

the ground is called the sonic boom carpet (or sonic boom footprint). The effects of sonic

boom at ground level are heard mostly in this region. Figure 1-5 (adapted from Maglieri

et al. [14]) shows an illustration of the sonic boom carpet at ground level. The primary

boom carpet is directly undertrack of the aircraft. This portion of the carpet is caused

by the sonic boom propagating downwards from the aircraft towards the ground. Due to

density stratification of the atmosphere, rays that emanate upwards into the atmosphere

from the aircraft can refract back towards the ground. The collection of these waves that

propagate back towards the ground make up the secondary boom carpet, which surrounds

the primary carpet. In between these two regions of the carpet is an acoustic shadow zone,

which is a region that experiences no sonic boom. For a non-turbulent atmosphere, only

evanescent waves are present in the shadow zone. In the beginning of the flight profile and

after the climb, there is a transition region, in which the aircraft accelerates to supersonic
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speed. In this region rays intersect to form a caustic (focusing region) in which the sonic

boom overpressure is significantly larger than the rest of the flight profile.

Figure 1-5. Illustration of the sonic boom footprint of a supersonic aircraft.

In the 1970’s, the United States ended the SST program and the Concorde program

restricted its operations to over-sea supersonic flight. Subsequently, research on sonic

boom decreased significantly until the 1990’s when aircraft design by computational

fluid dynamics (CFD) gained traction [14]. With advancements in CFD, it was no longer

required to model the source with an F-function, and near field pressure could be obtained

directly from the CFD solution [48–50]. Using CFD to compute the near field source

signature has also lead to sonic boom minimizing aircraft designs, where the near field

pressure signature is minimized by redesigning the shape of the aircraft [14].

1.5.2 Computational Approaches to the Prediction of Sonic Boom

Prediction of sonic boom at ground level is a complex problem that requires numerical

techniques to propagate the wave through the stratified atmosphere. The works presented

in this section focus on far-field propagation codes and not on near-field CFD approaches

that have become more common for the prediction of near-field pressures. Friedman,

Kane, and Sigalla [51] developed one of the earliest sonic boom prediction codes. The

calculation of the shock strength in Friedman et al. [51] accounts for not only the distance

of propagation but also the stratification of the atmosphere. The authors also propose
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methods for treating more complicated cases of aircraft acceleration and acoustic

refraction in the atmosphere. According to Plotkin [10], the code was used by Boeing

to analyze the proposed 2707 SST in the 1960’s.

Although the code of Friedman et al. [51] was one of the earliest propagation codes,

it also had a known issue with the ray tube formulation [10]. One of the first propagation

codes to have all of the components correct for computing propagation in a standard

atmosphere [52] is that of Hayes et al. [53]. Hayes et al. [53] developed a computer

program to calculate sonic boom propagation from the source through a stratified

atmosphere to a prescribed altitude. The program is based upon a geometrical acoustics

approximation, commonly termed ray theory, which assumes that the wavelength is much

smaller than the propagation distance λ << R. This is certainly satisfied in the case

of weak shock propagation through the atmosphere. Nonlinear effects on the waveform

are accounted for by an “age” variable. The program computes the midfield pressure

signatures at any altitude.

Thomas [54] developed a sonic boom propagation program in 1972 that relies on

direct integration of the eikonal function to compute ray paths. Whitham’s rule is applied

with a waveform parameter method. The input to the Thomas program is a line of ∆p,

which is different from the F-function input for the program of Hayes et al. [53]. The

Thomas program was designed to accept an input from measurement data in a wind

tunnel; however, the ∆p that can be computed from an F-function will not necessarily

correspond to the measured ∆p. Thus certain situations, such as flight of an aircraft with

a shaped boom, can cause discrepancies between the solution of the Thomas program

and the Hayes program [10]. When there is agreement with the source condition both

programs agree quite well with each other and the precision of the results is between three

to five significant figures [10]. These two programs are implementations of the fundamental

theory for sonic boom propagation, many current propagation codes today are based on

these two programs.
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In subsequent years since the programs of Hayes [53] and Thomas [54] there have

been developments in sonic boom prediction codes that capture a wider scope of the

physics. In 1980, Taylor [55] published a report on the TRAPS (Tracing Rays and Aging

Pressure Signatures) software, which is based on the Hayes program but is designed to

compute secondary sonic booms. TRAPS uses the distance along each ray path from their

origin, rather than the atmospheric altitude to compute waveform propagation (like the

Hayes’ formulation). By doing so, TRAPS can capture rays that refract in the atmosphere

before reaching the ground. A decade later, ZEPHYRUS [56] was developed to incorporate

even more physical effects than the TRAPS code. Like TRAPS, ZEPHYRUS was based

upon the Hayes program. The most notable additional physical effect that ZEPHYRUS

captured was the effect of the molecular relaxation on the shock structure, using the

Pestorius algorithm [57].

One popular software that is currently used by NASA to predict sonic boom is

PCBoom [12]. PCBoom was built upon the program written by Thomas [54] in the 1970’s.

In the original Thomas program, the Earth is assumed flat and the ray equations are

computed under this assumption and the additional assumption that the atmosphere is

modeled with layers. In PCBoom, a three-dimensional ray tracing algorithm accounts for

the Earth’s geometry below the flight path. PCBoom can also handle aircraft maneuvers.

The source input may be either a Whitham F-function or the near-field computed from

computational fluid dynamics (CFD) [58]. Recent enhancements were made to increase

the computational speed and to account for absorption and wind effects in the Burgers’

equation solver [11].

Ray theory codes are faster compared to traditional CFD, and can account for

nonlinear distortion, absorption, molecular relaxation, geometrical spreading, and

atmospheric stratification. However, for propagation in the atmospheric boundary layer

(ABL) turbulence and diffraction from the ground is present, and cannot be neglected.

Ray theory is not able to account for these effects. In order to account for these effects,
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computational approaches have been developed to solve wave equations with higher order

terms. The Khokhlov-Zabolotskaya-Kuzenetsov (KZK) equation [59–61] is commonly

used for directional sound beams propagating in a medium in which diffraction effects

are non-negligble. In order to account for turbulence effects, Blanc-Bennon et al. [62]

integrated the KZK equation in time, and terms representing scalar and vector turbulence

were included by Aver’yanov et al. [63, 64]. Molecular relaxation can be included through

the work of Cleveland et al. [65]. Stout [18] developed a code to solve this augmented

KZK equation in two and three dimensions in a computational domain with a turbulent

field meant to represent the ABL. A significant result of this effort was the development

of a Finite Impulse Response (FIR) filter, which convolves a waveform with the response

function that represents the effect of atmospheric turbulence on the waveform. The code

and FIR filter has been used by the SonicBAT [20] investigation to assess the variability

and change in sonic boom metrics due to the influence of turbulence. While the KZK code

developed by Stout [18] is one of the first prediction tools to propagate a waveform in a

field of vector and scalar turbulence that mimics the ABL, it is prohibitively expensive to

run in three dimensions and does not account for diffraction along the ground in the case

of grazing incidence.

The nature of the KZK equation and its parabolic approximation prevents accurate

computation of the diffraction process as sonic boom waveforms near the lateral extent

of the carpet travel across the ground. Coulouvrat [15] proposed several scalar wave

equations of higher order than the KZK equation. These equations were derived assuming

an ambient flow with a small Mach number, which certainly holds in the atmospheric

boundary layer. For sheared turbulent flow, Coulouvrat’s equation includes the full

Laplacian operator in the propagation terms. This is markedly different than the

KZK equation, which due to the parabolic approximation only retains the transverse

Laplacian. In the case of no mean flow or turbulent fluctuations, the equations proposed

by Coulouvrat reduce to the Westervelt equation.

39



Dagrau et al. [16] performed a 2D numerical simulation of acoustic wave propagation

in a heterogeneous medium starting with the 2D form of Coulouvrat’s equation.

Diffraction effects are solved explicitly by the angular spectrum method, which is exact for

all forward angles. A parabolic approximation is applied only to the heterogeneous terms

of the equation. Thus, the computational approach of Dagrau et al. [16] is advantageous

to standard parabolic approximations.

Luquet [17] extended the methods of Dagrau et al. [16] to three dimensions. Luquet

demonstrated the advantages of the split-step approach of Dagrau et al. [16] by simulating

several benchmark acoustic problems. When examining only the effect of diffraction there

was a significant improvement in the resolution of the near-field diffraction pattern of

radiation from a circular piston compared to parabolic approaches. The improvement

of the computation of diffraction effects is important when considering sonic boom

propagation near the lateral extent of the sonic boom carpet.

1.6 Sound Propagation in a Turbulent Flow

1.6.1 Mean Flow

To understand sonic boom propagation near the ground, it is important to first

discuss the physics of the fluid motion in the atmospheric turbulent boundary layer. The

concept of a boundary layer was first introduced by Ludwig Prandtl [66]. This layer of

fluid, very near to the surface of an object, has a velocity profile that is distinctly different

than the ambient flow. Due to the no-slip condition on the surface, a large gradient of the

velocity causes the flow to be dominated by viscous effects. The ambient flow has a large

Reynolds number and negligble viscous effects. To properly characterize the flow in the

entire domain, the boundary layer flow must be “matched” to the ambient flow at some

distance from the surface of the object.

For the case of turbulent flow over a flat wall or surface, there are several layers that

compose the velocity profile. Each layer is described by different mechanisms of shear

forces that dominate the physics in that region. The three layers for this flow are the inner
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layer, outer layer, and overlap layer. In 1933, Prandtl [67] showed that the inner layer is

influenced strongly by the wall shear stress. The mean velocity in this layer is a function

of the fluid properties, shear stress at the wall, and distance from the wall,

u = f (τwall, ρ, µ, z) ,

where u is the mean flow velocity, z is the height from the wall, τwall is the shear stress on

the wall, ρ is the density of the fluid, and µ is the dynamic viscosity of the fluid. In the

outer layer, shear forces caused by turbulent motion dominate.

In 1930, von Kármán [68] argued that in the outer layer the wall acts merely as a

delay of the local velocity to the freestream velocity. The difference in the freestream

velocity and local velocity is a function of the wall shear stress, boundary layer height δ,

and the pressure gradient such that

[
lim
z→∞

u
]
− u = f

(
τwall, ρ, z, δBL,

dp

dx

)
,

where x is the downstream coordinate, p is the pressure, and δBL is the boundary layer

height. Dimensional analysis and matching of the two functions in the overlap layer leads

to the conclusion that each profile must be logarithmic in nature for unbounded flows [69].

The profiles of the inner and outer layer are as follows,

u

u∗
=

1

κvK
ln
(zu∗
ν

)
+ C1, (1-2)

and

U − u

u∗
= − 1

κvK
ln

(
z

δBL

)
+ C2. (1-3)

where C1 and C2 are determined from experiment, κvK = 0.41 is the von Kármán

constant, and ν is the kinematic viscosity. The shear velocity is u∗ =
√
τwall/ρ. The

entire region influenced by the wall (inner and overlap region) can be described by a single
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composite profile obtained by Spalding [70],

zu∗
ν

=
u

u∗
+ e−κvKC1

eκvK
u
u∗ − 1− κvK

u

u∗
−

(
κvK

u
u∗

)2
2

−

(
κvK

u
u∗

)3
6

 . (1-4)

Monin and Obukhov [71] introduced a now widely accepted model of the mean

velocity and temperature in the surface layer of the atmosphere. Monin and Obukhov

formulate the mean wind and temperature profiles in terms of a universal function

φm,h(zL
−1
o ) (m refers to momentum transfer and h refers to heat transfer), where

Lo = − u3∗T0

κvKg u′zT
′
∣∣
z=0

(1-5)

is the Obukhov length scale, g is the gravitational constant g = 9.81 m/s2, T0 is the

temperature on the ground, T ′ is the fluctuating component of the temperature, u′z is the

fluctuating component of the vertical velocity, and the bar q indicates averaging (of some

variable q). The asymptotic forms of φm,h can be obtained in the limits zL−1
o → ∞ and

zL−1
o → −∞ for both stable and unstable stratification, which are found to agree well

with experimental results [72–74]. Monin Obukhov Similarity Theory (MOST), as it is

now termed, has had a significant impact on meteorological research over the past 70

years since it was first introduced. Significant efforts in the field of meteorology have gone

towards developing universal functions to fit MOST across a wide range of experimental

data, and even extend the range of validity beyond the surface layer.

In the 1960’s, Businger et al. [74] found expressions for the universal functions that

matched observations for stable conditions. With the functional forms of Businger et al.

[74], the Monin-Obukhov similarity theory takes the form,

u =
u∗
κvK

(
ln
z

z0
+ 4.7

z

Lo

)
, (1-6)

and

Θ = Θref +Θ∗

(
0.74 ln

z

z0
− 4.7

z

Lo

)
, (1-7)
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where z0 is the roughness length, Θ is the temperature corrected for height using the

adiabatic lapse rate, Θ is the average of Θ, Θ∗ is the temperature scale, and Θref is a

reference temperature. The temperature Θ is approximately the potential temperature for

low altitudes, and is defined as

Θ = T

(
p∞
p

)Rair/cp

, (1-8)

where T is the absolute temperature of the air parcel, p∞ = 101325 Pa, p is the pressure of

the air parcel, Rair = 287.058 J ·kg−1 ·K−1 is the specific gas constant of air, and cp = 1.006

kJ · kg−1 ·K−1 is the specific heat of air at constant pressure. MOST can also be applied to

any passive scalar contaminate of the field.

The ABL mean flow can exhibit either stable or unstable stratification. The stability

of the ABL typically changes throughout a 24 hour period. Stable stratification typically

occurs at night and unstable stratification occurs during the day, when the ground is

heated through radiative heat transfer. Figure 1-6 (from Garratt [75]) illustrates the

composition of the atmospheric boundary layer at different times during the day. The

convective boundary layer (CBL) is present during the daytime and temperature, wind

speed, and other quantities are nearly constant through this layer due to strong turbulent

mixing [75]. The nocturnal boundary layer is stable and potential temperature increases

with height [76]. In the surface layer, turbulent fluxes and stress vary by less than 10% of

their overall magnitude [77].

1.6.2 Turbulence Characteristics

The ABL exhibits turbulent fluctuations due to fluid straining caused by the mean

velocity gradient and bouyancy forces caused by surface heating and cooling throughout

a 24 hour time span [77]. In order to predict the sonic boom signal in the ABL it is

important to understand the characteristics of turbulence in the ABL. In 1883, Reynolds

[78] demonstrated the transition of a fluid flow from laminar to turbulent with a pipe flow

apparatus. Reynolds [78] identified a non-dimensional parameter of the flow ρDuµ−1 (D is

an appropriate length scale), now referred to as the Reynolds number Re, as an indicator

43



Figure 1-6. Illustration of the evolution of the ABL throughout the course of a day.

of the stability of the flow. In pipe flow, Reynolds numbers greater than approximately

2300 correspond to the turbulent regime.

Taylor [79] introduced the concept of isotropic turbulence. In isotropic turbulence, the

statistical properties of the fluid are invariant subject to rotations and reflections about

a coordinate system. The assumption of isotropy greatly simplifies statistical analysis

of the turbulent flow. With this assumption, Taylor [79] demonstrated that a simple

expression for the radius of curvature of the correlation function B11, in the limit of the

distance between two points in the flow reaching zero, can be obtained. Physically, this

is a measure of the diameter of the largest eddies at which viscous dissipation becomes

a significant factor in the turbulent motion [80]. Karman and Howarth [81] progressed

the work of Taylor further and constructed a correlation tensor for the velocities in an

isotropic flow. In addition, they derived an equation for the propagation of the correlation

function under these assumptions.

Kolmogorov [82] considered the case of locally isotropic turbulence at large Reynolds

number. Kolmogorov obtained two landmark results on the basis of similarity arguments.

The first is that the length scale of the smallest turbulent eddies, on the basis of
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dimensional considerations, is η = ν3/4ϵ−1/4, where ϵ is the dissipation rate, and ν is

the kinematic viscosity. Today, η is called the Kolmogorov scale, which represents the

smallest scale of turbulence in a homogeneous isotropic field. The second is the hypothesis

that the distribution laws at a separation distance much greater than η depend only on

the energy dissipation ϵ and the separation distance. This led to the famous scaling law

for the turbulent kinetic energy spectrum in the inertial range E(k) ∼ Cϵ2/3k−5/3, where C

is a constant of 1.5 and k is the wavenumber.

The existence of organized motion in turbulence was recognized by Theodorsen

[83], Roshko [84], and Townsend [85]. In a turbulent flow, eddies that have coherence in

their motion can account for a significant portion of the turbulent kinetic energy. Flow

visualization techniques have been used to obtain insight into this organized flow motion

[86]. Lumley [87] introduced the method of proper orthogonal decomposition (POD) to

the field of fluid mechanics to identify the coherent structures in a turbulent flow. The

energy of orthogonal modes in an inhomogeneous turbulent flow can be determined by the

eigenvalue problem,∫
R̂ij (kx, ky, z, z

′)ϕ
(m)∗
j (kx, ky, z

′) dz′ = λ
(n)
eig (kx, ky)ϕ

(n)
i (kx, ky, z) , (1-9)

where R̂ij is a velocity spectrum in the homogeneous directions (x, y) and a correlation

function in z, ϕ(n)
i is the eigenfunction, ϕ(m)∗

j is the complex conjugate of the eigenfunction

(∗ indicates complex conjugate), and λ
(n)
eig are the eigenvalues.

It can be shown that the total turbulent kinetic energy is a summation over all of the

eigenvalues. Physically, this implies that each eigenvalue represents a contribution of that

particular mode to the total energy of the flow. The total turbulent kinetic energy of the

flow will be the sum over the countably infinite number of eigenvalues,

E =
∑
n

∑
kx

∑
ky

λ
(n)
eig (kx, ky) . (1-10)
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As can be seen in Monin-Obukhov similarity theory, both the velocity and temperature

in the atmospheric boundary layer vary with altitude. As a result, turbulence that forms

in this layer is inhomogeneous in the vertical direction. Turbulence scales vary greatly

in the ABL, in order to study turbulence in this layer computational approaches that

resolve the largest scales such as large-eddy simulation (LES) are usually employed

[88]. LES was developed in the 1960’s [89] and is used in numerical weather prediction

models. LES of the ABL often uses the assumption of horizontal homogeneity. Even with

the computational advancements of the last half century, LES remains one of the most

practical methods of studying ABL flow. Unfortunately, LES is computationally expensive

and not useful for fast predictions of the effect of turbulence on sonic boom.

1.6.3 Sound Propagation in Turbulence

Lighthill [90] developed an acoustic analogy to relate the shearing fluctuations of

a fluid flow to the longitudinal fluctuations of sound outside of the volume of interest.

Lighthill’s acoustic analogy is

∂2ρ

∂t2
− c20

∂2ρ

∂xi∂xi
=

∂2Tij
∂xi∂xj

, (1-11)

where c0 is the ambient speed of sound, Tij is the Lighthill stress tensor Tij = ρuiuj +

pij − c20ρδij, and δij is the Kronecker delta. pij represents the hydrodynamic and viscous

stresses. The Lighthill acoustic analogy is a re-arrangement of the equations of motion

of a fluid into a wave equation with a source term to represent the sound generated by

aerodynamic means. Predictions are made with Lighthill’s theory by integrating over

a volume of sources. Therefore, Lighthill’s theory does not consider the propagation of

acoustic waves through the source volume itself, nor does it consider propagation in a

moving medium.

Lighthill [90] applied his theory of sound generated aerodynamically to study the

sound scattered by a turbulent field. The source term in Eqn. 1-11 was decomposed

into a mean flow, turbulent fluctuations, and acoustic velocity perturbation. For a linear
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harmonic plane wave whose wavelength is less than the scale of the largest turbulent

eddies, the acoustic power scattered is,

Ps =
8π2ℓ

λ2
I
u′2i
c20
, (1-12)

where I is the acoustic intensity, λ is the wavelength of the incoming wave, u′2i is the

variance of the turbulent velocity fluctuations, and ℓ is the integral length scale of

turbulence. Lighthill’s result (Eqn. 1-12) is restricted to acoustic wavelengths less than the

largest scales of turbulence. If POD is performed on a turbulent flow, then the turbulent

kinetic energy in Eqn. 1-12 can be replaced with Eqn. 1-10 and the acoustic power

scattered by each eigenmode can be estimated. Noise produced by turbulence in the ABL

is negligible compared to the noise produced by sonic boom. In Chapter 2, terms in the

governing equation involving only turbulence-turbulence interaction are neglected.

The propagation of sound waves in the atmosphere is affected by turbulence in two

ways. First, fluctuations of local temperature in the medium cause fluctuations in the local

sound speed. This phenomenon causes changes in the local acoustic index of refraction,

which in turn can cause scattering and refraction of the sound waves that propagate in

the domain. The second effect is the convection of the wavefront caused by turbulent

fluctuations in the velocity field. These convection effects can cause random distortions

of the sound wave. The effect of turbulence on sound propagation in the atmosphere

was considered by Obukhov [91], Kraichnan [92], and Blokhintsev [93]. Kraichnan [92]

considered the scattering of sound passing through a turbulent shear flow. Kraichnan [92]

obtained a function for the angular distribution of scattered sound. Further simplification

for the case of scattering by isotropic turbulence results in explicit expressions for the

scattered wave. Blokhintzev [93] established wave equations for linear sound propagation

in an inhomogeneous medium. These equations are then examined with the geometrical

acoustics approximation. Blokhintzev [93] demonstrated that inhomogeneities of the

medium can change the amplitude of the sound wave that propagates through it.

47



Specifically, Blokhintzev [93] found that for an isothermal non-moving atmosphere the

pressure is proportional to the square root of the mean density. For sonic boom, which

propagates over a great distance in the atmosphere, this effect greatly influences the

perceived noise levels on the ground. This is best shown by Figure 1-7 from the SonicBAT

[20] report, which illustrates the sonic boom atmosphere in a real stratified atmosphere

compared to an atmosphere with uniform properties. Due to atmospheric effects, the

sonic boom overpressure at the ground will be larger than the expected overpressure for a

uniform atmosphere.

Figure 1-7. Illustration of the effect of atmospheric stratification on the sonic boom.

In the ABL, the motion of the air is turbulent in nature. The random fluctuations in

velocity and temperature in this region effect the sonic boom waveform as it propagates in

the ABL. Due to the influence of turbulence, an N-wave propagating in the ABL will not

remain an N-wave but rather it will undergo distortions that cause spikes and rounding of

the waveform. Pierce and Maglieri [94] proposed that the interaction of the wavefront with

turbulence would cause refraction, focusing and defocusing of rays, formation of caustics,
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wavefront folding, and diffraction and scattering. Figure 1-8 (from Hilton et al. [95])

displays an example of the distortion that an N-wave experiences when it is propagated

through turbulence. The y-axis is a measure of the acoustic pressure perturbation in

pounds per square foot (psf). The independent variable is time (t) in seconds. Five

microphones are shown in Fig. 1-8.

Figure 1-8. Effect of tubulence levels on sonic boom waveforms.

The formation of spiked and rounded waveforms in the context of sonic booms was a

relatively unexplained phenomenon before the work of Pierce [96]. Pierce considered an

initially smooth (planar) wavefront propagating into a medium with local inhomegenities,

that is to say that the scale of perturbations in the medium were small compared to the

extent of the wavefront such that the incoming wave appears to be a plane wave. As the

wavefront passes through the randomly perturbed field, refraction causes “ripples” to form

on the wavefront. Pierce [96] argues that the ripples in the wavefront cause local focusing

and defocusing. Ripples that are concave will focus ray paths and possibly lead to the

formation of a caustic. Conversely, ripples that are convex outwards lead to defocusing.

The focusing effect is said to amplify the overpressure at the leading and trailing shocks
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according to geometrical acoustics, that in turn leads to the spikes seen in pressure time

histories of sonic boom signatures (see Pierce [96] for details).

1.7 Sonic Boom Annoyance and Loudness

1.7.1 Noise Metrics

In 1981, Bennet and Pearsons [97] reviewed 22 different noise metrics used for

assessing community annoyance levels caused by noise pollution from transportation

vehicles (cars, aircraft, etc.). Sound pressure level as a function of frequency can be

“weighted” to put emphasis on a certain range of frequencies. Sound pressure levels

that are A-weighted put emphasis on higher frequency sound. A-weighting is used to

approximate the annoyance of steady state and intermittent sound. For short pulses or

low frequency dominant noise, it does not represent community annoyance responses

well [97]. B-weighting also de-emphasizes the low frequency sound. It also attempts to

approximate the loudness of medium level sounds. B-weighting is not commonly used

in noise measurement. C-weighting limits the low and high frequency spectrum. It was

developed to approximate the loudness of the largest amplitude sound. C-weighting

is the inverse of the 100 phon contour and is generally used if the sound pressue level

measurements are above 85 dB. The D-weighted spectrum emphasizes high frequency

sounds. It was developed as a simpler alternative to percieved noise level (PNL) and

approximates the annoyance of commonly occuring sounds. The final sound pressure

level weighting is the E-weighting. E-weighted sound pressure level emphasizes high

frequency sound and de-emphasizes low frequency sound. It was developed specifically to

approximate the loudness of sounds such as aircraft flyovers. More information on different

frequency weighted sound exposure levels and other metrics can be found in Peterson and

Gross [98], Beranek [99], Harris [100], Schultz [101], and U.S. Environmental Protection

Agency [102]. None of the aforementioned sound exposure levels were developed to

specifically characterize the annoyance or perceived sound level of sonic boom.
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Loubeau et al. [103] conducted a study of eleven different noise metrics and their

ability to accurately predict annoyance levels of shaped sonic boom signals. The study

used data from seven different human response studies including five indoor studies

and two outdoor studies. Results show that five noise metrics stand out as being more

correlated with human annoyance levels. These five metrics are perceived level (PL), B, D,

and E weighted sound exposure levels, and ISBAP (Indoor Sonic Boom Annoyance level

Predictor).

Mark VII perceived level (PL) gives the perceived loudness of sound based on

frequency weighted contours. Stevens [104] outlines a procedure to calculate Mark VII PL

for impulsive sounds such as sonic booms. Indoors, there are other factors of annoyance

to consider, such as the rattling of objects. A simulator was developed at NASA to study

the human response to sonic booms while indoors [105]. The simulator was developed

to assess the ability of existing metrics to capture the annoyance levels indoors, and to

develop a new pyschoacoustic model of sonic boom annoyance levels indoors. The ISBAP

noise metric was eventually developed by NASA to predict annoyance levels of sonic boom

in indoor environments.

1.7.2 Metric Variability in Turbulence

Bradley et al. [20] in the SonicBAT report conducted a study of N-wave propagation

in the turbulent ABL using the Penn State KZKFourier code [18]. SonicBAT ( Sonic

Booms in Atmospheric Turbulence) was a program conducted to study the effects of

atmospheric turbulence on sonic booms. The study consisted of multiple simulations

conducted for 96 different conditions. Conditions correspond to different levels of

turbulence intensity (low u∗ = 0.1 m/s, medium u∗ = 0.35 m/s, and high u∗ = 0.6

m/s), boundary layer height, propagation angle, and humidity. The study found from

simulation results that the standard deviation of perceived noise level and ISBAP

increased significantly from low turbulence levels to medium turbulence levels. The

difference in the standard deviations of the metrics were as much as 2 dB for different
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cases. The increase in standard deviation from medium turbulence intensity to high

intensity was less drastic, and for propagation distances greater than 2 km the standard

deviations of the metrics would decrease slightly from the medium intensity case to the

high intensity case. Overall, deviations in the ISBAP metric were approximately 0.5 dB

lower than deviations in perceived noise level. The average value of the metrics tend to

decrease with increasing turbulence levels. Yuldashev et al. [106] demonstrated from

computational results of N-wave propagation in a 2D turbulent field that the mean rise

time of the wave will increase with propagation distance through turbulence. Bradley

et al. [20] argue this effect is the reason for the decrease in average PL and ISBAP with

increasing turbulence intensity. From the study conducted in the SonicBAT report [20],

the average of the metrics PL and ISBAP were likely to be higher for low turbulence

levels. However, because of the larger standard deviation in higher levels of turbulence

there was a greater variation of PL and ISBAP, which in some cases would lead to the

highest metric readings.

To understand the effect of turbulence levels on the PL and ISBAP metrics for shaped

signatures (low boom waveforms), the SonicBAT report [20] also provides the results

of a study conducted similar to the N-wave study (conducted by Yuldashev et al. [106]

and Bradley et al. [20]) for three different shaped signatures (Boeing, Lockheed, and

NASA). For all three signatures, the variability of PL and ISBAP metrics decreased for

medium and low turbulence levels compared to the N-wave signature results. However,

for high turbulence levels the variability of the metrics as a function of the propagation

distance tended to be the same or higher than the variability of the metrics for an N-wave

signature. The metric means compared to nominal (no turbulence) conditions skewed

towards a decrease in dB. For low turbulence levels, the mean PL for each waveform

hovered around the nominal condition. For the mean ISBAP, the mean at low turbulence

levels showed a slight increase on average across the different propagation distances. For

higher levels of turbulence, there was in general a decrease in mean PL and ISBAP for
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most propagation distances. These findings were similar to the findings of Yuldashev et al.

[106].

The SonicBAT study provides insight into the effect of turbulence on sonic boom

propagation and perceived noise levels on the ground. The study indicates several features

of sonic boom propagation in the ABL that will be considered in the present work.

1. The variability of PL and ISBAP metrics increase with increasing turbulence levels,

2. The mean value of PL and ISBAP metrics decrease with increasing turbulence levels,

3. Variability of PL and ISBAP metrics for a shaped sonic boom signature tend to
be less than the variability of an N-wave signature except for the case of high
turbulence levels, in which the variability is generally the same if not slightly higher,
and

4. Unlike N-wave signatures, the mean ISBAP of shaped signatures tend to be slightly
higher than the nominal ISBAP readings.

An objective of the present work is to study these metrics with the prediction code that

is developed and observe the trends of PL and ISBAP readings for N-wave and shaped

waveforms. The results presented in Chapter 5 are found to reinforce the findings of the

SonicBAT study.

1.7.3 Sonic Boom Beyond the Cutoff

Cliatt et al. [107] investigated sonic boom beyond the Mach cutoff through

measurements of the sonic boom below the cutoff altitude. Illustrations of both Mach

cutoff and lateral cutoff are shown in Fig. 1-9. The Mach cutoff phenomenon occurs when

the Mach number of the aircraft is small enough so that the sonic boom does not reach

the ground. Instead all rays refract to higher altitudes of the atmosphere. In this scenario,

only evanescent waves reach the ground. Beyond the caustic line, the waves are evanescent

and undergo significant attenuation. Cliatt et al. [107] analyzed the sonic boom levels as a

function of distance below the cutoff altitude and developed an appropriate metric, called

the perceived sound exposure level (PLSEL), to analyze the loudness of sonic boom levels

below the cutoff. They found that common sonic boom metrics such as perceived level
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(PL) and A-weighted sound exposure level (ASEL) were not applicable for the evanescent

waves beyond the cutoff. The new metric PLSEL was developed with the Steven’s Mark

VII PL method [104] but the input was determined by the sound exposure level.

Cliatt et al. [108] performed a lateral cutoff analysis of sonic boom in the shadow

zone. They obtained ground measurements of sonic boom in the shadow zone and

computed the new PLSEL metric to analyze loudness levels beyond the lateral cutoff.

Cliatt et al. [108] found that PLSEL levels steadily decrease as a function of distance into

the shadow zone, which traditional ray theory codes do not capture. Cliatt et al. [108]

determined that notable noise exists one to two nautical miles beyond the ray theory

prediction of the carpet edge, which was obtained with PCBoom. They found that for

every test flight, PCBoom predicted a narrower carpet. There was also a spike in the

PCBoom PLSEL metric predictions at the ray theory carpet edge, which was not seen in

the ground measurements.

A B

Figure 1-9. Illustrations of sonic boom cutoff phenomena in the atmosphere. A) Mach
cutoff phenomenon. B) Lateral cutoff phenomenon.

1.8 Summary of Previous Work

Previous work in the study of sonic boom propagation in the ABL has led to several

discoveries. Bradley et al. [20] in a computational study found that noise metrics of

sonic boom waveforms tend to decrease in average value as turbulence levels increase,

while their variability increases. Also, variability of shaped sonic booms tend to be less
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than the variability of an N-wave signature. This indicates that turbulence has the effect

of decreasing noise levels of the sonic boom waveform in a random fashion. Physically,

energy from the incoming wave is scattered by the turbulent eddies as hypothesized by

Lighthill [109]. Several authors (Stout [18], Luquet [17], and Blanc-Bennon [62]) have

used computational approaches to predict sonic boom propagation through atmospheric

turbulence. There are limitations to the works of Blanc-Bennon [62] and Stout [18].

Blanc-Bennon et al. [62] consider a geometric approach and a KZK approach while Stout

[18] takes the approach of solving the KZK equation. Computations of the KZK equation

are limited to small forward angles and are computationally very expensive. Luquet [17]

overcomes some of these shortcomings by using a split-step approach to solve a scalar wave

equation derived by Coulouvrat [15].

1.9 Organization of the Dissertation

The remainder of this dissertation is organized into 6 chapters. In Chapter 2, the

governing equation of finite amplitude sound propagation in the ABL is derived from the

Navier-Stokes equations, Kirchoff-Fourier energy equation, and equation of state. This

governing equation is then shown to reduce to several well known equations of nonlinear

acoustics, if certain assumptions are made. Then, the split-step method to compute the

forward solution is presented. Each physical effect (nonlinear distortion, diffraction, flow

effects, and atmospheric absorption) is solved using a numerical approach that is well

suited to each sub problem. Finally, several benchmark acoustic simulations are performed

to validate the solver.

In Chapter 3, models of the ABL are presented. The mean flow in the atmospheric

surface layer is modeled in the code with Monin-Obukhov Similarity Theory (MOST).

Predictions using MOST are then compared to measurements obtained during SonicBAT

[20] to validate the model. A model for the mean flow in the mixed-layer region for a

convective ABL is obtained by using the similarity functions for MOST proposed by

Wilson [72]. A method to generate isotropic homogeneous turbulence is then presented,
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following the procedure of Frehlich [110]. For inhomogeneous turbulent fields that are

representative of the ABL, the generalized random phase method of Wilson [22] is used.

For all investigations considered here, a von Kármán model for the energy spectrum

is used. Finally, some example turbulent fields are generated and their statistics are

compared to the models.

In Chapter 4, simulations of a traditional sonic boom N-wave and a shaped boom are

performed through fields of homogeneous turbulence with varying turbulence intensity.

A length scale to account for the effects of turbulence on the sonic boom waveforms

and non-dimensionalize the propagation distance is proposed. The loudness levels of

each waveform are presented for each turbulence setpoint, along with the distributions

of the loudness metrics. Comparisons are made between the computed loudness metric

distributions and a theoretical normal distribution. In addition, the ability of the proposed

length scale to collapse the loudness metrics predictions is discussed, along with the

potential to parameterize the effect of turbulence on the sonic boom loudness.

In Chapter 5, simulations of a sonic boom N-wave and shaped boom are performed

through inhomogeneous turbulent fields that are representative of ABL conditions

during the SonicBAT campaign [20]. The length scale proposed in Chapter 4 is modified

to account for varying turbulence integral length scale in the mixed-layer region, and

collapse the probability density functions of the caustic locations. Predictions are then

presented of the overpressure, rise time, and loudness metrics for the N-wave and shaped

boom. The variability of the overpressure and loudness metrics is shown to collapse for

small non-dimensional distances, similar to the results in Chapter 4. In addition, the

loudness metric observations are shown to be well approximated by a normal distribution

undertrack of the flight path for weak to moderate convection levels in the ABL.

In Chapter 6, simulations of a sonic boom N-wave and shaped boom are performed

beyond the lateral cutoff location. The waveforms at the lateral cutoff location are

obtained from simulations performed in a manner similar to the simulations in Chapter
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5. The waveforms at the lateral cutoff are then propagated a distance of 4 km into the

shadow zone region. The turbulence in the computational domain is generated with

models for the standard deviations and length scales that are appropriate for a daytime

convective ABL. Results are presented for the sonic boom overpressure and loudness

metrics in the shadow zone region. The average value of the loudness metrics beyond the

lateral cutoff are shown to increase with increasing turbulence length scale and intensity.

The distributions of the maximum overpressure are shown to follow a Gamma distribution

for observations occuring with 10% to 90% cumulative probability. The loudness metrics

for the shaped boom are normally distributed in the shadow zone region when the

convection level of the ABL is weak. As the convection level increases, skewness of the

loudness metric distributions in the shadow zone is observed. In Chapter 7, a summary of

the work is presented and conclusions are drawn about the scientific and societal impacts

of the research. Several areas of future research are proposed that focus on incorporating

additional physics into sonic boom predictions near the ground.
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CHAPTER 2
GOVERNING EQUATION AND COMPUTATIONAL APPROACH

In this section, the governing equation for linear and nonlinear acoustics in an

atmosphere whose inhomogeneities are weak compared to the average is derived. This

scalar equation for the acoustic pressure is solved numerically with a one-way split-step

[111] method, where the solution is marched forward along the propagation direction.

Diffraction of the acoustic wave is handled with the angular spectrum method [112].

Nonlinear propagation is computed with the Burgers-Hayes algorithm (see Coulouvrat

[113] and Hayes [114]). Thermoviscous absorption and molecular relaxation attenuates

the acoustic wave. This attenuation is computed using the absorption coefficient of Bass

et al. [115]. Stratification in the atmosphere, as well as the mean flow and turbulent

fluctuations, are contained in the inhomogeneous terms in the governing equation. The

solution at each spatial step towards the observer for the inhomogeneous terms is found

using an alternating direction implicit (ADI) method and solving two tridiagonal linear

systems. Absorbing layer boundary conditions are implemented to prevent non-physical

reflections of the wave at the edge of the computational domain.

In the remaining sections, several coordinate systems will be referenced. Figure 2-1 is

the coordinate system used for sonic boom simulations in the ABL. The ABL coordinate

system is (x, y, z), where x and y are parallel to the ground, and z is the altitude in the

ABL. The height of the ABL is denoted zi. The flow and atmospheric properties are

defined in (x, y, z). The sonic boom wavefront normal is incident at the top of the ABL at

an angle θelv to the ground. This angle, along with the sonic boom waveform at the top

of the ABL, can be obtained with a separate geometrical acoustics prediction code. The

coordinate system of the computations is (x1, x2, x3), where x1 is the propagation direction

and x2,3 are the transverse coordinates. Computations begin on the transverse plane at the

origin O′. The waveform is propagated in the x1 direction until the observer location, O, is

reached.
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Figure 2-1. Coordinates for the ABL (x, y, z), and the computational domain (x1, x2, x3).

2.1 Governing Equation

2.1.1 Properties of the Atmospheric Boundary Layer

It is important to have an understanding of the thermodynamic and flow characteristics

in the ABL before beginning the derivation of the governing equation. We also seek to

understand the scaling of each term to determine what terms can be neglected. Some

important variables to consider are the density ρ̃, velocity ũi, temperature T̃ , entropy

s̃, and speed of sound c̃, where q̃ is a variable that includes all mean and fluctuating

quantities. In the proceeding analysis, these variables will be decomposed into terms

representing the ABL flow q̆ and acoustic fluctuations q as,

q̃(xi, t) = q̆(xi) + q(xi, t). (2-1)

When deriving the partially one-way equation in Sec. 2.1.5, the ABL velocities are further

decomposed into the mean flow, ui(z), and turbulent fluctuations, u′i(xi). However,

the remaining ABL flow variables (Temperature, density, sound speed, etc.) will be

decomposed into a ground value and deviation from the ground value. For example, the
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ABL sound speed will be decomposed as

c̆(xi) = c0 + c′′(xi), (2-2)

where c0 is the speed of sound at the ground and c′′(xi) = c̆(xi) − c0. This decomposition

is consistent with the approach of Luquet [17].

In the ABL, the time scales of significant flow variation are much larger than the

time it takes an acoustic wave to propagate the distance of the integral length scale.

For example, consider the time scale of the diffusion of the momentum by turbulence in

the ABL that scales as TABL ∼ u−1
t zi, where zi is the height of the ABL and ut is the

characteristic velocity of the turbulence. According to Tennekes and Lumley [80], these

values can be approximated as zi = 1 km and ut = 0.03u, where u is the mean flow

velocity. For a fairly windy day, u = 10 m/s, the time scale will be TABL ∼ 3.333 × 103

sec (55 minutes). For an acoustic wave propagating in air at standard sea-level conditions,

the time scale is approximately Tac ∼ 3 sec (obtained by division of zi by the speed of

sound at sea-level). Thus, Taylor’s hypothesis [116] is a valid approximation for acoustic

propagation in the ABL, and the ambient flow can be considered frozen in an inertial

frame of reference. By frozen, we imply that the mean flow and turbulence generated in

the computational domain is not a function of time, only of space.

Changes in the mean temperature in the boundary layer, and subsequently mean

speed of sound and density, occur on the time scale of approximately an hour [77]. The

integral length scale of the turbulence in the ABL is typically ℓ ∼ 100 m [77]. The wind

speed in the ABL normalized by the ambient speed of sound is the ambient Mach number,

M , which is typically less than 0.1. Based upon typical scales for u and zi the derivative

of velocity with respect to the z-coordinate is approximately 0.01 s−1, or O(M2). The

velocity fluctuations are also on the order of O(M2). The other scalar fluctuations in

temperature, density, speed of sound, and entropy are of order O(M2) as well. The

acoustic fluctuations vary on the order of the acoustic Mach number O(ϵ). The acoustic
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Mach number is ||ui||c̆−1 = ϵ << 1, where c̆ is

c̆2 =

(
∂p

∂ρ

)
(ρ̆,s̆)

. (2-3)

The acoustic Mach number of typical sonic booms in the ABL is small compared to

the mean flow Mach number in the ABL, ϵ << M [15]. Thus, in the present analysis, an

assumption is made that ϵ = O (M2). This assumption holds true even for focused booms

in the ABL produced by aircraft acceleration or maneuvers [117, 118]. However, near

the aircraft where the shock waves are significantly stronger, the acoustic Mach number

scales with the ABL flow Mach number (ϵ ∼ M). Thus, our assumption is not valid near

the aircraft, which is acceptable since our simulations will occur in the ABL far from the

aircraft.

In the analysis to follow, higher order terms relating acoustic pressure to acoustic

velocity and density will be used to formulate a governing equation for the acoustic

pressure. The hierarchy of scales is;

1. zeroth order terms: O (ϵ),

2. first order terms: O (ϵM),

3. second order terms: O (ϵM2, ϵ2), and

4. third order terms: O (ϵM3, ϵ2M),

where higher order terms, such as cubic nonlinearities (ϵ3), are neglected in the analysis.

The order of magnitude for several quantities in the ABL are given in Table 2-1. The

turbulent quantities are O(M2) and acoustic fluctuations are O(ϵ).

2.1.2 Navier-Stokes Equations and Decomposition

The equations of mass, momentum, and entropy conservation of a viscous, heat

conducting gas are,

Dρ̃

Dt
+ ρ̃

∂ũi
∂xi

= 0, (2-4)

ρ̃
Dũi
Dt

= − ∂p̃

∂xi
+ fi + µ

(
4

3
+
µB

µ

)
∂2ũi
∂xj∂xj

, (2-5)
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Table 2-1. Flow fluctuations and their relative order of magnitude.
Quantity Magnitude
ŭi = ui(z) + u′i(x, y, z) O(M)
ui(z) O(M)
u′i O(M2)
s′′ O(M2)
ρ′′ O(M2)
c′′ O(M2)
∥ui∥ O(ϵ)
ρ O(ϵ)
s O(ϵ2)
p O(ϵ)

and

ρ̃
Ds̃

Dt
=

1

T̃

∂

∂xi

(
κ
∂T̃

∂xi

)
, (2-6)

respectively. The quantities ρ̃(xi, t), fi(xi, t), p̃(xi, t), s̃(xi, t), T̃ (xi, t), and ũ(xi, t) represent

the density, external force field, pressure, entropy, temperature, and velocity of the gas,

respectively. The thermal conductivity of air is κ. The bulk viscosity and viscosity are

represented by, µB and µ, respectively. The material derivative is defined as,

D

Dt
=

∂

∂t
+ ũi

∂

∂xi
. (2-7)

The decision to track entropy mirrors approaches taken by Coulouvrat [15], Pierce

[21], and Hamilton and Blackstock [119]. The thermodynamic relation between the

entropy and pressure simplifies the derivation of a scalar equation for the pressure. The

effects of heat conduction are taken into account by the term on the right hand side of

Eqn. 2-6. Thermoviscous effects are important to consider over long propagation distances

and in the case of shock waves where the gradients of velocity and temperature are

significant [119]. The vortical component of the velocity is not considered here, it can be

shown that at a sufficient distance from the Earth’s surface, terms involving the vorticity

are negligble [119]. The only body force considered here is gravity. The hydrodynamic and
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inertial forces can be related to the gravitational force by the Euler equation,

gi =
1

ρ̆

∂p̆

∂xi
+ ŭj

∂ŭi
∂xj

. (2-8)

In order to obtain the governing equation of acoustic pressure in the ABL derived by

Coulouvrat [15], we start by decomposing the variables into quantities associated with the

ambient medium q̆ and the acoustic perturbations q,

q̃ (xi, t) = q̆(xi) + q(xi, t).

The variable q is a placeholder for any one of the following: ρ, p, u, s, and c. When this

decomposition is inserted in the governing equations 2-4, 2-5, and 2-6, the result is,

D̆ρ

D̆t
+ ρ̆

∂ui
∂xi

= −ui
∂ρ̆

∂xi
− ρ

∂ŭi
∂xi

− ∂ρui
∂xi

, (2-9)

ρ̆
D̆ui

D̆t
+
∂p

∂xi
= ρgi − ρŭj

∂ŭi
∂xj

− ρŭj
∂ui
∂xj

− (ρ̆+ ρ)uj

(
∂ŭi
∂xj

+
∂ui
∂xj

)
− ρ

∂ui
∂t

+ µ

(
4

3
+
µB

µ

)
∂2ui
∂xj∂xj

,

(2-10)

and

ρ̆
D̆s

D̆t
= −ρ̆ui

∂s̆

∂xi
+
κ

T̆

∂2T

∂xi∂xi
+O

(
ϵ3, ϵ2M2

)
. (2-11)

Only terms that contain an acoustic variable are retained. Pierce [21] argues that entropy

fluctuations due to sound far from any boundaries are second order with respect to

the acoustic Mach number. Thus, fourth order terms are neglected in the expansion of

the Kirchoff-Fourier energy equation. The gradient of ambient pressure and the mean

convective term ρ̆ŭj∂jŭi are canceled by expanding the gravitational force shown in Eqn.

2-8.

Equations 2-9 through 2-11 are accurate to fourth order. These equations can be

closed with the equation of state, which is obtained by performing a Taylor expansion of
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the pressure,

p̃ = p̆+

(
∂p̃

∂s̃

)
ρ̆,s̆

(s̃− s̆) +

(
∂p̃

∂ρ̃

)
ρ̆,s̆

(ρ̃− ρ̆) +
1

2

(
∂2p̃

∂ρ̃2

)
ρ̆,s̆

(ρ̃− ρ̆)2 +O
(
ϵ3
)
. (2-12)

The notation for the derivatives of pressure with respect to density were first introduced

by Fox and Wallace [120] as,

A = ρ̆

(
∂p̃

∂ρ̃

)
ρ̆,s̆

≡ ρ̆c̆2, (2-13)

and

B = ρ̆2
(
∂2p̃

∂ρ̃2

)
ρ̆,s̆

. (2-14)

Substituting the expressions for A and B into Eqn. 2-12 we obtain,

p =

(
∂p̃

∂s̃

)
ρ̆,s̆

s+ A
ρ

ρ̆
+B

(
ρ

ρ̆

)2

. (2-15)

In order to derive the equation for acoustic pressure, zeroth and first order relations

between the acoustic pressure and the remaining acoustic variables (ui, ρ) must be

established. Three zeroth order relations come from the equation of state, continuity, and

momentum, respectively,

ρ =
p

c̆2
+O (ϵM) , (2-16)

∂ui
∂xi

=
−1

ρ̆c̆2
∂p

∂t
+O (ϵM) , (2-17)

and

∂ui
∂t

= −1

ρ̆

∂p

∂xi
+O (ϵM) . (2-18)

Equations 2-16, 2-17, and 2-18 are accurate to O(ϵ). Eqn. 2-18 can also be expressed as,

ui = −1

ρ̆

∫ t

−∞

∂p

∂xi
dt′ +O (ϵM) , (2-19)
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by integration.

The first order relations are determined by substitution of Eqns. 2-16 through 2-19

into Eqns. 2-9 and 2-10. These first order relations for the acoustic velocity are,

∂ui
∂xi

= − 1

ρ̆c̆2
D̆p

D̆t
+

1

ρ̆2
∂ρ̆

∂xi

∫ t

−∞

∂p

∂xi
dt′ +

p

ρ̆2c̆4
− ∂ŭi
∂xi

p

ρ̆c̆2
+O

(
ϵM2, ϵ2

)
, (2-20)

and

∂ui
∂t

= − 1

ρ̆

∂p

∂xi
+
ŭj
ρ̆

∫ t

−∞

∂2p

∂xj∂xi
dt′ +

1

ρ̆

∂ŭi
∂xj

∫ t

−∞

∂p

∂xj
dt′ +O

(
ϵM2, ϵ2

)
, (2-21)

where the viscous terms of the momentum relation are neglected at first order accuracy, in

addition to the nonlinear terms. The second order accurate equation of state is obtained

by inserting Eqn. 2-16 (a zeroth order relation) into the last term in Eqn. 2-15 (a second

order term),

ρ =
p

c̆2
− 1

ρ̆c̆4
B

2A
p2 − 1

c̆2

(
∂p̃

∂s̃

)
(ρ̆,s̆)

s+O
(
ϵ2M

)
. (2-22)

2.1.3 Nonlinear Equation for the Acoustic Pressure

We now seek a single equation for the acoustic fluctuating pressure. Equations 2-9,

2-10, and 2-22 will be the starting point for this process. Taking the material derivative of

Eqn. 2-9 and subtracting the divergence of Eqn. 2-10 we obtain,

D̆2ρ

D̆t2
+
D̆

D̆t
ρ̆
∂ui
∂xi

− ∂

∂xi

(
ρ̆
D̆ui

D̆t

)
− ∂2p

∂xi∂xi
= − D̆

D̆t

(
ui
∂ρ̆

∂xi

)
− D̆

D̆t

∂

∂xi
(ρui)

+
∂

∂xi

(
ρ̆uj

∂ŭi
∂xj

− ρ

ρ̆

∂p̆

∂xi

)
−
(
µB +

4

3
µ

)
∂2

∂xj∂xj

∂ui
∂xi

+
∂

∂xi

(
ρ
D̆ui

D̆t
+ ρuj

∂ŭi
∂xj

+ ρ̆uj
∂ui
∂xj

)
+O

(
ϵ3
)
, (2-23)

where the cubic nonlinearities have been neglected. The fourth term on the right hand

side results from replacing gi in Eqn. 2-10 with the expression given by Eqn. 2-8. The

time derivative of acoustic density on the left side of Eqn. 2-23 is a zeroth order term

but is not written in terms of the acoustic pressure fluctuation. The equation of state
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2-22 is an O (ϵM2, ϵ2) relationship between the fluctuating density and pressure. The

material derivative of Eqn. 2-22 is performed and the resulting expression replaces the first

term on the left side of Eqn. 2-23. The equation is now accurate to second order. Thus,

substituting Eqn. 2-22 into the first term of the left hand side results in,

1

c̆2
D̆2p

D̆t2
+
D̆

D̆t
ρ̆
∂ui
∂xi

− ∂

∂xi

(
ρ̆
D̆ui

D̆t

)
− ∂2p

∂xi∂xi
= − D̆

D̆t

(
ui
∂ρ̆

∂xi

)
− D̆

D̆t

∂

∂xi
(ρui)

+
∂

∂xi

(
ρ̆uj

∂ŭi
∂xj

− ρ

ρ̆

∂p̆

∂xi

)
−
(
µB +

4

3
µ

)
∂2

∂xj∂xj

∂ui
∂xi

+
1

c̆2

(
∂p̃

∂s̃

)
(ρ̆,s̆)

D̆2s

D̆t2

+
∂

∂xi

(
ρ
D̆ui

D̆t
+ ρuj

∂ŭi
∂xj

+ ρ̆uj
∂ui
∂xj

)
+

1

ρ̆c̆4
B

2A

D̆2p2

D̆t2
+O

(
ϵM3, ϵ2M

)
. (2-24)

The linear terms in Eqn. 2-24 are simplified through algebriac manipulation and

appropriate substitution of lower order relations in Eqns. 2-16 to 2-19, and 2-20 to 2-22.

On the right side of Eqn. 2-24, all of the terms are O (ϵM2, ϵ2) or smaller. Since the

interaction of flow effect with nonlinearities in the waveform will be small in the ABL, we

can reduce the last nonlinear term on the right hand side of Eqn. 2-24 to,

1

ρ̆c̆4
B

2A

D̆2p2

D̆t2
=

1

ρ̆c̆4
B

2A

∂2p2

∂t2
+O

(
ϵ2M

)
, (2-25)

while maintaining the same degree of accuracy.

To obtain an equation for the acoustic pressure, each term will be rewritten in terms

of p. First, let us begin with the material derivative of the entropy in Eqn. 2-24, which

can be expressed as,

D̆s

D̆t
= −ui

∂s̆

∂xi
+

κ

ρ̆T̆

∂2T

∂xi∂xi
+O

(
ϵ3, ϵ2M2

)
. (2-26)

The lossless, linear, convective wave equation relates the Laplacian of the acoustic

temperature fluctuations to its material derivative,

∂2T

∂xi∂xi
=

1

c̆2
D̆2T

D̆t2
+O

(
ϵM2, ϵ2

)
. (2-27)
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The first order Taylor expansion of the temperature as a function of density and entropy

T̃ = T̃ (ρ̃, s̃) reveals that the acoustic temperature fluctuation is related to the density by

T =

(
∂T̃

∂ρ

)
˘̃ρ,s̆

ρ+O
(
ϵ2
)
. (2-28)

Substituting Eqn. 2-28 into Eqn. 2-27 and then substituting Eqn. 2-27 into Eqn. 2-26, we

obtain
D̆s

D̆t
= −ui

∂s̆

∂xi
+

κ

ρ̆c̆2T̆

(
∂T̃

∂ρ̃

)
ρ̆,s̆

D̆2ρ

D̆t2
, (2-29)

which is an expression accurate to second order, since κ is a small parameter. Thus,

substitution of this expression into Eqn. 2-24 would still retain second order accuracy.

The density fluctuation is related to the acoustic pressure fluctuation by ρ̃c̆2 = p, and

the derivative of pressure with respect to entropy is expressed as,(
∂p̃

∂s̃

)
ρ̆,s̆

= ρ̆2

(
∂T̃

∂ρ̃

)
ρ̆,s̆

. (2-30)

When Eqn. 2-29 is inserted into Eqn. 2-24, the entropy convection term on the right hand

side of Eqn. 2-24 will involve the square of the derivative of temperature with respect to

the density. This term can be expressed as (see Hamilton and Blackstock [119] for details),(
∂T̃

∂ρ̃

)2

ρ̆,s̆

=
T̆ c̆2

ρ̆2

(
1

cv
− 1

cp

)
. (2-31)

As a result, Eqn. 2-24 is now,

1

c̆2
D̆2p

D̆t2
+
D̆

D̆t
ρ̆
∂ui
∂xi

− ∂

∂xi

(
ρ̆
D̆ui

D̆t

)
− ∂2p

∂xi∂xi
= − D̆

D̆t

(
ui
∂ρ̆

∂xi

)
− D̆

D̆t

∂

∂xi
(ρui)

+
∂

∂xi

(
ρ̆uj

∂ŭi
∂xj

− ρ

ρ̆

∂p̆

∂xi

)
−
(
µB +

4

3
µ

)
∂2

∂xj∂xj

∂ui
∂xi

− 1

c̆2

(
∂p̃

∂s̃

)
(ρ̆,s̆)

D̆

D̆t

(
ui
∂s̆

∂xi

)
+

κ

ρ̆c̆4

(
1

cv
− 1

cp

)
D̆3p

D̆t3

+
∂

∂xi

(
ρ
D̆ui

D̆t
+ ρuj

∂ŭi
∂xj

+ ρ̆uj
∂ui
∂xj

)
+

1

ρ̆c̆4
B

2A

∂2p2

∂t2
+O

(
ϵM3, ϵ2M

)
. (2-32)
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Terms representing thermoviscous absorption of the medium are now grouped

together. The viscous terms of the governing equation are currently expressed in terms of

the acoustic velocity fluctuation. In air, the viscosity is quite small (µB, µ << 1). Thus,

in order to include viscous effects in the propagation of sonic boom in the atmosphere far

from the aircraft, only the lowest order viscous terms need to be accounted for. Using the

zeroth order relation between ∂iui and ∂tp, we obtain

∂2

∂xj∂xj

∂ui
∂xi

= − ∂2

∂xj∂xj

1

ρ̆c̆2
∂p

∂t
= − 1

ρ̆c̆4
∂3p

∂t3
. (2-33)

The same argument can be made for the heat conductivity in air (i.e. κ << 1), which

leads to
κ

ρ̆c̆4

(
1

cv
− 1

cp

)
D̆3p

D̆t3
=

κ

ρ̆c̆4

(
1

cv
− 1

cp

)
∂3p

∂t3
. (2-34)

There are now two terms describing the effect of viscosity and heat transfer on the

acoustic wave. In many situations, these two terms are often small enough to be neglected.

However, for long propagation distances the attenuation effects of both the viscous forces

and heat transfer can accumulate and have a non-negligble effect on the acoustic waveform

[119, 121]. Generally, these two effects are combined into one term with a coefficient called

the diffusivity of sound, δ, to capture the magnitude of the thermoviscous attentuation.

Lighthill [122] defines the diffusivity of sound as,

δ =
1

ρ̆

(
4

3
µ+ µB

)
+
κ

ρ̆

(
1

cv
− 1

cp

)
= ν

(
4

3
+
µB

µ
+
γ − 1

Pr

)
, (2-35)

where γ is the ratio of specific heats, ν is the kinematic viscosity, and Pr is the Prandtl

number.

Attention is now turned toward the linear heterogeneous terms, denoted L1,

L1 = − ∂2p

∂xi∂xi
+ ρ̆

D̆

D̆t

∂ui
∂xi

− ∂

∂xi

(
ρ̆
D̆ui

D̆t

)
− ∂

∂xi

(
ρ̆uj

∂ŭi
∂xj

)
=

− ∂2p

∂xi∂xi
− ∂ρ̆

∂xi

D̆ui

D̆t
+ ρ̆

(
D̆

D̆t

∂ui
∂xi

− ∂

∂xi

D̆ui

D̆t

)
− ∂

∂xi

(
ρ̆uj

∂ŭi
∂xj

)
. (2-36)
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The third term, involving the divergence of the hydrodynamic inertial forces acting on the

acoustic velocity, is expanded. Taking the first term and second term, and substituting the

zeroth order momentum relation (Eqn. 2-18) we obtain,

− ∂2p

∂xi∂xi
− ∂ρ̆

∂xi

D̆ui

D̆t
= − ∂2p

∂xi∂xi
+

1

ρ̆

∂ρ̆

∂xi

∂p

∂xi
= −ρ̆ ∂

∂xi

(
1

ρ̆

∂p

∂xi

)
+O

(
ϵM3

)
. (2-37)

The remaining terms cancel and simplify to,

ρ̆

(
D̆

D̆t

∂ui
∂xi

− ∂

∂xi

D̆ui

D̆t

)
− ∂

∂xi

(
ρ̆uj

∂ŭi
∂xj

)
= −2ρ̆

∂ŭj
∂xi

∂ui
∂xj

. (2-38)

The terms in L1 account for the effect of density and wind gradients on the acoustic

wave. These terms directly effect the amplitude of the wave, which may grow or decay

depending on the spatial rate of change of the turbulent field. The integral of Eqn. 2-21 is

substituted into Eqn. 2-38 to obtain the final expression for L1,

L1 = 2
∂ŭj
∂xi

[∫ t

−∞

∂2p

∂xj∂xi
dt′ − ŭk

∫ t

−∞

∫ t′

−∞

∂3p

∂xj∂xk∂xi
dt′′dt′

−∂ŭk
∂xj

∫ t

−∞

∫ t′

−∞

∂2p

∂xk∂xi
dt′′dt′ − ∂2ŭi

∂xj∂xk

∫ t

−∞

∫ t′

−∞

∂p

∂xk
dt′′dt′

]
. (2-39)

The remaining linear terms are,

L2 = − 1

c̆2

(
∂p̃

∂s̃

)
ρ̆,s̆

D̆

D̆t

(
ui
∂s̆

∂xi

)
− ∂

∂xi

(
ρ

ρ̆

∂p̆

∂xi

)
− ∂ρ̆

∂xi

D̆ui

D̆t
. (2-40)

In order to simplify the first term in L2, we consider the equation of state for the

hydrodynamic fluctuations, assuming no acoustic fluctuations

p̆ = c̆2ρ̆+
c̆2

ρ̆

B

2A
ρ̆2 +

(
∂p̃

∂s̃

)
ρ̆,s̆

s̆. (2-41)

Taking the gradient of Eqn. 2-41 yields the following relation,(
∂p̃

∂s̃

)
ρ̆,s̆

∂s̆

∂xi
=

∂p

∂xi
− c̆2

∂ρ̆

∂xi
(2-42)
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L2 is now expressed as,

L2 = − 1

c̆2

[
∂p̆

∂xi
− c̆2

∂ρ̆

∂xi

]
∂ui
∂t

− ∂

∂xi

(
ρ

ρ̆

∂p̆

∂xi

)
− ∂ρ̆

∂xi

∂ui
∂t

+O
(
ϵM3

)
. (2-43)

The second and fourth terms cancel immediately. From the first order relation 2-18 we

obtain,

L2 =
1

ρ̆c̆2
∂p̆

∂xi

∂p

∂xi
− ∂

∂xi

(
ρ

ρ̆

∂p̆

∂xi

)
. (2-44)

By substitution of the first order equation of state, we can expand the second term and

reduce to,

L2 = −p
[
− 2

c̆3
∂c̆

∂xi

1

ρ̆

∂p̆

∂xi
+

1

c̆2
∂

∂xi

1

ρ̆

∂p̆

∂xi

]
. (2-45)

The first term is negligible. The remaining term is rewritten in terms of the flow velocity

through the hydrodynamic relation, ∂iŭj∂jŭi = −ρ̆−1∂ip̆. Therefore, L2 becomes,

L2 =
p

c̆2
∂

∂xj

(
ŭj
∂ŭi
∂xj

)
. (2-46)

Incorporating the expressions for L1 and L2 into the governing equation, we can now

express it as

1

c̆2
D̆2p

D̆t2
− ρ̆

∂

∂xi

(
1

ρ̆

∂p

∂xi

)
= 2

∂ŭj
∂xi

∫ t

−∞

∂2p

∂xi∂xj
dt′ − 2

∂ŭj
∂xi

(
ŭk

∫ t

−∞

∫ t′

−∞

∂3p

∂xj∂xk∂xi
dt′′dt′

+
∂ŭk
∂xj

∫ t

−∞

∫ t′

−∞

∂2p

∂xk∂xi
dt′′dt′ +

∂2ŭi
∂xj∂xk

∫ t

−∞

∫ t′

−∞

∂p

∂xk
dt′′dt′

)
+
δ

c̆4
D̆3p

D̆t3
+N , (2-47)

where N represents the nonlinear terms.

The nonlinear terms in Eqn. 2-47 are,

N =
1

ρ̆c̆4
B

2A

∂2p2

∂t2
+

∂

∂xi

(
ρ
D̆ui

D̆t
+ ρuj

∂ŭi
∂xj

+ ρ̆uj
∂ui
∂xj

)
− D̆

D̆t

∂

∂xi
(ρui) . (2-48)

In order to determine the order of each term and which terms will be retained in the

governing equation, it is useful to rearrange these terms. The identity

∂

∂xi

D̆ui

D̆t
=

D̆

D̆t

∂ui
∂xi

+
∂ŭj
∂xi

∂ui
∂xj

, (2-49)
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can be used to expand the third term in Eqn. 2-48. Equation 2-48 becomes,

N =
1

ρ̆c̆4
B

2A

∂2p2

∂t2
+

∂

∂xi

(
ρuj

∂ŭi
∂xj

+ ρ̆uj
∂ui
∂xj

− ui
D̆ρ

D̆t

)
+
∂ŭj
∂xi

∂ρui
∂xj

. (2-50)

The ambient flow in the ABL is assumed to be incompressible, ∂iŭi = 0. This assumption

is strengthened by the long time scales describing the evolution of ABL turbulence

(TABL ≈ 55 minutes when u = 10 m/s and zi = 1 km). Therefore,

∂

∂xi
ρuj

∂ŭi
∂xj

=
∂ŭi
∂xj

∂ρuj
∂xi

. (2-51)

The material derivative of the acoustic density fluctuations can be expressed by Eqn.

2-9. Since the material derivative of acoustic density is multiplied by the acoustic velocity

fluctuation, all of the terms on the left side of Eqn. 2-9 can be neglected. Additionally, the

flow interaction effects on the nonlinearity will be small in the ABL, and we can therefore

neglect the term in Eqn. 2-51. The resulting form of the nonlinear terms is,

N =
1

ρ̆c̆4
B

2A

∂2p2

∂t2
+ ρ̆

∂

∂xi

(
uj
∂ui
∂xj

+ ui
∂uj
∂xj

)
. (2-52)

The second term simplifies to ρ̆∂i∂juiuj which results in,

N =
1

ρ̆c̆4
B

2A

∂2p2

∂t2
+ ρ̆

∂2uiuj
∂xi∂xj

+ 2
∂ŭj
∂xi

∂ρui
∂xj

. (2-53)

The approach to simplifying N taken by Coulouvrat [15] is to consider the geometrical

approximation on a locally plane field. The geometrical approximation assumes high

frequencies, thus we assume the wavelengths of concern in the sonic boom waveform are

small compared to the length of the turbulent eddies (λ << ℓ). This assumption has been

used in previous numerical studies of sonic boom propagation through turbulence (Luquet

[17], Stout [18]). Applying the geometrical approximation to Eqn. 2-53, Coulouvrat [15]

demonstrated that the resulting expression for N is,

N =
β

ρ0c40

∂2p2

∂t2
, (2-54)
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where β is the nonlinear parameter (see Hamilton and Blackstock [119]). Although the

geometric argument appears counter-productive to retaining a high order of accuracy,

the simplicity of the resulting expression is beneficial for computations. The geometric

argument is accurate for quasi-plane waves and leads to the Westervelt equation [123] in

the case of a quiescent medium. This approximation has also been studied quantitatively

beyond the quasi-plane case for a curved ultrasonic transducer [124]. The error between

the Westervelt formulation and the full nonlinear wave equation was found to be quite

small, indicating that the geometric approximation on the nonlinear terms can still lead to

fairly accurate predictions beyond the quasi-plane wave restriction.

The governing equation is now,

1

c̆2
D̆2p

D̆t2
− ρ̆

∂

∂xi

(
1

ρ̆

∂p

∂xi

)
= −2

∂ŭj
∂xi

∫ t

−∞

∂2p

∂xi∂xj
dt′ − 2

∂ŭj
∂xi

(
ŭk

∫ t

−∞

∫ t′

−∞

∂3p

∂xj∂xk∂xi
dt′′dt′

+
∂ŭk
∂xj

∫ t

−∞

∫ t′

−∞

∂2p

∂xk∂xi
dt′′dt′ +

∂2ŭi
∂xj∂xk

∫ t

−∞

∫ t′

−∞

∂p

∂xk
dt′′dt′

)
+
δ

c̆4
∂3p

∂t3
+

β

ρ̆c̆4
∂2p2

∂t2
. (2-55)

For a weakly nonlinear wave, Eqn. 2-55 is accurate to O(ϵM2, ϵ2). However, retaining the

flow interaction terms of O(ϵM2) on the right-hand side can cause numerical instabilities

when the Mach number is not sufficiently small [15]. Therefore, a mixed order governing

equation is the starting point of our numerical analysis,

1

c̆2
D̆2p

D̆t2
− ρ̆

∂

∂xi

(
1

ρ̆

∂p

∂xi

)
= −2

∂ŭj
∂xi

∫ t

−∞

∂2p

∂xi∂xj
dt′ +

δ

c̆4
∂3p

∂t3
+

β

ρ̆c̆4
∂2p2

∂t2
, (2-56)

where the O(ϵM2) terms have been retained only on the left-hand side.

Equation 2-56 is an integro-differential equation, which will be the starting point for

computing the acoustic pressure in the domain. A purely differential form of this equation

can be obtained by taking the material derivative once again and neglecting terms of

higher order,

1

c̆2
D̆3p

D̆t3
− D̆

D̆t

[
ρ̆
∂

∂xi

(
1

ρ̆

∂p

∂xi

)]
+ 2

∂ŭj
∂xi

∂2p

∂xi∂xj
=

δ

c̆4
∂4p

∂t4
+

β

ρ̆c̆4
∂3p2

∂t3
. (2-57)
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Direct computation of Eqns. 2-56 and 2-57 requires significant computational

resources to capture both the forward scattering and back scattering. In Section 2.1.5,

a partially one-way equation, based on the approach of Luquet [17], is formulated that

neglects back scattering. Thus, significantly reducing the computational resources required

to perform the simulations.

2.1.4 Limiting Forms

Equation 2-56 can be reduced to several well known equations when assumptions

regarding the propagation and medium properties are made. If the medium in which the

acoustic wave propagates contains no turbulent fluctuations and the mean velocity along

with the gradient of mean temperature are zero, then Eqn. 2-56 reduces to the Westervelt

equation [123],
1

c20

∂2p

∂t2
− ∂2p

∂xi∂xi
− δ

c40

∂3p

∂t3
=

β

ρ0c40

∂2p2

∂t2
. (2-58)

The Westervelt equation is an approximation to the full second order wave equation

when cumulative nonlinear effects are significantly more pronounced than local nonlinear

effects. Once the propagation distance becomes much larger than the wavelength, the

cumulative effect of waveform distortion dominates over the small errors incurred by

transforming terms of the second order equation from one acoustic variable to another

using an impedance relation. For first order plane progressive waves, the Lagrangian

density in the second order wave equation given in [119] is negligible. Thus, the Westervelt

equation is a valid approximation of plane-progressive wave propagation at second order.

The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation [59–61] is a simplification of

the Westervelt equation to study directional sound beams while incorporating diffraction,

nonlinearity, and absorption. In order for the assumption of directionality of the sound

beam to be valid, a source of radius a must radiate sound at frequencies that satisfy

ka >> 1, where k = 2πλ−1 is the wavenumber and λ is the wavelength. If x1 is the
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propagation direction of the wave, the one dimensional form of Eqn. 2-58 is

1

c20

∂2p

∂t2
− ∂2p

∂x21
− δ

c40

∂3p

∂t3
=

β

ρ0c40

∂2p2

∂t2
. (2-59)

We can consider two different cases of propagation, one in which nonlinear effects

are much more pronounced relative to thermoviscous absorption and the other in which

the absorption is dominant over nonlinearities. In the first case, the third term on the

left-hand side of Eqn. 2-59 can be neglected. We know from the work of Blackstock [125]

that the velocity perturbation has the functional form u = f(t − x1/c0 + βux1/c
2
0). After

substituting the first order relation p = ρ0c0u, it is clear that p has a similar functional

form. That is specifically, p = f(τ + (βp/ρ0c
3
0)x1).

On the other hand, if the absorption effects dominate then p is the solution to the

linear ODE,
d2p

dx21
+

(
k2 − ik3

δ

c0

)
p = 0. (2-60)

The roots of the characteristic polynomial are χ = ±ik(1 − iδω/c20)
1/2. We consider

only the negative root, since the positive root will lead to a solution where the pressure

increases without bound. A binomial expansion approximates the imaginary part of χ as

Im(χ) ∼ −δω2/2c30, so the solution is,

p = p0 exp
[
−iωτ − (δω2/2c30)x1

]
, (2-61)

where p0 is the magnitude of the acoustic pressure.

In both situations, the coefficient multiplying x1 is of order O(ϵ̃), where ϵ̃ is termed

the slow scale. This indicates that in the case of directional propagation the Westervelt

solution is a function of a modified variable x̃1,

p = p(x̃1, τ), x̃1 = ϵ̃x1, and τ = t− x1
c0
.

Physically this means that the combination of nonlinear and absorption effects should

contribute to the same order as when they are considered separately [119].
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If we consider the effect of diffraction to be of the same order, then the substitution to

be made for all coordinates is

p = p(x̃1, x̃3, x̃3, τ), (x̃1, x̃3, x̃3) = (ϵ̃x1, ϵ̃
1/2x2, ϵ̃

1/2x3), and τ = t− x1
c0
.

The second derivative along the propagation direction in the Laplacian now acts at

order O(ϵ̃3) and is negligible compared to second order effects. The Westervelt equation

becomes,
∂2p

∂x1∂τ
− c0

2

(
∂2p

∂x22
+
∂2p

∂x23

)
=

δ

2c30

∂3p

∂τ 3
+

β

2ρ0c30

∂2p2

∂τ 2
. (2-62)

Of course, Burgers’ equation can be obtained directly from the Westervelt equation.

To show this, consider the one-dimensional substitution of the slow scale, x1 = ϵ̃x, into

Eqn. 2-59,

−ϵ̃2 ∂
2p

∂x̃21
+ ϵ̃

∂2p

∂x̃1∂τ
− δ

c40

∂3p

∂τ 3
=

β

ρ0c40

∂2p

∂τ 2
. (2-63)

The first term is O(ϵ̃3), and the remaining terms are O(ϵ̃). Therefore the first term is

neglected, and we obtain Burgers’ equation,

∂2p

∂x1∂τ
=

β

ρ0c40

∂2p

∂τ 2
+
δ

c40

∂3p

∂τ 3
. (2-64)

In the case of no mean flow or turbulent fluctuations, we see that Eqn. 2-56 reduces

to the Westervelt equation. Additionally, the Westervelt equation also reduces to Burgers’

equation and the KZK equations in different cases. The KZK equation is essentially an

extension of Burgers’ equation to account for diffraction effects through the Laplacian

term. However, the parabolic approximation applied to this term limits the accuracy at

large angles relative to the propagation direction. In the proceeding section, a parabolic

equation is applied only to the perturbation terms of Eqn. 2-56 and the diffraction effects

are computed exactly in the forward direction. This, in addition to the turbulence effects

make Eqn. 2-56 a more general form of the Westervelt, KZK, and Burgers’ equations.
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2.1.5 Partially One-Way Equation

Since back scattering is neglected, the solution to Eqn. 2-56 can be marched forward

along the propagation direction. Commonly, parabolic, wide-angle parabolic, and extra

wide-angle parabolic approximations are made to the second derivatives of acoustic

pressure in the propagation direction to make the equation more suitable to marching

schemes, such as the Crank-Nicolson method [126]. When these approximations are made

to the diffraction terms, that are leading order in ϵ̃, the accuracy of the computations

are limited to small angles relative to the positive x1 axis. To avoid this restriction, no

approximations are made to the diffraction terms in the foregoing analysis following

the approach of Dagrau et al. [16]. Equation 2-56 can be re-cast in the form of a wave

equation,

∂2p

∂t2
− c20

∂2p

∂xi∂xi
=
(
2c0c

′′ + c′′2
) ∂2p

∂xi∂xi
− 2ŭi

∂2p

∂xi∂t
− ŭj

∂

∂xj

(
ŭi
∂p

∂xi

)
− c̆2

ρ̆

∂ρ̆

∂xi

∂p

∂xi

− 2c̆
∂ŭj
∂xi

∫ t

−∞

∂2p

∂xi∂xj
dt′ +

δ

c20

∂3p

∂τ 3
+

β

ρ0c20

∂2p2

∂τ 2
, (2-65)

where terms on the right-hand side are associated with mean flow, turbulence, nonlinear

distortion, and atmospheric absorption.

In order to compute the forward solution, the equation must be written in terms of

the delayed time τ = t− c−1
0 x1,

∂2p

∂x1∂τ
− c0

2

∂2p

∂xi∂xi
=

2c0c
′′ + c′′2

2c0

∂2p

∂xi∂xi
+

2c0c
′′ + c′′2

2c30

∂2p

∂τ 2

− ŭ1
c0

[
∂2p

∂x1∂τ
− 1

c0

∂2p

∂τ 2

]
− ŭk
c0

∂2p

∂xk∂τ
− ŭj

2c0

∂ŭ1
∂xj

[
∂p

∂x1
− 1

c0

∂p

∂τ

]
− ŭj

2c0

∂ŭk
∂xj

∂p

∂xk

− ŭ21
2c0

[
∂2p2

∂x21
− 2

c0

∂2p

∂x1∂τ
+

1

c20

∂2p

∂τ 2

]
− ŭ1ŭk

c0

∂

∂xk

[
∂p

∂x1
− 1

c0

∂p

∂τ

]
− ŭℓŭk

2c0

∂2p

∂xℓ∂xk

− c̆2

2c0ρ̆

∂ρ̆

∂x1

[
∂p

∂x1
− 1

c0

∂p

∂τ

]
− c̆2

2c0ρ̆

∂ρ̆

∂xk

∂p

∂xk
− c̆2

c0

∂ŭ1
∂x1

∫ τ

−∞

[
∂2p2

∂x21
− 2

c0

∂2p

∂x1∂τ
+

1

c20

∂2p

∂τ 2

]
dτ ′

− c̆2

c0

(
∂ŭk
∂x1

+
∂ŭ1
∂xk

)∫ τ

−∞

∂

∂xk

[
∂p

∂x1
− 1

c0

∂p

∂τ

]
dτ ′ − c̆2

c0

∂ŭk
∂xℓ

∫ τ

−∞

∂2p

∂xk∂xℓ
dτ ′

+
δ

c30

∂3p

∂τ 3
+

β

ρ0c30

∂2p2

∂τ 2
. (2-66)
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The indices k and ℓ only take on two possible values, 2 or 3, corresponding to the

transverse directions. The right-hand side of Eqn. 2-66 contains only terms of O (ϵM)

or less. The wide angle parabolic approximation for the second order derivative in the

propagation direction is,

∂2p

∂x21
=

2

c0

∂2p

∂x1∂τ
− ∂2p

∂x22
− ∂2p

∂x23
+O (ϵM) , (2-67)

and is applied only to terms on the right-hand side of Eqn. 2-66. The Laplacian term

on the left-hand side of Eqn. 2-66 is unaltered. Applying the wide-angle parabolic

approximation yields,

∂2p

∂x1∂τ
− c0

2

∂2p

∂xi∂xi
=

2c0c
′′ + c′′2

c20

∂2p

∂x1∂τ
+

2c0c
′′ + c′′2

2c30

∂2p

∂τ 2

− ŭ1
c0

[
∂2p

∂x1∂τ
− 1

c0

∂2p

∂τ 2

]
− ŭk
c0

∂2p

∂xk∂τ
− ŭj

2c0

∂ŭ1
∂xj

[
∂p

∂x1
− 1

c0

∂p

∂τ

]
− ŭj

2c0

∂ŭk
∂xj

∂p

∂xk

− ŭ21
2c0

[
1

c20

∂2p

∂τ 2
− ∂2p

∂xk∂xk

]
− ŭ1ŭk

c0

∂

∂xk

[
∂p

∂x1
− 1

c0

∂p

∂τ

]
− ŭℓŭk

2c0

∂2p

∂xℓ∂xk

− c̆2

2c0ρ̆

∂ρ̆

∂x1

[
∂p

∂x1
− 1

c0

∂p

∂τ

]
− c̆2

2c0ρ̆

∂ρ̆

∂xk

∂p

∂xk
− c̆2

c0

∂ŭ1
∂x1

∫ τ

−∞

[
1

c20

∂2p

∂τ 2
− ∂2p

∂xk∂xk

]
dτ ′

− c̆2

c0

(
∂ŭk
∂x1

+
∂ŭ1
∂xk

)∫ τ

−∞

∂

∂xk

[
∂p

∂x1
− 1

c0

∂p

∂τ

]
dτ ′ − c̆2

c0

∂ŭk
∂xℓ

∫ τ

−∞

∂2p

∂xk∂xℓ
dτ ′

+
δ

c30

∂3p

∂τ 3
+

β

ρ0c30

∂2p2

∂τ 2
. (2-68)

Eqn. 2-68 is the equation to be solved numerically.

The resulting one-way equation can be categorized into terms accounting for each

of the physical effects present: diffraction, heterogeneities, nonlinear distortion, and

absorption. The governing partially one-way equation is expressed as

∂2p

∂x1∂τ
= D (p) +H (p) +N (p) +A (p) , (2-69)

where the notation of each term is consistent with Luquet [17]. The diffraction term is,

D (p) =
c0
2

∂2p

∂xi∂xi
. (2-70)
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This term accounts for variations in the pressure in the transverse directions. The

nonlinear and absorption terms are,

N (p) =
β

2ρ0c30

∂2p2

∂τ 2
(2-71)

and,

A (p) =
δ

2c30

∂3p

∂τ 3
. (2-72)

The nonlinear term accounts for variations in the wave speed that are amplitude

dependent, and the absorption terms model the attenuation effects of thermoviscous

absorption. The terms involving flow effects are contained in the H operator, which can be

split into two terms containing “phase effects” (H1) and “coupling effects” (H2),

H(p) = H1(p) +H2(p). (2-73)

Terms involving only derivatives with respect to x1 and τ are contained in H1, and the

remaining terms are contained in H2. The H1 terms are,

H1 (p) =
2c0c

′′ + c′′2

c20

∂2p

∂x1∂τ
+

2c0c
′′ + c′′2

2c30

∂2p

∂τ 2
− ŭ1
c0

[
∂2p

∂x1∂τ
− 1

c0

∂2p

∂τ 2

]
− ŭj

2c0

∂ŭ1
∂xj

[
∂p

∂x1
− 1

c0

∂p

∂τ

]
− ŭ21

2c0

[
1

c20

∂2p

∂τ 2
− ∂2p

∂xk∂xk

]
− c̆2

2c0ρ̆

∂ρ̆

∂x1

[
∂p

∂x1
− 1

c0

∂p

∂τ

]
− c̆2

c0

∂ŭ1
∂x1

∫ τ

−∞

1

c20

∂2p

∂τ 2
dτ ′. (2-74)

The H2 terms are,

H2 (p) = − ŭk
c0

∂2p

∂xk∂τ
− ŭj

2c0

∂ŭk
∂xj

∂p

∂xk
− ŭ1ŭk

c0

∂

∂xk

[
∂p

∂x1
− 1

c0

∂p

∂τ

]
− ŭℓŭk

2c0

∂2p

∂xℓ∂xk

− c̆2

2c0ρ̆

∂ρ̆

∂xk

∂p

∂xk
− c̆2

c0

∂ŭ1
∂x1

∫ τ

−∞

∂2p

∂xk∂xk
dτ ′ − c̆2

c0

(
∂ŭk
∂x1

+
∂ŭ1
∂xk

)∫ τ

−∞

∂

∂xk

[
∂p

∂x1
− 1

c0

∂p

∂τ

]
dτ ′

− c̆2

c0

∂ŭk
∂xℓ

∫ τ

−∞

∂2p

∂xk∂xℓ
dτ ′. (2-75)
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2.2 Numerical Method

A portion of the numerical methods for the solution of Eqn. 2-69 are performed

in the frequency domain or wavenumber space. To express the acoustic pressure in the

frequency domain, the Fourier transform is performed on some of the terms in Eqn. 2-69.

The conventions for the Fourier transform operating used here are,

p̂ (x1, x2, x3, ω) = F (p) =

∫ ∞

−∞
p (x1, x2, x3, τ) e

−iωτdτ, (2-76)

and

p (x1, x2, x3, τ) = F−1 (p̂) =
1

2π

∫ ∞

−∞
p̂ (x1, x2, x3, ω) e

iωτdω, (2-77)

where the hat indicates that a variable is a function of ω. A similar convention is used for

performing the Fourier transform of a spatial variable, for instance

F2 (p) (x1, k2, k3, τ) =

∫ ∞

−∞

∫ ∞

−∞
p (x1, x2, x3, τ) e

−i(k2x2+k3x3)dx2dx3, (2-78)

which transforms x2 and x3 into wavenumber space, and

F−2 (p) (x1, x2, x3, τ) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
p (x1, k2, k3, τ) e

i(k2x2+k3x3)dk2dk3, (2-79)

is the inverse transform. In the proceeding sections, the diffraction effects will be

computed in k-space and the heterogeneous terms are computed in the frequency domain.

2.2.1 Split-Step Approach

The approach adapted to compute the acoustic pressure in the domain is a one-way

approach in the propagation direction, x1. In order to compute the solution, the numerical

method progresses forward in the propagation direction. Fractional step methods [127] are

employed to compute the solution to differential equations of the form,

df

dt
= L (f) , (2-80)

where L is an operator.
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When computing the solution of Eqn. 2-80, operator splitting may increase speed

or accuracy of the integration in time [127]. Splitting the operator L will result in n

number of terms Li(f); i ∈ 1, 2, ..., n that can be independently integrated efficiently and

then composed together to obtain the solution at t + ∆t. If the solution to Eqn. 2-80 is

exp (∆tL (f)) (t0), then even if the split operators are non-commutative a composition of

solutions to first order is [127],

φ (∆t) = exp
[
∆t
∑

Li(f)
]
+O

(
∆t2
)
. (2-81)

The advantages of a split-step approach to computing the solution of Eqn. 2-69

are clear. Each term can be computed separately with a numerical method that is best

suited to the problem, rather than a brute-force finite-difference method approach applied

collectively to all terms. The diffraction effects can be computed exactly in the forward

direction, which greatly improves the accuracy of computations compared to a parabolic

approximation [128–130]. A lossless Burgers solver can be used to compute the solution

for the nonlinear operator, and the governing equation for absorption effects has a simple

exact solution. However, the splitting in Eqn. 2-81 is only accurate to first order in the

time step (∆x1 for Eqn. 2-69, as we will be stepping forward in the spatial direction x1).

A higher order scheme is desired to retain accuracy. Strang [111] proposed a composition

of second order accuracy to solve the linear hyperbolic problem,

∂f

∂t
= A

∂f

∂x
+B

∂f

∂y
with f(0) = f0. (2-82)

The solution can be written as a composition of Lax-Wendroff [131] operators L,

Sk = Lx
k/2L

y
kL

x
k/2, (2-83)

where k is the step size.

Strang [111] applied the proposed splitting technique to split the problem into several

one-dimensional problems and solve with Lax-Wendroff integration. Here, the problem will
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not be split into several one-dimensional problems, rather the terms in Eqn. 2-69 are split

into several groups representing different physical effects. This is the approach that Luquet

[17] adapted to solve Eqn. 2-69, where the composed solution for the acoustic pressure is

p (x1 +∆x1, x2, x3, τ) = pN∆x1/2
pH+A
∆x1/2

pD∆x1
pH+A
∆x1/2

pN∆x1/2
+O

(
∆x31

)
. (2-84)

2.2.2 Diffraction Effects

We now consider the case of plane wave propagation in the computational domain.

The propagation direction is x1, and the transverse directions are x2 and x3. Inhomogeneities

in the medium will cause the wavefront normal of the sonic boom waveform to vary in the

transverse directions, through the process of refraction. Diffraction is the lowest order

physical process that accounts for the impact of the rippling of the wavefront on the sonic

boom waveform. Additionally, for simulations performed at the lateral cutoff of the sonic

boom carpet, it is important to account for the diffraction caused by the presence of the

ground. Our objective is to solve for these diffraction effects at each new plane in the

propagation direction. The Helmholtz equation in the delayed time frame, which governs

the diffraction of the wave, is,

2iω

c0

∂p̂

∂x1
=
∂2p̂

∂x21
+
∂2p̂

∂x22
+
∂2p̂

∂x23
. (2-85)

Diffraction effects are computed in wavenumber space using the angular spectrum method

[112], also referred to as acoustic holography [132]. The angular spectrum of the acoustic

pressure, A, is the Fourier transform in the x2 and x3 directions of p̂,

A (x1, k2, k3, ω) =

∫ ∞

−∞

∫ ∞

−∞
p̂ (x1, x2, x3, ω) e

−ik2x2−ik3x3dx2dx3, (2-86)

where k2 and k3 are the wavenumbers in the transverse direction. The equation governing

the propagation of the A is,

d2A

dx21
− 2ik

dA

dx1
−
(
k22 + k23

)
A = 0. (2-87)
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The solution of Eqn. 2-87 in the positive x1 direction is

A(x1 +∆x1, k2, ω) = A(x1, k2, ω)e
(ik−k1)∆x1 , (2-88)

where k1 = sgn (k) [(k22 + k23)− k2]
1/2. The sgn function ensures that the wave is forward

propagating for k < 0. The solution for p̂ computed at x1 + ∆x1 is, The roots of the

characteristic polynomial of Eqn. 2-87 are defined as,

r1,2 = ik ±
√

(k22 + k23)− k2, (2-89)

and the solution of Eqn. 2-87 is a linear combination of exponential functions. The

solution of Eqn. 2-85 at each location in the propagation direction is,

A (x1, k2, k3, ω) = C1e
ikx1ek1x1 + C2e

ikx1e−k1x1 . (2-90)

Our concern is only with the forward solution. Therefore, C1 = 0 and the coefficient

C2 can be found from the boundary condition at x1 = 0: C2 = A(0, k2, k3, ω). The

wavenumber in the x1 direction is defined uniquely by the frequency and transverse

wavenumbers such that

k1 = sgn (k)
√

(k22 + k23)− k2, (2-91)

which can be real or imaginary. When the input signal is a function of more than one

frequency, Du et al. [133] show that the expression for k1 contains a sign function in

front of the square root. If k1 is real, then the solution is evanescent. However, if k1

is imaginary the solution for the corresponding frequency propagates in the forward

direction. The solution computed at any new plane in the computational domain is,

p̂(x1 +∆x1, x2, x3, ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
A(x1, k2, k3, ω)e

−k1∆x1eik∆x1+ik2x2+ik3x3dk2dk3. (2-92)

The algorithm to compute diffraction effects first computes the angular spectrum

at the input plane A(x1, k2, k3, ω) by computing the Fast Fourier Transform (FFT) of

the input signal in space and time. Then, the kernel of the transform in Eqn. 2-92 is
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determined. If (k22 + k23)− k2 < 0 then k1 is set to,

k1 = isgn (k)
√
k2 − (k22 + k23). (2-93)

If (k22 + k23)− k2 > 0 then k1 is,

k1 = sgn (k)
√

(k22 + k23)− k2. (2-94)

Finally, the solution for the pressure at the next plane is computed using the inverse

FFT. However, with the split-step approach the output of the diffraction subroutine is

used as an input to the heterogeneous computation, which is solved in the frequency

domain. Therefore, in the code only the spatially transverse inverse FFT of the angular

spectrum solution is taken.

2.2.3 Heterogenous Effects of the Moving Medium

The majority of terms in the governing equation involve the interaction of the

acoustic pressure with hydrodynamic quantities of the medium. Due to the length of

the equations resulting from the discretization of these terms, the phase effects and

transverse effects in the proceeding sections are examined in two dimensions. The full

three dimensional expressions are listed in Appendix A.

2.2.3.1 Phase Effects

The heterogeneous effects are contained in the operator H = H1 + H2, where H1

contains terms that only have derivatives in time and the propagation direction x1. The

operator H1 is given in Eqn. 2-74. This can be solved for in the frequency domain. If we

let p = p̂ exp (iωτ), then

iω
∂p̂

∂x1
= H1 (p̂) . (2-95)

which leads to the following differential equation,[
iω

(
1 +

ŭ1
c0

− 2c0c
′′ + c′′2

c20

)
+
ŭ1
2c0

∂ŭ1
∂x1

+
ŭ2
2c0

∂ŭ1
∂x2

+
c̆2

2c0ρ̆

∂ρ̆

∂x1

]
dp̂

dx1

=

[
ω2

(
ŭ21
2c30

− ŭ1
c20

− 2c0c
′′ + c′′2

2c30

)
− iωŭ1

2ρ0

∂ŭ1
∂x1

− iωŭ2
2ρ0

∂ŭ1
∂x2

− iω

2ρ0

∂ρ′

∂x1
+
iωc̆2

c30

∂ŭ1
∂x1

]
p̂, (2-96)
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This equation can be solved analytically,

p̂ (x1 +∆x1, x2, x3, ω) = p̂ (x1, x2, x3, ω) exp

[∫ x1+∆x1

x1

χ (ξ) dξ

]
, (2-97)

where,

χ (ξ) =
ω2
(

ŭ2
1

2c30
− ŭ1

c20
− 2c0c′′+c′′2

2c30

)
− iωŭ1

2ρ0

∂ŭ1

∂ξ
− iωŭ2

2ρ0

∂ŭ1

∂x2
− iω

2ρ0

∂ρ′

∂ξ
+ iωc̆2

c30

∂ŭ1

∂ξ

iω
(
1 + ŭ1

c0
− 2c0c′′+c′′2

c20

)
+ ŭ1

2c0

∂ŭ1

∂ξ
+ ŭ2

2c0

∂ŭ1

∂x2
+ c̆2

2c0ρ̆
∂ρ̆
∂ξ

. (2-98)

The integral in Equation 2-98 is computed with the trapezoidal rule. In the situation that

propagation occurs parallel to the ground, the mean flow is a function of x3 only, and the

derivatives of turbulent velocities are ignored. Therefore Eqn. 2-98 reduces to the result of

Luquet [17].

2.2.3.2 Transverse Effects

The terms in Eqn. 2-75 cannot be solved for with an analytical method, therefore

a numerical scheme must be used. To advance the wave in the propagation direction,

a Crank-Nicolson [134] scheme is employed because of its characteristic stability and

second-order of accuracy. The resulting discretized equations form a linear system. In the

case of 3D propagation, it is best to solve this system independently in each transverse

direction using an alternating direction implicit (ADI) scheme. The cross derivative terms

must be neglected in this situation, so that the resulting linear system in each direction is

tridiagonal, and a tridiagonal solver can compute the solution quickly.

The general form of the transformed governing equation for the transverse flow effects

is,

C1
∂p̂

∂x1
+C2

∂2p̂

∂x1∂x2
+C3

∂2p̂

∂x1∂x3
= C4

∂2p̂

∂x22
+C5

∂2p̂

∂x23
+C6

∂p̂

∂x2
+C7

∂p̂

∂x3
+C8

∂2p̂

∂x2∂x3
, (2-99)

where C1, C2, C3, C4, C5, C6, C7, and C8 are described in App. A. The Crank-Nicolson

scheme [134] is used to integrate Eqn. 2-99 forward in x1 in two-dimensions. However,

in three-dimensions, the sparse matrix resulting from Eqn. 2-99 makes the linear system

difficult to compute efficiently. A more efficient approach would be split the system into
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two tridiagonal systems, this can be done with the alternating-direction implicit method

(ADI). Here, we will consider only the two dimensional scheme. More details about ADI

are given in App. A.

The Crank-Nicolson method [134] is implicit and results in a linear system of

equations to be solved numerically. The resulting implicit system of equations in

two-dimensions is

r1p̂
n+1
i+1 + r2p̂

n+1
i + r3p̂

n+1
i−1 = r4p̂

n
i+1 + r5p̂

n
i + r6p̂

n
i−1, (2-100)

where

r1 =
C2

2∆x2
− C4

∆x1
2∆x22

− C6
∆x1
4∆x2

, (2-101)

r2 = C1 − C4
∆x1
∆x22

, (2-102)

r3 = − C2

2∆x2
− C4

∆x1
2∆x22

+ C6
∆x1
4∆x2

, (2-103)

r4 =
C2

2∆x2
+ C4

∆x1
2∆x22

+ C6
∆x1
4∆x2

, (2-104)

r5 = C1 − C4
∆x1
∆x22

, (2-105)

and

r6 = − C2

2∆x2
+ C4

∆x1
2∆x22

− C6
∆x1
4∆x2

. (2-106)

The exponent n refers to the initial x1 plane, and n + 1 refers to the next plane x1 +∆x1.

The subscripts i and j indicate the location in x2 and x3, respectively, that the variable is

evaluated at.

The system of equations can be solved for zero pressure boundary conditions with

a Thomas linear algebra solver. This is useful when an absorbing layer is used on the

edge of each domain to damping any reflections. In the case of isotropic homogeneous

turbulence in a medium with mean flow conditions that do not vary along x2, a more
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suitable boundary condition is periodicity. In this case, the linear system for Eqn. 2-100 is,

b1 a1 c1

c2 b2 ai

ci bi
. . .

. . . . . . aI−1

aI cI bI





p
n+1/2
1

p
n+1/2
2

p
n+1/2
i

...

p
n+1/2
I


=



q1

q2

qi
...

qI


(2-107)

where c1 in the upper corner and aI in the lower corner of the matrix appear due to

periodic boundary conditions. The expressions for ai, bi, ci, and qi are

ai = r1, (2-108)

bi = r2, (2-109)

ci = r3, (2-110)

and

qi = r4p̂
n
i+1 + r5p̂

n
i + r6p̂

n
i−1. (2-111)

The linear system is not yet tridiagonal, due to the periodic boundary conditions.

However, Yarrow [135] shows that the system can be solved with the Sherman-Morrison-Woodbury

formula [136–140]. To use the formula, the matrix has to first be split,

b1 a1 c1

c2 b2 ai

ci bi
. . .

. . . . . . aI−1

aI cI bI


=



b1 − c1 a1

c2 b2 ai

ci bi
. . .

. . . . . . aI−1

cI bI − aI


+



c1

0

...

0

aI


[
1 0 · · · 0 1

]
. (2-112)

Then, the linear system can be expressed as (A1 + UV T )p = q, where A1 is the tridiagonal

matrix in Eqn. 2-112, U and V are the column vectors in Eqn. 2-112 and superscript T

denotes the transpose. Now, two linear systems are solved; A1P1 = U is solved for P1 and
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A1P2 = q is solved for P2. The Sherman-Morrison-Woodbury formula gives the solution as,

p = P2 −
1

1 + V TP1

P1V
TP2. (2-113)

Using indices,

pn+1
i = P2i −

P21 + P2I

1 + (P11 + P1I )
P1i . (2-114)

2.2.4 Nonlinear Propagation

Nonlinear distortion of the sonic boom signal is accounted for by the nonlinear term

on the right-hand side of Eqn. 2-56. In the split-step approach, the nonlinear subproblem

is defined by the inviscid Burgers’ equation,

∂p

∂x1
=

βp

ρ0c30

∂p

∂τ
. (2-115)

The ρ and c in Eqn. 2-115 are computed at the ground. If the initial wave at x1 is

p(x1, τ), then the implicit Poisson solution to Eqn. 2-115 is [119],

τ ∗ = τ +
βp(x1, τ)

ρ0c30
∆x1, (2-116)

and

p(x1 +∆x1, τ) = p(x1, τ
∗). (2-117)

If τ ∗ remains single-valued, then p(x1 + ∆x1, τ) can be determined by interpolation

of p(x1, τ ∗) onto τ . Stout [18] uses spline interpolation to compute the solution, we have

found that linear interpolation has been sufficient for our computations if ∆τ is kept

small. In many situations of sonic boom propagation in the ABL, the nonlinear effects of

the waveform are relatively small. In this case, τ ∗ will usually not become multi-valued. If

multi-valuedness occurs, the Burgers-Hayes algorithm of Hayes [114] and Coulouvrat [113]

can handle the multi-valued waveform. The algorithm involves computing the acoustic
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potential ϕ defined by p = ∂τϕ on the new plane,

ϕ(x1 +∆x1, τ) = ϕ(x1, τ
∗)− βp2(x1, τ

∗)

ρ0c30

∆x1
2
. (2-118)

In order to obtain ϕ(x1 + ∆x1, τ), the right-hand side of Eqn. 2-118 is first computed on

τ ∗. Only branches of the solution in which τ ∗ is an increasing function are permitted. The

right-hand side of Eqn. 2-118 along these branches are selected and interpolated back onto

τ , where at every point ϕ(x1 + ∆x1, τ) is equal to the maximum value of the right-hand

side of Eqn. 2-118. This is the appropriate solution that satisfies entropy conditions. That

is, the entropy increases as air passes through a shock. The pressure is directly determined

from the potential.

2.2.5 Atmospheric Absorption

In Eqn. 2-69, thermoviscous absorption is accounted for by Eqn. 2-72. Due to the

one-way formulation of the governing equation, the absorption effects are considered in

the delayed time frame τ = t − c−1
0 x1. This approach is only valid when the dispersion

of the wave is considered sufficiently weak [119]. The dispersion is considered weak

when the variation in the phase speed is only a small percentage of the ambient speed of

sound c0. The dispersion relation for a planar wave propagating in the x1 direction with

thermoviscous absorption is,

ω

k1
= c0

√
1

1− i δω
2c20

≈ c0

(
1 + i

δω

4c20

)
. (2-119)

For the frequencies considered here, the assumption that the deviation of the phase speed

from c0 is sufficiently small holds. This can be confirmed by examining (1/2)αc0ω
−1 in the

range of audible frequencies (see Fig. 2-2).

The governing equation for absorption effects in the medium is,

∂p

∂x1
=

δ

2c30

∂2p

∂τ 2
. (2-120)
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Let p = p̂ exp (iωt), then
∂p̂

∂x1
= −ω

2δ

2c30
p̂. (2-121)

Letting α represent the absorption coefficient,

∂p̂

∂x1
+ αp̂ = 0. (2-122)

Integrating from x1 to x1 +∆x1 we obtain,

p̂ (x1 +∆x1, x2, x3, τ) = p̂ (x1, x2, x3, τ) exp (−α∆x1) . (2-123)

The absorption coefficient is a function of ω and the atmospheric properties, pressure,

temperature, and humidity. Two different standards, one by the American National

Standards Institute (ANSI) [141] and one by the International Standards Organization

(ISO) [142], both supply formulas for the estimation of α in the atmosphere. However, we

will use the formulas given by Bass et al. [115] to determine α. The formulas of Bass et

al. [115] not only account for thermoviscous absorption but also the relaxation effects of

nitrogen and oxygen. The absorption coefficient is,

α =
B1fr,Nf

2

f 2 + f 2
r,N

+
B2fr,Of

2

f 2 + f 2
r,O

+B3
p

p∞
f 2 nepers

m , (2-124)

where fr,N and fr,O are the relaxation frequencies for nitrogen and oxygen, p is the

local atmospheric pressure, and p∞ is the reference atmospheric pressure (1 atm). The

coefficients B1, B2, and B3 are functions of the temperature. The relaxation frequencies

are,

fr,N =
p̃

p∞

(
T∞

T̃

)1/2
(
9 + 280h exp

[
−4.17

(
T∞

T̃

1/3

− 1

)])
(2-125)

and,

fr,O =
p̃

p∞

(
24 + 4.04× 104h

0.02 + h

0.391 + h

)
, (2-126)
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where T̃ is the absolute temperature in Kelvins, T∞ = 293.15 K, and h is the percent

absolute humidity. The absolute humidity is given by,

h = p∞
hr
p̃

psat
p∞

, (2-127)

where psat is the saturation vapor pressure and hr is the relative humidity. The remaining

necessary expressions are,

log10

[
psat
p∞

]
= −6.8346

(
T0
T

)1.261

+ 4.6151, (2-128)

B1 = 0.1068

(
T

T∞

)−5/2

e−3352/T , (2-129)

B2 = 0.01275

(
T

T∞

)−5/2

e−2239.1/T , (2-130)

and

B3 = 1.84× 10−11

√
T

T∞

(
p∞
p

)
, (2-131)

where T0 = 273.16 K is the triple point temperature.

With the above equations, α can be obtained as a function of the atmospheric

properties and frequency. Figure 2-2 displays α1 as a function of frequency for humidity

levels at 0% all the way to 100%. At lower frequencies, α is highly dependent on molecular

relaxation of nitrogen and oxygen. However, at higher frequencies the thermoviscous

absorption becomes the dominant factor. This is indicated by the collapse of the curves in

Figure 2-2 for frequencies approaching 106 Hz/atm.

2.2.6 Boundary Conditions

When the turbulence can be considered isotropic and homogeneous in the transverse

plane, and when the mean flow does not change along the transverse plane, periodic

1 In this case, α is simply the absorption coefficient given in units of decibels per 100 m,
whereas α is in units of nepers per meter.
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Figure 2-2. Plot of α for several levels of ambient humidity as a function of the frequency.

boundary conditions are used in the code For simulations that cannot be considered

periodic in the transverse directions, boundary conditions must be implemented at the

edges of the domain that reduce any numerical artifacts that may result at the domain

boundaries. Reflections at the edge of the domain will cause oscillations in the solution

downstream and result in unacceptable predictions. One simple boundary condition

involves damping the wave within spatial regions near the boundary. This is achieved by

applying the exponential attenuation,

p̂ (x1 +∆x1, x2, x3, ω) = p̂ (x1, x2, x3, ω) exp (−αBC) , (2-132)

where αBC is the artificial attenuation coefficient at the boundary.

The region of the domain where this attenuation is applied, referred to as the

absorbing layer from this point onwards, is defined as |x2| > Lx2 and |x3| > Lx3 . Figure

2-3 illustrates the computational domain near a corner of the transverse grid. Dotted

lines represent the absorbing layers of the domain. Lx2 and Lx3 are the lengths from the

middle of the domain to the interface between the absorbing layer and the rest of the
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computational domain. The width of the absorbing layer is hx2 in the x2 direction and hx3

in the x3 direction.

Figure 2-3. Computational domain near a corner of the transverse grid.

The functional form of αBC is chosen to match that from the work of Dagrau et al.

[16],

αBC =



21
(x2−Lx2)

αEXP

h3
x2

if x3 > Lx3 and x2 < Lx2

21
(x3−Lx3)

αEXP

h3
x3

if x3 > Lx3 and x2 < Lx2

21

[
(x2−Lx2)

αEXP

h3
x2

+
(x3−Lx3)

αEXP

h3
x3

]
if x2 > Lx2 and x3 > Lx3

0 otherwise,

(2-133)

where αEXP is a user prescribed exponent and hx2 , hx3 are also user defined. For initial

waveforms with significant acoustic energy in the ultrasound range (the acoustic piston

benchmark case presented in Sec. 2.4.1), the values of hx2 , hx3 are set to 15% of the

transverse domain size and αEXP = 3.0. For simulations of sonic boom N-waves and

shaped booms, the value of αEXP was set to 1, and hx2 = hx3 = 40% of the domain size.
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2.3 Numerical Implementation and Algorithms

The numerical methods outlined in chapter 2 are implemented in a Fortran [143, 144]

code called sbABL (sonic boom propagation in the Atmospheric Boundary Layer).

Fortran is a compiled programming language originally designed by John Backus to be

used for scientific computing [145]. There are several advantages to using Fortran to

develop sbABL. The first advantage is that, unlike other languages, Fortran was designed

specifically for numerical programming. Consequently, it is arguably easier to write fast

and efficient numerical programs in Fortran language than other languages. Secondly,

sbABL is designed to accept input from PCBoom [11], which is written in Fortran. Future

integration of sbABL into PCBoom will be made easier if sbABL is written in Fortran.

Highly resolved grids must be created to capture the wide range of turbulence scales

in the ABL. For the grid sizes required to resolve these scales, sbABL requires a significant

amount of memory for computation. Assuming that each spatial and temporal direction

needs to be sampled with 1024 grid points, it was estimated that 73 GB of Random-access

memory (RAM) is required to run the code. However, current performance of sbABL on

linux clusters indicate that over 100 GB of RAM is used when performing computations

with the 1024 grid size in each direction. Performing computations on such large datasets

is computationally intensive. For this reason, the Message-Passing Interface (MPI) [146]

is utilized to distribute datasets across many processors and perform computations locally

to reduce the overall runtime of sbABL. It is possible that some of the MPI operations

allocate additional RAM for temporary storage, which could be a contributing factor

to why more RAM is required than was estimated for 1024 grid point sampling. Due

to the large datasets, the Heirarchical Data Format (HDF5) [147] is used to compress

and store data. HDF5 is a data format and software package that can read, write, and

compress data, and is callable from C and Fortran. Due to the random nature of turbulent

fields, several hundred simulations must be run for a given propagation condition to

obtain mean values of maximum pressure and noise metrics that are converged. HDF5
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provides a simple way to compress and store hundreds of data files whose raw data at

times could be upwards of 100 GB. However, two-dimensional simulations can greatly

reduce storage size, and in some cases are valid for investigating turbulence effects on sonic

boom waveforms. In these cases, the two-dimensional version of sbABL should be used to

perform simulations.

In the remaining portion of this chapter, sbABL is outlined in detail. The initial

conditions for the code are given. The distribution of datasets across many processors are

discussed, and the algorithm used for three-dimensional data transposition is presented.

Benchmark cases that test diffraction, heterogeneties, nonlinearities, and absorption are

reviewed. Finally, a test case of sonic boom propagation in a standard atmosphere is run

and compared to the results from PCBoom [11].

2.3.1 The Process of sbABL

The process of sbABL is illustrated in the flowchart (Fig. 2-4). sbABL accepts an

HDF5 input file containing information about the turbulent field on the computational

grid as well as the acoustic wave prescribed on the transverse plane (x1 = 0, x2, x3).

Upon start of the program, the grid (x1, x2, x3, τ) is read from the input file to obtain

information about the physical size of the domain as well as the number of gridpoints in

each direction. This information, along with the number of processors determines how the

data is distributed. The program allocates local memory on each processor. The exact

distribution of data is discussed further in Section 2.3.3. The program then reads in the

weather data, which includes velocities, temperature, density, pressure, and speed of sound

at every point in the computational domain, along with the spatial derivatives of velocities

and densities. The weather data is generated in a separate input program, according to

the methods presented in Chapter 3. This data is required to compute the flow effects on

the acoustic waveform as it propagates through the ABL. An initial sonic boom waveform

may be provided to sbABL with PCBoom, or a single frequency sine wave may be selected

as the input. To use a waveform from PCBoom, the user must run PCBoom and obtain
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an output waveform file at the top of the ABL. This output waveform file must then

be placed in the directory that stores the sbABL executable file. The last step before

propagating the waveform in the x1 direction is to save the initial pressure and initial

maximum pressure on the input plane. The code then propagates the waveform in space.

During propagation, the different physical effects are computed in the order shown in the

orange boxes in Fig. 2-4.

The propagation process begins with computing the effect of nonlinear distortion of

the waveform on the half-step (0.5∆x1). An FFT is then performed in time to convert

the acoustic pressure to the frequency domain. The flow and absorption effects are

then computed on the half-step. The boundary conditions are also applied at this

step. The FFT in the spatial directions is then computed, to transform the pressure

to the wavenumber domain. The angular spectrum method is employed to compute the

diffraction effects on the full step (∆x1). The inverse transform in space is then computed,

and the process of computing the boundary conditions, flow effects, and atmospheric

absorption are repeated. Finally, the inverse FFT in time is computed, the waveform is

propagated once more with the Burgers solver, and the acoustic pressure data is saved at

observer locations.

2.3.2 Initial Conditions

The input acoustic wave is defined on the x1 = 0 plane and subsequently propagated

forward in x1. The pressure array is three-dimensional p(τ, x2, x3). Arrays of data storing

the velocities, density, temperature, atmospheric pressure, humidity, and speed of sound

are also allocated, along with the corresponding spatial derivatives. The fields of the

derivatives are required for computing heterogeneous effects in the medium, as shown in

Eqns. 2-98 and 2-99.

2.3.3 Transposition

In sbABL, a single-program multiple-data (SPMD) approach is adapted to achieve

parallelism [146]. In this approach, data is distributed among the processors and each
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Figure 2-4. Flowchart of the computational process of sbABL.
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processor executes the same program to perform computations on the data. To put it

simply, each processing unit executes the same set of instructions, but on different data.

Only 3D arrays in sbABL are distributed among the processors. The first two dimensions

of each array are kept contiguous in local memory, while the last dimension is segmented

among the processors. For example, if we have an array “foo” of size [256, 256, 256] and 16

processors, then the size of the array on each processor is,

foo[256, 256, 256] =



foo1[256, 256, 16] 1 to 16

foo2[256, 256, 16] 17 to 32
... ...

foo16[256, 256, 16] 241 to 256

(2-134)

Figure 2-5 illustrates how the arrays are distributed across processors, Ni. In this

specific case, the acoustic pressure array is initially contiguous in local memory in the

τ and x2 directions. The acoustic pressure as a function of x3 is distributed among the

processors. This is the favorable arrangement of p for the computation of nonlinear effects,

because the acoustic pressure as a function of the delayed time p(τ) can be accessed very

quickly in local memory. However, once we are done computing the nonlinear distortion

we must compute diffraction effects in wavenumber space, and then the flow effects in

(x2, x3, ω). To convert p to wavenumber space, the FFT must be performed in time

and space. The FFT in sbABL must be performed in local memory, therefore p must

be transposed after the FFT in τ is performed. Figure 2-5 shows the result of such a

transposition, where p as a function of the transverse coordinates x2, and x3 is contiguous

on each processor. This arrangement of the data allows for computation of the tridiagonal

matrices formed by the coupling effects solver on local processors, where it is quicker to

access memory addresses and perform the computation.

The function in MPI to perform the transpose is MPI_Alltoallw. To perform the

transposition, a new MPI datatype is declared that accesses the memory of the input
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Figure 2-5. Illustration of the distribution of data across Ni processors and the process of
transposing the arrays.

array to collect data such that the messages sent to each processor are contiguous in the

second dimension of the original array. Then the data is collected on each processor to

form the output array. The forward transposition corresponds to a rearrangement of the

indicies of a tensor from i, j, k to j, k, i.

2.4 Benchmarks

We seek to validate the sbABL solver against a number of simplified acoustic

problems with known solutions. Several benchmark cases are inspired by the work of

Luquet [17] and Dagrau et al. [16]. The following acoustic problems are used to validate

diffraction, heterogeneous, nonlinear, and absorption effects with analytical solutions.

2.4.1 Acoustic Piston

To examine the accuracy of sbABL to capture diffraction effects, the problem of an

acoustic piston in a semi-infinite rigid baffle is considered. In this problem, the input plane

is prescribed as a sinusoidal pressure fluctuation on the piston face r ≤ a, where a is the

radius of the piston face and r2 = x22 + x23. The transverse coordinates for this problem

are labeled x2, and x3 and the propagation coordinate is x1. The general solution for the

acoustic pressure at any location in the domain is the Rayleigh integral [121],

p(x1, x2, x3, t) = ρ0

∫
S

u̇p (x
′
2, x

′
3; t−R/c0)

2πR
dS, (2-135)
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where x′2, and x′3 are the coordinates on the face of the piston, u̇p is the time derivative of

the piston velocity, and R is the distance to the observer location,

R =
√

(x2 − x′2)
2 + (x3 − x′3)

2 + x21. (2-136)

Figure 2-6 shows the setup of the computational problem. The parameters of the

benchmark problem are listed in Table 2-2. An exact solution can be obtained for the

acoustic pressure along the centerline. On the centerline, the solution is,

pexact = pI

[
ei(ωt−kr) − ei(ωt−k

√
r2+a2)

]
, (2-137)

where pI is the acoustic pressure amplitude on the piston.

Figure 2-6. Setup of the acoustic piston problem.

Figure 2-7A displays comparisons of the simulation results for maximum pressure

along the centerline compared to Eqn. 2-137. Upon visual inspection, the simulation

results and exact solution agree in the Fresnel region (x1λ−1 < 32 m) and the Fraunhofer

region (x1λ−1 > 32 m). The percent error between the simulation and exact solution was
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Table 2-2. Parameters for the acoustic piston problem.
Parameter Value
f 1 MHz
pI 5 Pa
c0 1500 m/s
ρ0 1000 kg/m3

λ c0/f
x1 0 ≤ x1 ≤ 250λ
x2 −60λ ≤ x2 ≤ 60λ
x3 −60λ ≤ x3 ≤ 60λ
τ 0 ≤ τ ≤ f−1

a 4λ

computed with the following formula,

Error =
∥psim − pexact∥

∥pexact∥
× 100. (2-138)

The computed error is 0.6%.

In Fig. 2-7B, the maximum pressure in the x3 = 0 plane is shown. The complex

diffraction in the Fresnel zone, which is not well approximated with parabolic approaches,

is captured by the angular spectrum method. As x1λ−1 increases, Fig. 2-7B shows that

the main beam forms with side lobes.

A B

Figure 2-7. Plots of the maximum acoustic pressure. Maximum pressure A) along the
centerline and B) in the x-y plane.
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2.4.2 Blackstock Bridging Function

In the case of a plane progressive wave of finite amplitude, Blackstock matched

two existing solutions valid within different regions of the flow to arrive at a formula

to compute the pressure at all propagation distances [148]. The initial condition of the

problem is a sine wave with an amplitude large enough to cause the formation of a shock

wave. The Fubini solution [149] is valid in the near-field region before the formation of

a shock wave occurs. The Fay solution [150] is valid beyond the formation of the shock,

and matches a sawtooth wave solution past 3.5σ1, where σ1 is the propagation distance

normalized by the shock formation distance x1. The shock formation distance is defined

as,

x1 =
ρ0c

3
0

βmax
(

∂p
∂τ x1=x0

) , (2-139)

where x0 is the initial plane. Blackstock employs weak-shock theory to match the Fubini

and sawtooth wave solutions.

The algorithm used in sbABL to compute nonlinear effects is the Burgers-Hayes

algorithm outlined by Coulouvrat [113] and Hayes [114]. Parameters of this benchmark

case are given in table 2-3.

Table 2-3. Parameters for the nonlinear propagation with no absorption effects.
Parameter Value
f 1 Hz
pI 101342.6 Pa
c0 340.6 m/s
ρ0 1.225 kg/m3

λ c0/f

x1
ρ0c30

βpI2πf

x1 0 ≤ x1 ≤ 10x1
x2 −5x1 ≤ x2 ≤ 5x1
x3 −5x1 ≤ x2 ≤ 5x1
τ −0.5f−1 ≤ τ ≤ 0.5f−1

Figure 2-8 shows the comparison of a sinusoidal waveform computed with sbABL at

several different distances compared with the Blackstock bridging function. The difference
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between the simulations and the Blackstock bridging function are 1.6%, 7.2%, and 7.3%

for σ = 1, 3, and 5, respectively. The computation of the bridging function involves an

infinite summation of sine functions [125]. When the infinite sum is truncated, ringing

occurs near sharp discontinuities, which is commonly referred as the Gibb’s phenomenon.

These oscillations are removed from the bridging function computation with a Lanczos

resampling technique. However, this resampling of the waveform can cause overdamping

near sharp discontinuities. The increased difference for σ = 3 and 5 is partially due to this

effect.

Figure 2-8. Waveform computed at different propagation distances compared to the
Blackstock bridging function.

2.4.3 Absorption

Thermoviscous absorption and molecular relaxation acts to attenuate high frequencies

as the wave propagates through the domain. In sbABL, absorption effects are accounted

for by the absorption coefficient α(f) (f is the frequency), given by Bass et al. [115].

However, in order to validate the accuracy of sbABL in computing absorption effects it

is desirable to set α(f) to a constant value and compare the resulting computation with

the solution of Mendousse [151]. Mendousse [151] considers the non-dimensional Burgers’
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equation with an additional term to account for absorption,

∂p∗

∂σ1
− 1

Γ

∂2p∗

∂τ ∗2
= p∗

∂p∗

∂τ ∗
, (2-140)

where Γ = (αx)−1, σ1 = x−1x1 is the non-dimensional propagation distance, τ ∗ = ωτ is

the non-dimensional time, and p∗ = ωp−1
I p is the non-dimensional potential [119]. ω is the

frequency of the initial sine wave. Finally, pI is the maximum pressure of the input wave.

Table 2-4 gives the numerical values of the parameters for this benchmark problem.

Table 2-4. Parameters for nonlinear propagation with absorption.
Parameter Value
f 9 MHz
pI 101342.6 Pa
c0 340.6 m/s
ρ0 1.225 kg/m3

λ c0/f

x1
ρ0c30

βpI2πf

x1 0 ≤ x1 ≤ 10x1
x2 −5x1 ≤ x2 ≤ 5x1
x3 −5x1 ≤ x2 ≤ 5x1
τ −0.5f−1 ≤ τ ≤ 0.5f−1

The analytical solution obtained by Mendousse [151] is,

p = pI
4Γ−1

∑∞
n=1(−1)n+1nIn(0.5Γ)e

−n2αx1 sin(nωτ)

I0(0.5Γ) + 2Γ−1
∑∞

n=1(−1)nIn(0.5Γ)e−n2αx1 cos(nωτ)
, (2-141)

where In are modified Bessel functions. Simulation results at a shock location distance

of σ1 = 10 are compared to the solution of Mendousse [151] in Fig. 2-9. The results of

the simulation are indistinguishable relative to the analytical solution. The percent error

between the analytical solution and simulation result is 0.32%.

2.4.4 Scattering by a Vortex

For this benchmark case, we consider scattering by a viscous vortex. The coordinate

system and domain of the simulations are shown in Fig. 2-10. The forward direction

is x1, the transverse coordinate is x2, and (r, θ) is the polar coordinate system. The

origin of the coordinate system is at the vortex center. The non-dimensional radius is
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Figure 2-9. Simulation results at σ1 = 10 for Γ = 50 compared to the exact solution of
Mendousse.

r̃ = 2πrλ−1, where λ is the wavelength of the incoming wave. Accordingly, x̃1 = 2πx1λ
−1

and x̃2 = 2πx2λ
−1. Unless otherwise stated, the initial wave is prescribed at x̃1 = −1000

and propagated forward until x̃1 = 1000. Additionally the transverse direction extends

from x̃2 = −2000 to x̃2 = 2000 with absorbing layers at each boundary.

Figure 2-10. Coordinate system with origin at the center of the vortex.

The velocity profile for the vortex is based on a similarity solution to the incompressible

Navier-Stokes equations that is typically referred to as the Oseen vortex [152]. The
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tangential velocity of the Oseen vortex is,

ŭθ =
Γ

2πr

[
1− exp

(
− r2

4νt

)]
, (2-142)

where t is the time variable, Γ is the circulation, and ν is the kinematic viscosity. The

quantity 4νt is the characteristic scale of the flow, which we refer to as L2/α to be

consistent with Colonius et al. [153]. Here, α = 1.256431 is a constant, and the vortex

core length is L. The radial momentum equation shows that the centripetal force per unit

volume is balanced by the pressure gradient of the vortex,

∂p̆

∂r
=
ρŭ2θ
r
. (2-143)

Although Eqn. 2-142 is determined by a similarity solution of the incompressible

Navier-Stokes equations, it also satisfies the inviscid compressible equations when there

is no radial velocity. The vortex considered in these simulations is the same vortex

considered in the DNS simulations of Colonius et al. [153]. The flow is homentropic, thus

the density, pressure, and temperature are related through the isentropic relations,

p

p∞
=

(
ρ

ρ∞

)γ

=

(
T

T∞

) γ
γ−1

. (2-144)

Thus, only one of the pressure, density, or temperature profiles needs to be known to

determine the other two. The pressure of the base flow that satisfies the isentropic

relations and the radial momentum equation is given by Colonius et al. [153] as,

p̆ = p∞

[
1− (γ − 1)Γ2

4c20π
2r2

f
(
αr2/L2

)] γ
γ−1

, (2-145)

where γ = 1.4 is the ratio of specific heats for air, f(x) is

f(x) =
1

2
− exp(−x) + 1

2
exp(−2x) + xEi(−2x)− xEi(−x), (2-146)

and Ei is the exponential integral. To be consistent with the DNS simulations of Colonius

et al. [153] the Reynolds number of the vortex is set to Re = 105 for all computations.
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The exact solution found by Colonius et al. [154] varies from the initial condition only by

an order of M2Re−1. Since M2Re−1 << 1 for the vortex considered in our simulations, the

initial condition is a good approximation of the exact solution.

Results of the simulations are reported in terms of the root-mean-square scattered

pressure, defined as

psrms(x1, x2) =

[
c0
λ

∫ λ
c0

0

(
p(x1, x2, τ)− p(x1 = 0, x2, τ)

)2
dτ

]1/2
, (2-147)

where pI is the amplitude of the initial wave. The parameter ϵ = Γ c−1
0 λ−1 is used to

describe the frequency of the scattering, where ϵ << 1 is scattering within the Born

approximation and ϵ >> 1 is high frequency scattering. Unless otherwise stated, the

core length L was set to unity, the Mach number of the vortex was set to 0.0625, and ϵ is

increased from 0.01 to 1. In the Born limit (ϵ << 1), closed-form analytical expressions

for the scattered pressure have been obtained by [153] and [155]. In Fig. 2-11, scattering

cross sections obtained by the split-step simulations for ϵ = 0.02 are directly compared

to the analytical solution of Ford and Llewellyn Smith [155] (Eqn. 4.21 of Ford and

Llewellyn Smith [155]). In the forward scattering region (−90◦ ≤ θ ≤ 90◦), the analytical

solution and simulation results differ by only 1.3% for r̃ = 2π, 0.9% for r̃ = 6π, and

1.9% for r̃ = 20π. The split-step simulations do not account for back scattering, and

thus do not agree with the analytical solution when |θ| > 90◦. This was expected, as the

split-step approach was formulated to compute the forward propagating solution. The

good quantitative agreement between the simulations and analytical solution when ϵ << 1

indicates that the low frequency results are valid.

As ϵ is increased, O(M2) terms in the governing equations become increasingly

important, and the scattered field becomes asymmetric. The Born approximation is no

longer valid, and the analytical results of [153] and [155] do not apply. The maximum rms

scattered pressure no longer scales with ϵ in the far-field. This is visually evident in Fig.

2-12A, where the maximum normalized rms scattered pressure is plotted along r̃. When
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Figure 2-11. Normalized rms scattered pressure for ϵ = 0.02. Comparison of analytical
solution to split-step simulations at A) r̃ = 2π and 6π and B) r̃ = 20π.

ϵ << 1, the curves collapse along r̃. Ford and Llewellyn Smith [155] determined that this

curve approaches an approximate value of 2.982 as r̃ → ∞. Indeed, our simulation results

never surpass this value.

In Fig. 2-12B, the split-step results are compared to DNS results [153] for simulations

outside of the Born limit. The two simulations in Fig. 2-12B were performed at M =

0.0625 and M = 0.125 with λL−1 = 4. There is good agreement visually between

the split-step simulations and the DNS simulations at M = 0.0625. The DNS results

and split-step results differ by 4.2% at M = 0.0625, with the largest disagreement, an

underprediction of psrmsp
−1
I = 0.015, occurring at θ = −51.7◦. As the Mach number

is increased, we begin to see noticeable differences between the split-step and DNS

simulations. Most notably, the peaks at −30◦ and 30◦ are over-predicted relative to

the DNS results by psrmsp
−1
I = 0.024 and psrmsp

−1
I = 0.011, respectively. The L2 norm

difference between the scattering cross sections of the DNS and split-step results is 6.9% at

M = 0.125, an increase of 2.7% relative to the M = 0.0625 results. This disagreement was

expected, as Eqn. 2-56 is valid for low Mach number flows and the DNS simulations have

no such restriction.
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Figure 2-12. Split-step simulation results for the maximum rms scattered pressure
compared to analytical and DNS results. A) Split-step results for the
maximum rms scattered pressure for 0.01 ≤ ϵ ≤ 1. B) comparison of
split-step results to DNS at M = 0.0625 with ϵ = 0.14, and M = 0.125 with
ϵ = 0.27. Each prediction is at r̃ = 5π.

2.4.5 Sonic Boom Propagation in a Standard Atmosphere

Propagation of two sonic boom signals in a stratified atmosphere are examined with

sbABL. Initial waveforms are provided at an altitude of 2 km by PCBoom [11]. The two

waveforms examined represent an N-wave and a shaped boom signature. The shaped

signature is referred to as NASA C25D by Bradley et al. [20]. Figure 2-13 displays the

sonic boom signatures provided by PCBoom at an altitude of 2 km.

A B

Figure 2-13. Initial waveforms at an altitude of 2 km obtained by PCBoom. A) N-wave
and B) NASA C25D.
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The waveforms are propagated a distance equal to the length of propagation along

the raypath in PCBoom, to accurately account for the effect of the stratification on

the waveforms. The medium does not contain any turbulence, but the mean flow,

temperature, pressure and humidity are all prescribed as profiles in Fig. 2-14. Figure

2-14 presents the profiles within the atmosphere normalized by the standard values of

each variable at sea-level, except for humidity which is prescribed as a percentage. The

standard value of pressure is 1 atm, and temperature is 288.15 K.

Figure 2-14. Mean temperature, pressure, and humidity as a function of the altitude.

Figure 2-15 displays the computed signatures at ground level (z = 0 m) from

PCBoom and sbABL. The sbABL results exhibit slightly larger overpressures, which

could be due to geometrical spreading not accounted for by sbABL. Otherwise, both

signatures show good agreement in shape and period of duration.

Sonic boom noise metrics are of interest to the supersonic flight regulatory community.

The prediction code sbABL can output pressure time history at any location in the

domain. This means that the waveform can be extracted at an observer location and

post-processed to obtain weighted sound exposure levels (SEL) and other noise metrics.

The metrics presented in Tables 2-5 and 2-6 are A, C, and E weighted SELs as well as the

Mark VII perceived level [104]. Table 2-5 presents the results for the N-wave. Metrics are

computed for both the PCBoom results as well as the sbABL results. All metrics, except

for ASEL, show agreement within ±1 dB.
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A B

Figure 2-15. Comparison of the computed pressure waveforms to the PCBoom results. A)
N-wave and B) NASA C25D.

Table 2-5. Sonic boom metrics of N-wave.
Metric PCBoom (dB) Simulation (dB) Difference (dB)
PL 95.62 95.97 0.35
ASEL 82.16 83.95 1.79
CSEL 97.52 97.60 0.08
ESEL 108.98 108.12 -0.86

Table 2-6 contains the results for the NASA C25D waveform. Only two metrics

(CSEL and ESEL) show agreement within ±1 dB. The other two metrics (PL and ASEL)

overpredict the metrics of PCBoom by 1.83dB and 1.78 dB, respectively. Overall, the

metrics for each case show agreement within ±2 db. This indicates that sbABL is able to

obtain predictions with good agreement to a well benchmarked and documented code such

as PCBoom.

Table 2-6. Sonic boom metrics of NASA C25D.
Metric PCBoom (dB) Simulation (dB) Difference (dB)
PL 74.15 75.98 1.83
ASEL 60.52 62.30 1.78
CSEL 88.38 89.02 0.64
ESEL 102.75 103.18 0.43

It should be noted that the purpose of sbABL is to simulate propagation of the

sonic boom in the ABL, very close to the ground. The propagation distance of a sonic

boom from the top of the ABL to the ground is generally quite small compared to the
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total propagation distance from the aircraft to ground. Thus, we are not generally too

concerned with small differences in the prediction of the waveform distortion in response

to atmospheric stratification and mean wind. We are more concerned with predicting the

effects of turbulence on the sonic boom. For this reason, along with the fact that sbABL

does not account for geometrical spreading, the predictions in Tables 2-5 and 2-6 are

deemed acceptable.
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CHAPTER 3
MODELING ATMOSPHERIC BOUNDARY LAYER TURBULENCE

In Chapter 2, the governing equation for acoustic propagation was established.

Equation 2-56 is numerically solved with the Strang [111] split-step method. Each physical

effect in the atmosphere is computed in sbABL using a method that is best suited for that

particular problem. Now that a Fortran code (sbABL) has been developed to solve Eqn.

2-56 and has been benchmarked for several different acoustic propagation problems, it is

time to turn attention to the effects of mean flow and turbulence on the propagation. It

is well known, on a non-cloudy day, that the sonic boom waveform is affected by macro

atmospheric, micro atmospheric, and turbulence effects [14]. The first of which consists

of the mean pressure, temperature, and wind velocity. Micro atmospheric effects involve

the thermoviscous absorption and molecular relaxation acting on the waveform. Finally,

the turbulence effects, which are prominent in the atmospheric boundary layer, include

the random fluctuations of velocities and temperature that lead to distortions in the sonic

boom waveform and scattering of acoustic power. Many traditional propagation codes

capture the first two effects ([10, 11, 13, 65]); however, very few propagation codes account

for the effect of turbulence on the waveform. This is due in part to the resolution required

to model the turbulent ABL, as well as the limitations of geometrical acoustics that so

many codes rely on.

In this chapter, mean flow modeling in the computational domain is described in

detail. The Monin-Obuhkov [71] similarity theory (MOST) is employed to model the

mean flow in sbABL for situations where no measured mean flow profiles are available

to the user. To model turbulence in the computational domain, methods to generate

homogeneous and inhomogeneous turbulence are employed. The method of Frehlich

et al. [110] generates velocity fluctuations to mimic isotropic turbulence on a three

dimensional grid using a von Kármán composite spectral energy model. The Generalized
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Random Phase Method (GRPM) detailed by Wilson [22]1 is reviewed, and it is applied to

generate inhomogeneous fields of kinematic turbulence representative of ABL turbulence.

Additionally, a procedure to extend the capabilities of GRPM to generating kinematic

turbulence with correlated vertical velocity and temperature fluctuations is discussed.

3.1 Mean Flow and Similarity

Mean velocity and temperature within the surface layer of the atmosphere are a

function of z (the vertical coordinate in the atmosphere describing altitude), the Obuhkov

length scale Lo (Eqn. 1-5), and the potential temperature scale Θ∗. Monin and Obuhkov

[71] employed similarity theory to obtain functional forms of the potential temperature

(Θ) and velocity (u) gradients in the surface layer,

κvKz

u∗

du

dz
= φm (ξ) (3-1)

κvKz

Θ∗

dΘ

dz
= φh (ξ) , (3-2)

where ξ = z/Lo and −∞ < ξ < ∞. Recall that κvK is the von Kármán constant and

u∗ =
√
τwall/ρ is the shear velocity. The functions φm and φh can be determined from

experimental data. Several investigators sought to determine these functions for different

sets of data (for example: Dyer and Hicks [157], Businger et al. [74], Carl et al. [73],

Kader and Yaglom [158], and Delage and Girard [159]).

Wilson [72] proposed a new functional form of φm and φh that have the proper

asymptotic behavior in the free convection limit, ξ −→ −∞ (unstable stratification).

Unstable stratification in the ABL occurs when the air closest to the Earth’s surface

is hotter than the air above and subsequently rises due to buoyancy forces. Unstable

stratification leads to a strong vertical turbulent heat flux Q = u′zΘ
′ until eventually the

1 A very similar method, termed the method of random Fourier modes, was used
earlier for sound propagation studies by Blanc-Benon [156] and has been utilized in the
KZKFourier code of Stout [18] for sonic boom propagation studies.
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layer returns to stable stratification. These functions take the form of [72],

φm,h =


(
1 + γm,h|ξ|2/3

)−1/2

if ξ < 0

1 + bm,hξ if ξ ≥ 0,

(3-3)

where γm,h and bm,h are coefficients determined from a fit to the data, and are chosen to

be γm = 3.6, γh = 7.9, bm = 5.3, and bh = 8.4 (see Wilson [72]).

Equation 3-3 will be used to model the mean velocity and temperature in the

computational domain of sbABL. The reason for choosing Wilson’s [72] formulations is

due to the agreement with measurement data in the mixed-layer for unstable stratification,

relative to other models. Figure 3-1 (Bradley et al. [20]) illustrates each of the layers

in the atmospheric boundary layer. The surface layer is closest to the ground, where

gradients of velocity and temperature are the largest. The bulk of the ABL consists

mostly of the convective mixed layer. In the mixed layer, mean velocity is nearly constant

as a function of height and vertical convection is strong. The final layer is the capping

inversion layer, which is the interface between the ABL and the free atmosphere. This

layer is not modeled in sbABL, as the layer itself is small and the turbulence tends to be

intermittent. The time scale of intermittency cannot be smaller than the time scale of the

large turbulent eddies in the ABL, since the presence of turbulence near the top of the

ABL will depend on the dynamical evolution of these large eddies. Therefore, the time

scale of intermittency is large compared to the duration of the sonic boom.

Equations 3-1 and 3-2 represent the velocity and temperature gradients in the ABL.

They can be integrated to obtain profiles of the mean velocity and temperature,

u(z) =
u∗
κvK

[
ln
(
z

z0

)
− ψm

(
z

Lo

)
+ ψm

(
z0
Lo

)]
(3-4)

and

T (z) = Tr − (z − zr)Γd +
PtT∗
κvK

[
ln
(
z

zr

)
− ψh

(
z

Lo

)
+ ψh

(
zr
Lo

)]
, (3-5)
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Figure 3-1. Illustration of the ABL and a typical mean velocity profile.

where Pt = 0.95 is the turbulent Prandtl number, and Tr is the temperature at a reference

height zr. The temperature scale T∗ is,

T∗ = −Q0

u∗
, (3-6)

where Q0 is the sensible heat flux at the ground (Q0 = Q(z = 0)), z0 is the roughness

height, which depends on the type of surface, Γd = g/cp = 0.0098 K/m is the dry adiabatic

lapse rate, and cp = 1.006 kJ/(kg K) is the specific heat of air at constant pressure. The

functions ψm,h according to Wilson and Ostashev [72] are,

ψm,h =


2 ln

[
1+
√

1+γm,h|ξ|2/3

2

]
if ξ < 0

−bm,hξ if ξ ≥ 0.

(3-7)

Equations 3-4 and 3-5 describe the mean velocity and temperature in the ABL.

If provided values for Tr, zr, Qh, u∗, and z0, then u and T can be modeled in the
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computational domain. To determine the ability of Eqns. 3-1 and 3-2 to model the

mean flow in the ABL, comparisons of the profiles are made to measured field data.

Bradley et al. [20], in the SonicBAT study, conducted flight tests at NASA Armstrong

Flight Research Center (AFRC) and Kennedy Space Center (KSC) to collect sonic boom

measurements and meteorological data. The objective of the SonicBAT Flight Test was

to validate models of sonic boom signatures propagating through a turbulent atmosphere

with flight test data and meteorological measurements. As part of the test measurements,

two SODAR systems, two sonic anemometers, and three weather stations were deployed

to collect turbulence data in the ABL [20]. Measurements of the mean velocity were

conducted throughout several days in the ABL. Comparisons of the non-dimensional

velocity profiles were made to the AFRC data in order to validate Eqn. 3-4.

Figure 3-2 shows a comparison between the non-dimensional functional form of

MOST [71] with the function proposed by Wilson [72] to experimental observations.

Nineteen SODAR datasets from AFRC collected over a span of 4 days were selected

for comparison (shown as red symbols). For both unstable and stable stratification, the

MOST prediction represents the measurements within ±5 uκ/u∗, except for a few data

points in the range ξ > 2 and ξ < −40. The ξ values in the unstable portion of the plot

have been divided by a factor of 10, for ease of comparison.

The NASA SODAR datasets do not contain high resolution temperature measurements

as a function of altitude. Therefore, to validate the profile of temperature (Eqn. 3-5), the

function φh is compared to data from Carl et al. [73] and Högström [160]. Carl et al.

[73] obtained measurements of the mean temperature profile from two different towers,

one at Cape Kennedy, Florida and the other at Arco, Idaho. Högström [160] obtained

measurements of the temperature in the surface layer at a site in Lövsta, Sweden. The

data is presented in Fig. 3-3 along with the function φh given by Wilson [72] (in Black).

The data at Cape Kennedy and Arco appears to fall below φh by up to 1 for a small
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Figure 3-2. Comparison MOST with velocity measurements performed at NASA AFRC.
Non-dimensional velocity profile predicted by MOST (black solid line) and
velocity measurements from 19 different SODAR datasets at NASA AFRC
(red circles).

non-dimensional height ξ ≈ 0, while the Lövsta data is larger in magnitude in this region

by no more than 0.5.

For the purposes of generating a mean flow in the computational domain, the error

between the MOST model and measurement data in Figs. 3-2 and 3-3 is acceptable. If

more accurate computations are required to match flight test measurements, then high

spatial resolution measurements of the temperature and velocity in the ABL would have

to be taken at the same time and location as the microphone readings on the ground and

used as input to sbABL.

3.2 Isotropic Homogeneous Turbulence

In the remainder of this chapter, several methods for generating kinematic turbulence

for sound propagation calculations will be presented. It is assumed that the reader has a

basic understanding of statistical analysis and Fourier analysis often used in the study of

turbulent fluid motion, which can be found in the second chapter of Batchelor [161]. In

isotropic homogeneous turbulence, the turbulent kinetic energy is the same at every spatial
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Figure 3-3. Functional form of φh given by Wilson compared to temperature data from
several sites.

location and can be represented by an energy spectrum function

1

2
uiui =

∫ ∞

0

E(k)dk. (3-8)

The function E(k) is a measure of the energy contained at each frequency of the turbulent

motion. In general, the magnitude of E(k) tends to be higher at lower wavenumbers,

which corresponds to larger turbulent length scales. These large-scale motions tend to

carry the most energy.

The assumption of isotropy and homogeneity introduces symmetry conditions that

greatly simplify the resulting forms of the velocity correlation and spectrum tensors,

of which we need to model in order to generate the appropriate random fields for our

simulations. Robertson [162] demonstrated that a velocity field that is invariant under the

full rotation group (i.e. isotropic) has a correlation tensor of the form,

Rij = F (r)rirj +G(r)δij, (3-9)
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where r is the separation distance of any two points in the field ∥x − y∥, ri is the

separation distance in the coordinate xi, and Rij is the velocity correlation function. From

Eqn. 3-9, we can see that the normalized correlation of the u1 velocities in the x1 direction

is related to F and G by,

u1(x1, x2, x3)u1(x1 + r, x2, x3)

u21
= r2F (r) +G(r), (3-10)

where u1(x1, x2, x3)u1(x1 + r, x2, x3) is the longitudinal correlation, denoted f(r) from here

onwards. The lateral correlation u2(x1, x2, x3)u2(x1 + r, x2, x3) = g(r) is related to G by,

u2(x1, x2, x3)u2(x1 + r, x2, x3)

u22
= G(r), (3-11)

and in isotropic turbulence u21 = u22 = u23 = 1/3(uiui). The velocity correlation function can

now be expressed in the following form,

Rij =
1

3
uiui

[
f − g

r2
rirj + gδij

]
. (3-12)

The continuity condition that the derivative of Rij with respect to ri (or rj) is zero yields

a relationship between f and g,

g = f +
1

2
r
∂f

∂r
. (3-13)

This relationship between f and g provides us with a check for isotropy of the

generated fields. Several important length scales can also be derived from f and g. The

well known Taylor length scale is related to the second derivative of f at zero separation

distance,
∂2f

∂r2

∣∣∣∣
r=0

= − 1

λ2t
, (3-14)

where λt is the Taylor length scale. The longitudinal integral scale and lateral integral

scale are defined by,

Lf =

∫ ∞

0

f(r)dr, (3-15)
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and

Lg =

∫ ∞

0

g(r)dr. (3-16)

In isotropic turbulence, the relation Eqn. 3-13 shows that Lf = 2Lg.

While the correlation functions f and g and their relationship provides several checks

for isotropy of the generated fields, in order to generate the fields we will require a velocity

spectrum tensor. This is due to the fact that we will rely on Fourier based methods, which

operate in wavenumber space, to generate the fields. As with above, the conditions of

isotropy enable us to express the velocity spectrum tensor in the following form,

Φij = A(k)kikj +B(k)δij. (3-17)

The velocity spectrum tensor can now be expressed in terms of the turbulent kinetic

energy spectrum. The procedure is not complicated and makes use of the continuity

condition, however, it is left out here for conciseness. Details of the procedure can be

found in Batchelor [161]. The velocity spectrum for isotropic homogeneous turbulence is,

Φij =
E(k)

4πk4
(
k2δij − kikj

)
. (3-18)

Now, in order to generate kinematic fields of turbulence we will have to model the energy

spectrum and use a Fourier based generation method.

3.3 Kinematic Fields of Isotropic Homogeneous Turbulence

While turbulence in the ABL is inhomogeneous, insight can be gained from examining

sonic boom propagation through an isotropic homogeneous field. In order to study this

case with the sbABL code, an isotropic field of turbulence must be generated on the

computational domain. In Chapter 2, it was argued that the speed of propagation of

the sonic boom is much faster than the speed at which the turbulent eddies in the ABL

convect. For this reason, the turbulent fields generated are frozen in time. Given the

memory and computational cost it would not be practical to consider time varying fields.
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In Section 2.3 it was estimated that simulations would require 73 GB of RAM if each

coordinate was sampled at 1024 points. With the same sampling, if the turbulent fields

were a function of time, the estimated RAM required would be 30 TB.

In order to generate a turbulent field on the computational domain, the method

presented by Frelich et al. [110] is employed. Frelich et al. [110] use a von Kármán model

of the covariance tensor to approximate the isotropy and homogeneity. The correlation

tensor Rjℓ is directly related to the velocity spectrum tensor Φjℓ (Batchelor [163]),

Φjℓ (k) =
1

8π3

∫ ∞

−∞
Rjℓ (r) exp (−ik · r) dr, (3-19)

where dr = dr1dr2dr3 is the small volume element, r = r1ê1 + r2ê2 + r3ê3 are the

separation distances in each coordinate, and k = k1ê1+ k2ê2+ k3ê3 is the three dimensional

wavenumber vector. The three dimensional velocity field, according to Monin and Yaglom

[164], can be represented by the Fourier-Stieltjes integral

u′j (x) =

∫ ∞

−∞
exp (−ik · x) dZj (k) , (3-20)

where Zj represents the spectral contribution of component j. Zj are often referred to as

the “Fourier modes” of the turbulence. The increment of Zj, dZj, is a random variable and

its covariance tensor is related to the velocity spectrum by

dZj (k) dZ∗
ℓ (k

′) = δ (k− k′) Φjℓ (k) dkdk
′, (3-21)

where the overbar represents an ensemble average. Equation 3-20 is a stochastic integral

representation of the velocity field in space.

To generate u′j on the grid, the Fourier modes in Eqn. 3-20 are replaced by an

estimate wj(k1, k2, k3). The velocity field can be computed with the inverse Fourier

transform of exp (−ik · x)wj(k1, k2, k3). The function wj is given by,

wj (k1, k2, k3) =
√
Wjj (k1, k2, k3)Nj (k1, k2, k3) , (3-22)
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where Wjj are the spectral weights and Nj are random complex numbers generated at

each point (k1, k2, k3) such that,

Nj (k1, k2, k3) = aj (k1, k2, k3) + ibj (k1, k2, k3) (3-23)

aj (k1, k2, k3)
2 = bj (k1, k2, k3)

2 = 1 (3-24)

aj (k1, k2, k3) bj (k′1, k
′
2, k

′
3) = 0, (3-25)

where a and b are uncorrelated random numbers with Gaussian distribution. The spectral

function wj can be defined by the following matrix equation,
w1

w2

w3

 =


H11 0 0

H12 H22 0

H13 H23 H33



N1

N2

N3

 , (3-26)

The H matrix is given by Shinozuka [165] and defined by the von Kármán spectral

model,

H11 =
√
ΦvK

11 (k1, k2, k3)∆k1∆k2∆k3, (3-27)

H12 =
ΦvK

12 (k1, k2, k3)
√
∆k1∆k2∆k3√

ΦvK
11 (k1, k2, k3)

, (3-28)

H22 =
√

ΦvK
22 (k1, k2, k3)∆k1∆k2∆k3 −H2

12 (k1, k2, k3), (3-29)

H13 =
ΦvK

13 (k1, k2, k3)
√
∆k1∆k2∆k3√

ΦvK
11 (k1, k2, k3)

, (3-30)

H23 =
ΦvK

23 (k1, k2, k3)∆k1∆k2∆k3 −H12 (k1, k2, k3)H13 (k1, k2, k3)√
ΦvK

22 (k1, k2, k3)∆k1∆k2∆k3
, (3-31)

and

H33 =
√
ΦvK

33 (k1, k2, k3)∆k1∆k2∆k3 −H2
13 (k1, k2, k3)−H2

23 (k1, k2, k3). (3-32)

3.3.1 Model Spectrum

In order to generate a turbulent field by taking the inverse Fourier transform of Eqn.

3-26, the turbulent kinetic energy of the velocity field must be modeled in the spectral

122



domain. Several choices of model spectra are available in the literature [126]. However, not

all are good candidates for the purpose of generating isotropic turbulence, because they

do not accurately capture energy at all frequencies. Three commonly used spectra are the

Gaussian, Kolmogorov [82, 166], and von Kármán spectrum [81]. The Gaussian model

spectrum,

EG(k) =
σ2
uk

4L5
u

18.79
√
π
exp

(
−k

2L2
u

4

)
, (3-33)

captures the energy of the largest scales but does not model the energy in the inertial

range. The length scale in Eqn. 3-33 can be computed from the integral scale, Lu =

1.34Lf . In Eqn. 3-33, σu is the standard deviation of the velocity fluctuations.

Kolmogorov’s work [82, 166, 167] shows that in the case of locally isotropic

turbulence, the energy spectrum is proportional to k−5/3. Kolmogorov’s “5/3” law can

be used as a basis of a model energy spectrum for the turbulence in the inertial range of

the flow, where the turbulent fluctuations exhibit local isotropy. Ostashev and Wilson

[126] define the model Kolmogorov spectrum as,

EK(k) =
55Γ(5/6)

9
√
πΓ(1/3)

σ2
uL

−2/3
u k−5/3, (3-34)

where Γ is the Gamma function.

Across all frequencies, the composite spectrum of von Kármán [81] is perhaps the best

approximation of the energy spectrum,

EvK(k) =
55Γ(5/6)

9
√
πΓ(1/3)

σ2
uk

4L5
u

(1 + k2L2
u)

17/6
. (3-35)

The von Kármán spectrum models the turbulent kinetic energy at all length scales, except

for the dissipation range. Figure 3-4 displays a comparison of the three model spectra

considered. The von Kármán spectrum has the correct k−5/3 fall-off in the inertial range.

The von Kármán spectrum also captures the appropriate trend in the energy at low

frequencies.
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Figure 3-4. Models of turbulent kinetic energy spectra. The length scale Lu is set equal for
all three spectra.

The von Kármán model is therefore chosen as a basis for Φij in Eqn. 3-26. The

velocity spectrum can be obtained from the turbulent kinetic energy spectrum,

ΦvK
ij = EvK (k)

[
k2δij − kikj

]
. (3-36)

We can also generate scalar turbulence in the medium if w1 is Fourier transformed with

Φ11 replaced by the energy spectrum of the temperature fluctuations,

ΦvK
T (k) =

Γ(11/6)

π3/2Γ(1/3)

σ2
TL

2
T

(1 + k2L2
T )

11/6
, (3-37)

where LT is the von Kármán scale of the temperature fluctuations and is related to

the integral scale in the same manner as Lu, and σT is the standard deviation of the

temperature fluctuations.

The velocity correlation tensor is found by computing the inverse Fourier transform of

ΦvK
ij ,

RvK
ij (r) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ΦvK

ij (k) exp (ik · r) dk, (3-38)
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where the factor (1/8)π−3 is applied to the forward transform and not the inverse,

following the convention of Wilson [22] for consistency. This is in contrast to the

convention in Chapter 2. We now consider the longitudinal autospectrum, which is

related to the velocity correlation tensor by

R̃11 (k1, r2 = 0, r3 = 0) =
1

2π

∫ ∞

−∞
RvK

11 (r1, r2 = 0, r3 = 0) exp (ik1r1) dr1. (3-39)

For isotropic turbulence, R̃11 (k, r2 = 0, r3 = 0) = R̃22 (r1 = 0, k, r3 = 0) = R̃33 (r1 = 0, r2 = 0, k).

Following Wilson [22], we define a normalized longitudinal spectrum as f̃(k) =

σ−2
u R̃11 (k, r2 = 0, r3 = 0). The normalized longitudinal spectrum for the von Kármán

model is related to the energy spectrum by

EvK(k) = σ2
uk

3 d

dk

[
1

k

df̃ vK(k)

dk

]
, (3-40)

(see Batchelor [163]). Wilson [22] integrated Eqn. 3-40 to determine the longitudinal and

lateral correlation functions of the von Kármán model, which are

f vk(r) =
22/3

Γ(1/3)

(
r

Lf

)1/3

K1/3

(
r

Lf

)
, (3-41)

and

gvk(r) =
22/3

Γ(1/3)

(
r

Lf

)1/3 [
4

3
K1/3

(
r

Lf

)
−
(

r

2Lf

)
K4/3

(
r

Lf

)]
. (3-42)

where K1/3 is the modified Bessel function of the second kind of order 1/3.

3.3.2 Comparison to Experiment

Comte-Bellot and Corrsin [168] performed an experimental study of velocity

correlations in grid generated turbulence. Grid generated turbulence very closely resembles

isotropic turbulence [168] at multple grid length scales downstream from the grid. Since

Eqn. 3-20 is only valid for isotropic turbulence, a comparison of the statistical correlations

of the generated field are made to the measurements of Comte-Bellot and Corrsin [168].

In order to model the turbulent field in a 3D rectangular box, the von Kármán energy
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spectrum must first be constructed with the velocity variance σ2
u and longitudinal length

scale Lu measured by Comte-Bellot and Corrsin [168]. The resulting energy spectra at

three locations downstream are compared to measurements of E(k) in Fig. 3-5. In the

inertial range, the model spectrum matches experimental measurements. There is an

underprediction of the turbulent kinetic energy at low wavenumbers and an overprediction

of E at high wavenumbers. The turbulent fluctuations at high wavenumber beyond the

inertial range do not significantly contribute to the acoustic field [126], therefore the

overprediction at high wavenumbers is not a crucial shortcoming of the model. It should

also be noted that an exponential attenuation was applied to the von Kármán model

spectrum to obtain the prediction at high wavenumbers. The exponential multiplying

the energy spectrum is exp(−2k2η2), where η is the Kolmogorov scale [82, 166]. More

information about this fall-off correction at high wavenumbers can be found in Pope

[169]. The underprediction of energy at lower wavenumbers is more concerning for the

accuracy of the computed acoustic field, however the von Kármán spectrum is widely used

in spectral methods to generate turbulent fields for sound propagation computations [126]

and the author is not aware of any significant improvements to this model.

The velocity spectrum ΦvK
ij is now used to generate a turbulent field on the

computational grid. As an example, we select a computational grid of 512 × 512 × 512 in

size, and 500 different fields are generated to obtain converged statistics. Comte-Bellot and

Corrsin [168] computed the longitudinal and lateral correlations at a downstream distance

of utx−1
m = 42 from the grid. According to their measurements, the appropriate values of

the velocity deviation and length scale at this location are σu = 22.2 cm/s and Lf = 2.04

cm, respectively. The freestream velocity is u = 10 m/s and xm = 5.08 cm is the mesh size

of the wind tunnel inlet grid. The coordinates of the problem are x1, x2, x3 where x1 is the

downstream coordinate and x2, x3 are the transverse coordinates, which span one meter

in the cross-stream direction. Figure 3-6 displays a visualization of one of the generated

u1 velocity fields in a 2D plane along with the longitudinal and lateral correlations of the
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Figure 3-5. Composite energy spectra compared to grid turbulence measurements.

fluctuations averaged over 500 datasets. The average correlations of the generated fields

are compared to f vK and gvK (Eqns. 3-41) and 3-42), as well as the measured correlations

from Comte-Bellot and Corrsin [168].

The generated turbulent fields on average are slightly less correlated between 0.5 ≤

∆x1x
−1
m ≤ 2 than the measurements of Comte-Bellot and Corrsin [168]. However, the

correlations of the generated fields are nearly indistinguishable to the von Kármán model.

This is a consequence of the ability of the random phase method to generate fields that

statistically match the model. The standard deviation of the generated fields, as well as

the longitudinal integral scale, match the Comte-Bellot and Corrsin [168] results to the

accuracy given in their paper. The agreement shown in Fig. 3-6 emphasizes the ability of

the random phase method to generate statistically isotropic and homogeneous fields.

3.3.3 Temperature Fluctuations

In addition to the velocity fields, the method of Frelich [110] can generate scalar

turbulent fields such as T ′. To do so, the spectral weight WT is defined by the temperature
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A B

Figure 3-6. A single realization of turbulence and comparisons of the computed
correlations to the von Kármán model. A) Turbulent longitudinal velocity u′1
generated by the method of Frelich with σu = 22.2 cm/s and Lf = 2.4 cm to
match Comte-Bellot and Corrsin. B) Longitudinal and lateral correlations of
the random velocity fields compared to the von Kármán model and
Comte-Bellot and Corrsin measurements.

spectrum ΦvK
T ,

WT = ΦvK
T (k1, k2, k3)∆k1∆k2∆k3. (3-43)

Then, W11 is replaced by WT in Eqn. 3-22 to compute wT , which can then be Fourier

transformed to obtain the temperature field.

Qualitative examination of several generated fields with varying length scale show the

effect of LT on the resulting field. Figure 3-7 displays four different realizations of T ′ in

the x, y plane for LT =2, 5, 10, and 20 cm. As LT increases, the scale of the largest eddies

increases as well. This can be seen by the differences between Fig. 3-7A and Fig. 3-7D.

In Fig. 3-7A, the size of the eddies are smaller and the field appears more random. The

length scale of the turbulence will have an impact on how the sonic boom waveform is

altered by the turbulent field.

3.4 Inhomogeneous Turbulence

In the ABL, turbulence is heterogeneous and anisotropic. Length scales of shear

driven turbulence increase as the elevation above the ground increases. An approximation

is usually made that in the directions parallel to the ground (x, y), the turbulence is
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A B

C D

Figure 3-7. Several realizations of the turbulent temperature field T ′. A) σT = 0.5 K and
LT = 2 cm, B) σT = 0.5 K and LT = 5 cm, C) σT = 0.5 K and LT = 10 cm,
and D) σT = 0.5 K and LT = 20 cm.

homogeneous, and inhomogeneous in the vertical direction z. In this section, we will

assume the computational domain (x1, x2, x3) is aligned with the ABL coordinate system

(x, y, z) such that x1 = x, x2 = y, and x3 = z. This simplifies the mathematical notation

of the following section by enable the use of index notation for the velocities, coordinates,

and spatial wavenumbers. For turbulence that is not homogeneous in x3, the correlation

function is no longer a function of the separation distance in the vertical direction, and

must account for the two points separately, R = R(r1, r2, x3, x
′
3). Fourier transform

methods are no longer applicable in the vertical direction, but the Fourier transform can

still be applied in the homogeneous directions.
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3.4.1 Generalized Random Phase Method

Lumley [87] introduced proper orthogonal decomposition (POD) as a technique for

analyzing an ensemble of turbulent flows in terms of an eigenvalue problem. A general

correlation R can be decomposed into its eigenvalues and vectors,∫ ∫ ∫
Rij (x1, x

′
1, x2, x

′
2, x3, x

′
3)ϕ

(m)
j (x′1, x

′
2, x

′
3) dx

′
1dx

′
2dx

′
3 = λ

(n)
eigϕ

(n)
i (x1, x2, x3) , (3-44)

where ϕ are the eigenvectors and λeig the eigenvalues (not to be confused with the

wavelength, λ). There is a denumerable infinity of solutions. This general technique is

used in other areas of the natural sciences, and also goes by Karhunen-Loéve decomposition,

principal component analysis, and empirical orthogonal function analysis.

In the case of atmospheric boundary layer turbulence, where it is assumed that the

coordinates parallel to the ground plane are homogeneous, the POD technique can be

leveraged to generate a kinematic field of turbulence. In this situation, a Fourier transform

is applied to Eqn. 3-44 in the x1 and x2 coordinates to obtain,∫
R̂ij (k1, k2, x3, x

′
3) ϕ̂

(m)
j (k1, k2, x

′
3) dx

′
3 = λ

(n)
eig (k1, k2) ϕ̂

(n)
i (k1, k2, x3) . (3-45)

When an appropriate model for R̂ij is known, the eigenvalue problem can be solved

numerically for ϕ̂(n)
i and λ

(n)
eig .

Wilson [170] proposed a method to generate a turbulent field with ϕ̂
(n)
i and λ

(n)
eig . The

procedure first requires that the synthetic field be generated with the eigenvalues and

eigenvectors,

ûi (k1, k2, x3) =
∑
n

an(k1, k2)ϕ̂
(n)
i , (3-46)

where an(k1, k2) is a random function. We must choose the form of an(k1, k2) to satisfy the

relation,

R̂ij (k1, k2, x3, x
′
3) = ûi (k1, k2, x3) û∗j (k1, k2, x

′
3). (3-47)
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Equation 3-46 is substituted into Eqn. 3-47 to obtain,

R̂ij (k1, k2, x3, x
′
3) =

∑
m

∑
n

an(k1, k2)a∗m(k1, k2)ϕ̂
(n)
i (k1, k2, x3) ϕ̂

(m)∗
j (k1, k2, x

′
3) . (3-48)

We can multiply Eqn. 3-48 by ϕ̂(ℓ)
j (k1, k2, x

′
3) and integrate with respect to dx′3. On the

right hand side, the eigenfunctions are orthogonal, so the integral reduces to∫
ϕ̂
(m)∗
j (k1, k2, x

′
3) ϕ̂

(ℓ)
j (k1, k2, x

′
3) dx

′
3 = δmℓ, (3-49)

where δmℓ is the Kronecker delta function. The resulting equation is,∫
R̂ij (k1, k2, x3, x

′
3) ϕ̂

(m)
j (k1, k2, x

′
3) dx

′
3 =

∑
n

an(k1, k2)a∗m(k1, k2)ϕ̂
(n)
i (k1, k2, x3) . (3-50)

Equation 3-50 is similar to the POD in Eqn. 3-45. Ideally, any constructed kinematic

field of turbulence should satisfy Eqn. 3-45. This can be enforced by setting

∑
n

an(k1, k2)a∗m(k1, k2)ϕ̂
(n)
i (k1, k2, x3) = λ

(n)
eig (k1, k2) ϕ̂

(n)
i (k1, k2, x3) . (3-51)

An expression for the random coefficients can be determined by multiplying Eqn. 3-51 by

ϕ
(m)∗
i and integrating. The resulting expression, after invoking orthogonality, is

an(k1, k2)a∗m(k1, k2) = λ
(n)
eig (k1, k2) δnm. (3-52)

The coefficients satisfying this relation can be generated by setting,

an(k1, k2) =

√
λ
(n)
eig (k1, k2)N, (3-53)

where N are complex random numbers generated in the same way as Eqn. 3-25. The

synthetic fields described by Eqn. 3-46 can now be generated, and the inverse Fourier

transform in the homogeneous directions yields the velocity realizations. This method

to generate inhomogeneous turbulence is called the generalized random phase method,

proposed by Wilson [170].
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3.4.2 Von Kármán Model of the 2D Cross-Spectra

In order to generate turbulent fields, we require a model for the two-dimensional

cross-spectra, R̂ij (k1, k2, x3, x
′
3). As before, we will use the von Kármán model, as it is

more appropriate for the inertial range and large scales. The von Kármán model for the

2D cross-spectra in the homogeneous and vertical directions is,

R̂11 (k1, k2, x3, x
′
3) =

2σ2
uL

2
u(ζ/2)

4/3

πΓ(1/3)(1 + k2hL
2
u)

4/3

[
11

6
K4/3(ζ)−

ζ(1 + k21L
2
u)

2(1 + k2hL
2
u)
K7/3(ζ)

]
, (3-54)

R̂22 (k1, k2, x3, x
′
3) =

2σ2
uL

2
u(ζ/2)

4/3

πΓ(1/3)(1 + k2hL
2
u)

4/3

[
11

6
K4/3(ζ)−

ζ(1 + k22L
2
u)

2(1 + k2hL
2
u)
K7/3(ζ)

]
, (3-55)

and

R̂33 (k1, k2, x3, x
′
3) =

2σ2
uk

2
hL

4
u(ζ/2)

7/3

πΓ(1/3)(1 + k2hL
2
u)

7/3
K7/3(ζ), (3-56)

where ζ = ∥x3 − x′3∥L−1
u (1 + k2hL

2
u)

1/2 and k2h = k21 + k22. The modified Bessel function of

the second kind is represented by K, and Γ is the gamma function. Additionally, for scalar

fluctuations like temperature, the von Kármán model yields

R̂T (k1, k2, x3, x
′
3) =

4σ2
TL

2
T (ζ/2)

4/3

3πΓ(1/3)(1 + k2hL
2
T )

4/3

[
11

6
K4/3(ζ)−

ζ

2(1 + k2hL
2
T )
K7/3(ζ)

]
. (3-57)

In Eqns. 3-54 through 3-57, the standard deviations and von Kármán length scales are

functions of the vertical coordinate x3.

Experimental observations by Ostashev and Wilson [171] in the atmospheric surface

layer suggest that the temperature deviation and length scale go as,

σ2
T (x3)

T 2
∗

=
4.0

[1 + 10(−ξ)]2/3
, (3-58)

and

LT (x3)

x3
= 2.0

1 + 7.0(−ξ)
1 + 10(−ξ)

. (3-59)
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Equations 3-58 and 3-59 are valid in the case of purely free-convection turbulence

and purely shear generated turbulence. In the case of shear generated turbulence, the

deviations and length scales of the velocity fluctuations go as [172],

σ2
s

u2∗
= 3.0, (3-60)

and

Ls

x3
= 1.8, (3-61)

where subscript s indicates shear driven fluctuations. For bouyancy driven turbulence,

the deviations and length scales do not obey MOST. Rather, they follow mixed-layer

similarity, and scale with w∗ and zi. The expressions for bouyancy driven velocity

fluctuations are,

σ2
b

w2
∗
= 0.35, (3-62)

and

Lb

zi
= 0.23. (3-63)

The procedure for generating turbulence in the atmospheric boundary layer for our

computations is as follows. First, the 2D cross-spectra (Eqns. 3-54-3-57) are computed at

a given (k1, k2) for all (x3, x′3) in the computational domain. The temperature and shear

driven velocity length scales are computed with Eqns. 3-59 and 3-61 up to a height of

z = x3 = 200 m, then above this height they are held constant to more appropriately

model the mixed layer. The bouyancy driven length scales are computed from Eqn. 3-63

for all elevation heights. The cross-spectra of the velocity fluctuations are computed

for both shear driven and bouyancy driven turbulence independently, and their sum is

considered to be the total velocity cross-spectra. This effectively interpolates between

the shear and bouynacy driven turbulent fields, and was first proposed by Højstrup [173].
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Then, the eigenvalue problem (Eqn. 3-45) is numerically evaluated for each velocity

(u1, u2, and u3), as well as temperature. With the eigenfunctions and eigenvalues now

obtained, the synthetic field in Eqn. 3-46 is now generated for the given (k1, k2). The

above procedure is now repeated for all spatial wavenumbers (k1, k2). The final step is

to inverse Fourier transform the synthetic fields to obtain the kinematic velocity and

temperature fields.

The eigenvalue procedure is quite computationally expensive for typical computational

grids, and therefore the generalized random phase method (GRPM) is best suited for

generating 2D fields of turbulence. In order to generate 2D fields, we require the 1D

cross-spectra for the von Kármán model. We will assume the separation distance in the

transverse coordinate is zero (i.e. r2 = 0). The model spectra are again given by Wilson

[170] as,

R̃11 (k1, x3, x
′
3) =

2σ2
uL

2
u√

πΓ(1/3)

(
ζ/2

1 + k21L
2
u

)5/6 [
K5/6(ζ)−

ζ

2
K1/6(ζ)

]
, (3-64)

R̃33 (k1, x3, x
′
3) =

2σ2
uL

2
u√

πΓ(1/3)

(
ζ/2

1 + k21L
2
u

)5/6 [
4

3
K5/6(ζ)−

ζ/2

1 + k21L
2
u

K11/6(ζ)

]
, (3-65)

and

R̃T (k1, x3, x
′
3) =

2σ2
TL

2
T

3
√
πΓ(1/3)

(
ζ/2

1 + k21L
2
u

)5/6 [
11

3
K5/6(ζ)−

ζ

1 + k21L
2
T

K11/6(ζ)

]
, (3-66)

where ζ = ∥x3 − x′3∥L−1
u (1 + k21L

2
u)

1/2.

3.4.3 Inhomogeneous Correlated Random Fields

One shortcoming of the GRPM is its inability to generate correlated fields of vertical

velocity and temperature. Temperature gradients in the ABL lead to convection, and

therefore the temperature field should have some correlation with the vertical velocity.

The issue lies in the eigenvalue computation of the GRPM. Only one basis is obtained

from this computation, therefore only one of the three velocities or temperature can be

constructed. However, it is actually quite simple to alter the procedure to generate two
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correlated fields, by performing a singular value decomposition rather than an eigenvalue

decomposition. In this section the procedure for constructing correlated random fields will

be presented. The method builds upon many of the ideas of canonical correlation analysis

[174] often employed in meteorological studies.

For purposes of simplification, we consider only a one-dimensional field. The

method can easily be extended to two or three dimensions when the cross cospectrum

Rij(k1, k2, x3, x
′
3), where i ̸= j, of two random fields is known. The resulting fields, ui and

uj will then be a function of k1 and k2 as well, and a Fourier transform will have to be

performed to obtain the fields in spatial coordinates. Let us assume that a model for the

cross correlation between two signals is known. Then, the singular value decomposition of

this cross correlation is

Rij (x, x
′) = ϕ

(n)
i (x)σ(n,m)ψ

(m)∗
j (x′), (3-67)

where ϕ(n)
i are the left singular vectors, σ(n,m) are the singular values, ψ(m)

j are the right

singular vectors, and ∗ denotes the conjugate-transpose of a matrix. When the length of

the vector storing x is not equal to the length of the vector for x′, N ̸= M , since they

represent the lengths of the x and x′ vectors, respectively. We seek to re-construct the

fields using the singular vectors,

u′i(x) =
∑
n

anϕ
(n)
i (x), (3-68)

and

u′j(x) =
∑
n

bnψ
(n)
j (x). (3-69)

In Eqn. 3-69 above, x′ is replaced with x, since there is no difference between the two

when uj is being constructed on the computational domain. It is also assumed that either

N = M or N < M . If M < N , then the sum in Eqns. 3-68 and 3-69 would be computed

over m.
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The problem of constructing the correlated fields now becomes a problem of

generating the coefficients an and bn. In order to generate the coefficients, we start by

examining some restrictions imposed by the definition of the covariance matrix,

Rij (x, x
′) = ui(x)u∗j(x

′). (3-70)

By substituting the expressions 3-68 and 3-69 into Eqn. 3-70, we see that

∑
n

∑
m

ϕ
(n)
i (x)anb∗mψ

(m)∗
j (x′) = ϕ

(n)
i (x)σ(n,m)ψ

(m)∗
j (x′). (3-71)

Applying orthogonality conditions in the same manner as before, we see that

anb∗m = σ(n,m). (3-72)

The problem of constructing artificial data ui and uj simplifies to minimizing the

difference between the average of an ensemble of generated an and b∗m, and σn,m, such that

∥∥anb∗m − σ(n,m)
∥∥ < ϵ, (3-73)

for sufficiently small ϵ. Since σ(n,m) = 0 when n ̸= m, this implies that an and bn are

random complex numbers that are completely independent of each other when n ̸= m. For

a sufficiently large number of realizations, Eqn. 3-73 will be satisfied if

an =
√
σ(n,n)γn, (3-74)

and

bm =
√
σ(m,m)γm, (3-75)

where γn and γm are random numbers sampled from a uniform distribution with zero

mean and standard deviation of unity, repeated indices do not imply summation. In fact,

γ can be sampled from any random distribution with zero mean and a variance of unity.
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Substituting Eqns. 3-74 and 3-75 into 3-68 and 3-69 yields,

u′i(x) =
∑
n

√
σ(n,n)γnϕ

(n)
i (x), (3-76)

and

u′j(x) =
∑
n

√
σ(n,n)γnψ

(n)
j (x), (3-77)

which produced velocity fields that are normalized to a standard deviation of unity. In

order to produce fields with the correct standard deviation, the right hand side of Eqns.

3-76 and 3-77 can be multiplied by
√
u′2i and

√
u′2j , respectively. These values are assumed

to be known prior to generating the fields.

To the best of the author’s knowledge, there is currently no generally accepted model

for the 1D cross cospectrum Rij(k1, x3, x
′
3) that is specifically calibrated to relate velocity

and temperature in the atmospheric boundary layer. A model was proposed by Panofsky

and Mares [175] for the cospectrum Eu3T (ω). However, in order to generate a kinematic

turbulence field in the plane (x1, x3), the vertical correlation of the 1D cross cospectrum

would have to be modeled. This would likely require an extensive experimental campaign

of atmospheric boundary layer measurements. In the absence of such a model, the

generalized random phase method will be used to generate inhomogeneous fields of

kinematic turbulence for sonic boom propagation calculations at the lateral cutoff.

3.5 Realizations of Atmospheric Boundary Layer Turbulence with GRPM

In this section, single realizations of ABL turbulence that correspond to data obtained

by Kaimal et al. [176] are presented. The measured data was obtained over flat land in

Minnesota during the afternoon 12:00 - 18:00 CDT and is representative of a daytime

convective boundary layer. Table 3-1 contains the Q0, u∗, and zi measured by Kaimal et

al. [176]. Note that the remaining data is computed directly in the code from Q0, u∗, zi,

z0, zr, and Tr. The roughness height, z0, was set to 0.01 m, zr the reference height was

set to 10 m, and Tr the temperature at zr was set to 293.15 K. Note that the computed
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values of Lo, w∗, and T∗ may not match the values computed by Kaimal et al. [176] since

the temperature at the reference height was not provided, so a value corresponding to 20◦

celsius was assumed here. In the table, run 7C1 corresponds to 14:15-15:30 CDT, run 7C2

corresponds to 15:30-16:45 CDT, and run 7D2 corresponds to 16:50-18:05 CDT.

Table 3-1. Data for Q0, u∗, and zi obtained on a single afternoon (19th of September
1973) in Minnesota. The remaining data is computed directly in the code used
to generate the turbulent fields in the ABL.

Run Q0

(K·m/s)
u∗ (m/s) Lo (m) zi (m) w∗ (m/s) T∗ (K)

7C1 0.221 0.28 −7.70 1020 1.94 −0.789
7C2 0.181 0.30 −11.5 1140 1.89 −0.600
7D2 0.099 0.25 −12.0 1225 1.58 −0.396

The turbulent fields are generated with the GRPM method. The outer length scales

and standard deviations are prescribed using Eqns. 3-58 through 3-63. For the velocity

fields, the 1D cross-spectra are found using Eqns. 3-64 through 3-66, where σu and Lu are

determined from (see Højstrup [173]),

σu =
√
σ2
s + σ2

b (3-78)

and,

Lu =
σ2
sLs + σ2

bLb

σ2
u

. (3-79)

The outer scale is a variance weighted sum as described in Wilson [172]. The conditions

corresponding to the data of Kaimal et al. [176] are considered strongly convective, since

zi ≥ 100∥Lo∥. Thus, the generated fields appear homogeneous since the bouyancy length

scale is assumed constant throughout the ABL. In reality, the surface will “block” the

large eddies forming near the ground, effectively constraining the length scale of the

largest eddies in the near ground region and introducing inhomogeneity. However, our

model does not account for this surface blocking effect.
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Figure 3-8 shows realizations of u′1 and T ′ corresponding to the data in Table 3-1.

The generated temperature fields have stronger fluctuations near the surface, and

a length scale that increases with height, which is consistent with Eqn. 3-59. The

velocity fluctuations for the strongly convective cases have a nearly constant length

scale, approximately equal to Lb.

Since the above cases corresponding to strongly convective conditions, it is difficult

to notice any inhomogeneity in the fields corresponding to the shear driven turbulence.

Another case, corresponding to weakly convective conditions was considered where the von

Kármán length scales velocity fluctuations near the ground decrease more substantially

than conditions with moderate or strong convection. The quantities for this condition are:

Q0 = 0.01, u∗ = 0.45, zi = 1000.0 m, Lo = −681.86 m, w∗ = 0.69 m/s, and T∗ = −0.02

K. Since ∥Lo∥ is on the order of zi, the case is considered weakly convective [172]. These

values do not correspond to any measurement, but could represent ABL conditions during

cloud cover. The roughness height, reference height, and temperature at the reference

height are kept the same as before. Figure 3-9 displays a single realization of u1 and T for

weakly convective conditions. Inhomogeneity in the length scale of u1 is noticeable near

the ground, and the temperature deviations from the mean are relatively weak in this case,

which leads to an approximately constant standard deviation of temperature with height.

This is in contrast to the strongly convective situations, where the standard deviation of

temperature varies considerably with height.

In Fig. 3-10, comparisons are presented between the prescribed values of the standard

deviations of T ′ and u′1, and the actual values generated by GRPM. Using GRPM, 750

different fields of T ′ and u′1 were generated for case 7C1 (−ziL−1
o = 132.5) and the case

with weak convection (−ziL−1
o = 1.47). Then, the standard deviations of the fluctuations

were computed at every location along the vertical direction. Comparisons of the actual

standard deviations generated with GRPM (S) to the prescribed values (P) indicate that

the fields generated with GRPM are representative of the atmospheric conditions of the
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A B

C D

E F

Figure 3-8. Single realizations of the longitudinal velocity fluctuation u′1 and the
temperature fluctuation T ′ corresponding to the data in Table 3-1. A) u′1 for
run 7C1, B) T ′ for run 7C1, C) u′1 for run 7C2, D) u′1 for run 7C1, E) u′1 for
run 7D1, and F) T ′ for run 7D1.
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A B

Figure 3-9. Single realizations of the longitudinal velocity fluctuation u′1 and the
temperature fluctuation T ′ corresponding to weakly convective conditions,
zi∥Lo∥−1 = 1.47. A) u′1 and B) T ′.

prescribed model. Specifically, the L2 norm difference between the prescribed values and

the actual standard deviations are less than 2% for both setpoints. Correspondingly, the

von Kármán scales of the generated fields are compared to the prescribed values in Fig.

3-11. Since computing the turbulence integral length scales requires integration of the

longitudinal correlation function, the values computed and averaged over 750 fields are not

as well converged as the standard deviations. However, the inhomogeneity of the length

scales near the ground is captured with the GRPM, and in the mixed layer, the computed

length scales agree with the prescribed values. This is a good indication of the ability of

GRPM to reproduce the appropriate integral length scales of the fluctuating quantities.
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A B

Figure 3-10. Standard deviations of the velocity and temperature fluctuations to the
prescribed values. Comparisons for A) u′1 and B) T ′ (dashed lines) to the
prescribed values (solid lines) for a case with strong convection
(−ziL−1

o = 132.5) and weak convection (−ziL−1
o = 1.47).

A B

Figure 3-11. Length scales of u′ and T ′ compared to the prescribed values. Comparisons
for A) u′1 and B) T ′ (dashed lines) to the prescribed values (solid lines) for a
case with strong convection (−ziL−1

o = 132.5) and weak convection
(−ziL−1

o = 1.47).
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CHAPTER 4
SONIC BOOM PROPAGATION THROUGH ISOTROPIC TURBULENCE

This chapter examines the propagation of an N-wave and a shaped sonic boom

through isotropic velocity fluctuations. An isotropic field of velocity fluctuations is

a simplified kinematic model of atmospheric boundary layer turbulence that does

not capture the inhomogeneities in the length scale caused by the presence of the

Earth’s surface. However, this model simplifies the analysis of the simulations, and the

dependency of the sonic boom metrics on the rms velocity can be examined. This chapter

addresses two questions regarding the impact of turbulence on the statistics of the sonic

boom loudness metrics. Specifically, do the statistical moments, i.e., mean and variance,

of the loudness metrics show similarity when propagating through fields of different rms

velocity and length scale, and can the metrics be approximated by a known probability

distribution? Knowledge of the distribution of loudness metrics in turbulence is critical to

predicting the annoyance of new shaped booms or “sonic thumps” on communities. As an

example, if the metrics follow a normal distribution, then knowledge of the distribution

follows directly from knowledge of the first two statistical moments.

In this study, two sonic boom waveforms are considered. The distributions of the

loudness metrics are examined and compared to the theoretical normal distribution, to

determine the normality of the loudness metrics. This is a difficult problem to address

with flight tests and laboratory experiments, because they are costly and significant

data must be acquired to compute the distribution. However, numerical simulations are

particularly suited to generate enough data to compute a probability distribution as well

as converged statistical moments. This investigation also considers trends of the first and

second moments of the loudness metrics along the propagation direction. We examine if,

for an appropriate scaling parameter, the statistics of the loudness metrics show similarity

along the propagation direction. In the process, the considerable effect that increasing

turbulence intensity has on the loudness metrics is demonstrated.
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4.1 Simulation Parameters and Velocity Fields

We consider the propagation of two waveforms, a simulated shaped low-boom

waveform from the NASA X-59 C609 aircraft and an N-wave of similar amplitude. The

N-wave is chosen to be of similar amplitude to the low-boom waveform in order to ensure

that the differences in the noise metric probability distributions, averages, and standard

deviations between the two waveforms are generally due to the different waveform

shapes, or rise times, and not amplitude differences. The NASA low-boom waveform is

computed from a design iteration of NASA’s X-59 QueSST aircraft at a free-stream Mach

number of 1.40 at an altitude of 54,000 ft [177]. For the simulations considered here,

the waveforms are initially propagated to the top of the ABL by PCBoom [11, 12, 58].

Then, the PCBoom output waveforms are resampled with Lanczos resampling [178] to

prevent Gibb’s phenomenon at the shocks and prescribed as the input to the simulations

performed here. Figure 4-1 shows the output waveforms from PCBoom, which are then

resampled and input waveforms prescribed at x1 = 0 m. Both waveforms are sampled at

12 kHz.

Figure 4-1. The two initial waveforms considered, prescribed at the x1 = 0 plane. The
N-wave (dashed line), and the simulated low-boom waveform from the NASA
X-59 aircraft, C609 design iteration (solid line). Both waveforms shown in the
figure have been propagated by PCBoom to just above the atmospheric
boundary layer region.
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The computational domain is discretized by a uniform grid. The spatial step size in

the x1 direction is 2 m. The transverse directions are 1022 m in length, and the distance

between grid points is 2 m. A study was conducted to ensure that the results converge

when the grid is refined from 8 m spacing, to 4 m, and then to 2 m. The Taylor microscale

of the generated fields is approximately λt = 5 m for all simulations. Therefore, with the

chosen grid size, the turbulent field is sampled at approximately 2/5λt. Periodic boundary

conditions are implemented at the transverse boundaries.

The parameter space of the simulations is meant to mimic the turbulence fluctuation

intensities and length scales found in the ABL. Klipp [179] shows that integral scales

over flat-terrain can vary between 80 to 250 m at approximately 50 m above ground

during the daytime, and 15 to 60 m during a near-neutral night. For the current study,

the longitudinal integral scale (Lf ) is prescribed to be 100 m, which mimics a daytime

condition. Turbulence measurements taken at AFRC during the SonicBAT program

indicate that the turbulence rms velocity ranged from 0.35 < urms < 2.45. Simulations

by Stout and Sparrow [180] used turbulence measurements taken at AFRC and NASA

Kennedy Space Center (KSC) to generate kinematic turbulence. Based on the range of

rms velocities in SonicBAT, the rms velocity is varied in our simulations between 0.20 m/s

and 3.0 m/s in an increment of 0.40 m/s.

The method of Frehlich [110] is used to generate the turbulent velocity fields (see

Chapter 3). This method simulates all three velocity components of the field and accounts

for the cross-spectral densities between each component. A von Kármán model for the

spectral density is used to generate the velocity fields. For validation purposes, the

computed correlations of the generated fields are compared to the expressions of f vK

and gvK , provided in Chapter 3. For each specific urms and Lf value, we generate 25

random realizations of the three-dimensional velocity field. Figure 4-2 displays the average

computed correlations for urms = 1.03 m/s and Lf = 106.2 m of the N-wave simulations

alongside f vK and gvK . The relative error of f , defined as the L2 norm of the error
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normalized by the L2 norm of f vK , is 0.09, which indicates good agreement. The relative

error of g is 0.08, which is consistent with the error for the longitudinal correlation.

Figure 4-2. Comparison of the average computed longitudinal and lateral correlations for
all 25 fields to the von Kármán model. Computed correlations for urms = 1.04
m/s and Lf = 106.2 m (solid lines). Correlation functions of the von Kármán
model (dashed lines).

In Table 4-1, the longitudinal and lateral length scales are shown along with the

variance of each velocity component for the N-wave simulations. Each case corresponds to

a rms velocity setpoint (e.g. for case 2, urms = 0.2 m/s) and 25 different realizations of the

velocity field are generated for each setpoint. Then, once the fields have been generated,

the length scales and rms velocity are computed and averaged across each realization to

find the true setpoint values. These values provide a quantitative measure of the isotropy

of the generated fields. For isotropic turbulence, Lg = 0.5Lf . The ratio Lf/Lg for each

case is within a range of 2.00 ± 0.26, except for case 8, where Lf/Lg = 1.33. The length

scales and urms of the turbulent fields generated for the low-boom propagation cases are

given in Table 4-2. The most significant deviation in the ratio Lf/Lg from a value of 2 is

Lf/Lg = 2.49 for case 5.

By generating the turbulence with a von Kármán energy spectrum, we make an

assumption of homogeneity and isotropy. In general, ABL turbulence near the ground

is inhomogeneous, especially in windy conditions [126]. However, in calm sunny day

conditions, homogeneous turbulence is a suitable approximation of bouyancy driven
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Table 4-1. Computed integral scales and rms velocity of the turbulent fields generated for
the N-wave simulations.

Case Lf (m) Lg (m) Lf/Lg urms (m/s)
1 0.0 0.0 NA 0.0
2 88.9 43.9 2.03 0.22
3 91.8 41.5 2.21 0.62
4 106.2 50.1 2.12 1.03
5 86.7 48.0 1.81 1.44
6 108.2 52.1 2.08 1.90
7 89.7 51.5 1.74 2.29
8 81.8 61.5 1.33 2.72
9 88.2 44.2 1.99 3.05

Table 4-2. Computed integral scales and rms velocity of the turbulent fields generated for
the low-boom simulations.

Case Lf (m) Lg (m) Lf/Lg urms (m/s)
1 0.0 0.0 NA 0.0
2 79.8 49.0 1.63 0.21
3 89.4 42.8 2.08 0.61
4 78.6 32.0 2.45 1.04
5 94.6 38.0 2.49 1.47
6 93.4 45.2 2.07 1.86
7 80.8 42.2 1.91 2.39
8 96.6 56.3 1.72 2.62
9 77.8 43.5 1.78 3.15

turbulence in the ABL for the purposes of sonic boom propagation studies. In practice,

the results we obtain are limited to calm sunny day conditions due to these underlying

assumptions of the turbulent fields that are generated. The purpose of making these

assumptions is the ability to formulate a length scale to examine the problem on a

non-dimensional basis, which is discussed further in the next section.

4.2 Results and Discussion

The results for cases 2 through 9 are presented below. The loudness metrics are

presented as the difference from the metric at the nominal condition. The nominal

condition refers to the initial N-wave or low-boom waveform and is denoted with subscript

nom. Since atmospheric absorption is not considered and the nonlinear distortion that

each waveform in Fig. 4-1 experiences is small, we assume that the overpressure and
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metric values are equal to the nominal condition at every location in the domain in the

case of no turbulence.

4.2.1 Length Scale

We examine predictions on a nondimensional basis. Appropriate nondimensional

parameters for the problem should include the effects of the fluctuation intensity and

turbulent length scales, and collapse the predictions appropriately. In order to determine

the appropriate length scale to nondimensionalize the results by, we consider three

different length scales, two of which have appeared previously in the literature for

wave propagation through turbulence. The caustic distance scale 2
√
π
−1
Lfσ

−2/3
KW of

Kulkarny and White [181] is the first length scale considered. Kulkarny and White [181]

determined through the use of geometrical acoustics that caustics occur on a distance scale

of 2
√
π
−1
Lfσ

−2/3
KW , where

σ2
KW =

∫ ∞

−∞

∂4

∂r42
R11 (r1, 0) dr1, (4-1)

is the scaling factor suggested by Kulkarny and White, r1 is the longitudinal separation

distance, r2 is the lateral separation distance, and R11 is the longitudinal correlation. The

standard deviation of the ray directions is σ2/3
KW .

Blanc-Benon et al. [182] consider the case of a Gaussian correlation of the turbulent

velocities. After integration with the Gaussian correlation, the expression for σ2/3
KW

becomes,

σ
2/3
KW =

601/3u
2/3
rmsπ1/6

L
, (4-2)

where L = 2
√
π
−1
Lf .

The distance scale 2
√
π
−1
Lfσ

−2/3
KW is limited to waves with a wavelength less than a

typical length scale of the turbulence. The wavelength for the N-wave in our simulations is

approximately λ = 51 m with c0 = 343 m/s. The assumption of Kulkarny and White [181]

that λ << Lf is not satisfied for the simulations considered here, where Lf varies between

77.8 and 108.2 m. However, in Fig. 4-3 for urms ≥ 1.8 m/s the distance to the first

caustic (xcaust) in our simulations agreed with the results of Kulkarny and White [181].
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The location of the first caustic in our simulations is determined to be the first location

along the propagation axis at each transverse location where ∆p > 1.5∆pnom and ∆p is

the maximum overpressure. The maximum of the PDF for cases 6 through 9 occur near

the same location of the maximum of the Kulkarny and White result, x1σ2/3
KWL

−1 = 1.3.

However for cases 3 and 4, the computed PDFs do not agree with the Kulkarny-White

prediction. For case 3, the computed PDF has a peak at x1σ2/3
KWL

−1 = 3.75, and for both

cases 3 and 4 the probability of a caustic occurring beyond x1σ
2/3
KWL

−1 = 5 is larger than

the Kulkarny-White prediction. This disagreement between the computed PDFs and the

Kulkarny and White [181] prediction at lower urms values cause the scalar statistics of the

loudness metrics for these cases to have significant disagreement with cases 6 through 9

along x1σ2/3
KWL

−1.

Figure 4-3. Probability density functions of the first occurrence of a caustic
P (∆p > 1.5∆pnom) for the Kulkarny-White scaling. Computed from
simulations (shapes), compared to the results of Kulkarny and White (dashed
line).

Yuldashev [106] considers the refraction length xr behind a random phase screen with

Gaussian correlation length, which is inversely proportional to the standard deviation

of the ray directions. Using a one-dimensional random phase screen to represent the

turbulence, Rudenko and Enflo [183] determined that the standard deviation of the

overpressure σ∆p increases linearly according to σ∆p = 0.5x1x
−1
r before reaching a

maximum value. Yuldashev [106] assumes this relationship to be true for each turbulent
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condition to find the dependence of xr on the rms velocity urms. Yuldashev [106]

determined from linear regression of each simulation to satisfy σ∆p = 0.5x1x
−1
r that

xr has the following dependence on the rms velocity,

xr = 0.8

(
0.01c0
urms

)0.9

. (4-3)

Equation 4-3 assumes σ∆p = 0.5x1x
−1
r is true for all simulations, however, the

expression is determined with geometrical acoustics for a one-dimensional random phase

screen with a Gaussian correlation. Turbulence is three-dimensional in nature, is not

a Gaussian process, and the geometrical acoustics assumption is not applicable for our

simulations where the wavelength is close to the integral scale of the turbulence. For these

reasons, we do not use xr to nondimensionalize our results.

Pierce [96] suggests that rippling in the wavefront, caused by inhomogeneities in the

medium, leads to random focusing and defocusing. We propose a new length scale to

account for the average effect of the turbulent field on the random focusing of the sonic

boom. Davy and Blackstock [184] demonstrated qualitatively the focusing and defocusing

effect on an N-wave by a spherical inhomogeneity. In the turbulent field, there will be

velocity perturbations that focus the wave, and some that defocus the wave. In previous

research, [106, 182] the rms refraction index urmsc
−1
0 appears in the expressions of length

scales used to nondimensionalize simulation results. In the length scale proposed here, the

rms refraction index of the velocity fluctuations will be the parameter used to quantify the

impact of turbulence intensity on the random focusing of the wave.

We consider a spherical lens, where the index of refraction is

n = 1 +
urms

c0
. (4-4)

The location of the focus is

ℓf =
1

2

na

n− 1
, (4-5)
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where a is the radius of the lens. For a turbulent medium, we assume that the radius of

the lens would be a function of some length scale Lc of the turbulent flow, a = F (Lc).

It is not clear what the length scale of the flow should be, or what the form of F should

look like. For the results presented here, Lf is prescribed to a value of 100 m. When the

turbulence is generated, deviations from the prescribed value occur, but by no more than

23% in the extreme case. We approximate the relation between the length scale and the

radius a as linear, and set the length scale equal to the integral scale, Lc = Lf . The radius

a is thus expressed as,

a = C1Lf . (4-6)

The resulting form of ℓf is then

ℓf =
C1Lf

2

c0 + urms

urms
, (4-7)

where C1 is the constant of proportionality. This constant is chosen to be 0.065 so that the

most probable location of the first caustic will occur at x1/ℓf = 1.

When the integral scale is held constant, ℓf changes only when c0/urms varies. The

proportionality of ℓf to c0/urms is actually quite close to the expression of the refraction

length (Eqn. 4-3), which is proportional to (c0/urms)
0.9. Additionally, it should be noted

that Pierce and Maglieri [94] suggest the radius of curvature of a ripple in the wavefront

caused by a velocity perturbation u′ is proportional to c0/u′ when the length scale is held

constant.

The PDF of the location of the first caustic for each simulation is computed for the

scaled propagation distance x1ℓ−1
f and plotted in Fig. 4-4. The computed PDF of each

case has a maximum in the range 0.83 ≤ x1ℓ
−1
f ≤ 1.27. For case 3, the maximum occurs at

x1ℓf = 1.27, which is an improvement over the Kulkarny-White scale (Fig. 4-3).

The benefit of the new parameter ℓf is its ability to consistently predict the maximum

probable location of the first caustic across the entire range of rms velocities considered.

The PDF of xcaust is computed only for the N-wave simulations. This is because, for the
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Figure 4-4. Probability density functions of the first occurrence of a caustic
P (∆p > 1.5∆pnom) with new scaling. Computed from simulations, along the
scaled propagation distance x1ℓ−1

f .

low-boom waveform, the rise time is initially much longer and overpressure values that

are 50% greater than the initial overpressure rarely occur. Although the PDF is not

computed for the low-boom simulations, the parameter ℓf is used to scale the results of

both waveforms. We find that the N-wave statistics show a more desirable collapse of the

data with ℓf ; however, we are still able to distinguish important trends of the low-boom

data when scaling by ℓf .

Figure 4-5 shows a single realization of the N-wave sonic boom overpressure for cases

4, 6, 7, and 9. In the region 0 ≤ x1ℓ
−1
f ≤ 2, caustic form rapidly. Quantitatively, the

PDF in Fig. 4-4 shows that caustic formation for the N-wave cases occurs at the same rate

for each case when x1ℓ
−1
f ≤ 1. In Fig. 4-5, the number of caustics formed in the region

0 ≤ x1ℓ
−1
f ≤ 2 for each turbulence setpoint is visually quite similar, further affirming the

PDF results.

4.2.2 Loudness

In the proceeding sections the loudness levels and metrics are reported. These

quantities are computed from waveforms extracted at 342 different x1 locations for

each simulation performed. At each x1 location, 100 waveforms are extracted in the

transverse directions and each is separated by at least 100 m. For each turbulence case,
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A B

C D

Figure 4-5. Single realizations of the sonic boom overpressure for the N-wave simulations.
A) case 4, B) case 6, C) case 7, and D) case 8.

25 simulations are performed. The averages of the loudness metrics computed along the

propagation direction are thus determined from a set of 2500 different waveforms. Some

sample waveforms extracted at different x1ℓ−1
f locations for the N-wave and low-boom

waveform are shown in Fig. 4-6. These waveforms are extracted from the same transverse

locations (x2 and x3). The N-waves in Fig. 4-6A illustrate the peaking and rounding

effects.

The loudness for the octave bands 8 to 37 is computed at each x1ℓ
−1
f location. The

loudness for higher bands is not computed because these bands are above the Nyquist

frequency. The sampling frequency of 12 kHz is determined based upon computational

resources and comparisons to the loudness metrics computed with a sampling frequency
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Figure 4-6. Sample waveforms at different x1ℓ−1
f locations for case 6. A) The N-wave

simulations and B) the low-boom simulations.

of 34 kHz. The loudness metrics computed with a 12 kHz sampling frequency are found

to be within ±0.2 dB of the metrics computed at higher sampling frequencies. In the

calculation of PL, the sound pressure level (SPL) in a given band is converted to an

equivalent loudness at 3.15 kHz [185]. Figure 4-7 displays the average loudness in sones

for each one-third octave band considered at different x1ℓ−1
f locations. For the N-wave,

the loudness for frequencies between 100 and 1000 Hz decreases significantly along the

propagation direction. The same is true for the low-boom waveform, with the difference

being that the initial loudness magnitude in sones is less than that of the N-wave.

At the same x1ℓ−1
f locations, the loudness of both signatures across cases with

different urms have some variation. In Fig. 4-8A at x1ℓ−1
f = 1 the loudness for the highest

urms is less than the loudness at lower urms for a frequency below 200 Hz. At higher

frequencies the loudness for case 9 is larger than other cases. The low-boom results

indicate an increase in loudness levels when urms increases, and the most variation for both

waveforms occurs in the band number range 23 to 29. At higher propagation distances

(Fig. 4-8B), the loudness for case 9 is consistently larger across the frequency range of

100 to 1000 Hz. This indicates that PL values at the same x1ℓ−1
f locations will be slightly
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Figure 4-7. Loudness levels for the one-third octave bands in sones at case 9. Results for
the N-wave (solid line) and low-boom waveform (dashed line).

larger in magnitude on average for higher turbulence rms velocity. The same is true for

the low-boom waveform loudness. Compared to the x1ℓ−1
f = 1 results, at x1ℓ−1

f = 5

there is more variation in the loudness that occurs over a wider range of frequencies. The

maximum increase in sones from case 5 to 9 occurs at band number 27 for the N-wave at

x1ℓ
−1
f = 1 (center frequency of approximately 500 Hz), where the increase is 2.27 sones. At

x1ℓ
−1
f = 5 the maximum increase for the N-wave occurs at band 23 (center frequency 200

Hz), where the increase is 2.78 sones. For the low-boom waveform, the maximum increase

between case 5 and 9 occurs at band 26 for x1ℓ−1
f = 1 and band 23 for x1ℓ−1

f = 5 (center

frequencies of 400 Hz and 200 Hz respectively).

4.2.3 Probability Distributions of Loudness Metrics for the N-wave

Results from Stout [18] and Bradley et al. [20] indicate that the ∆PL is well

approximated by a normal distribution after propagation through turbulence for

the majority of probabilities. In this section, our results indicate that ∆PL is well

approximated by a normal distribution for all probabilities up to a certain propagation

distance that depends on the turbulence level. Here, ∆PL is the difference between the

PL obtained from our simulations and the nominal, PL - PLnom. The nominal PL is

the PL at x1ℓ−1
f = 0. Since we consider an ensemble of isotropic turbulent fields, ∆PL

is a random variable and its average ∆PL is a function of the propagation distance. It
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A B

Figure 4-8. Loudness levels in sones for both waveforms at two different non-dimensional
propagation distances. Results for the N-wave (solid line) and low-boom
waveform (dashed line) at A) x1ℓ−1

f = 1 and B) x1ℓ−1
f = 5.

should be noted that the shape of the distribution computed for the delta values of each

metric will be the same as the shape of the distribution of the metrics themselves, since

we are simply normalizing by the nominal value. Thus, we can draw conclusions about

the PL distribution by examining the ∆PL distribution, and so on for the other metrics

considered. For a visual representation of the ∆PL distribution, the cumulative probability

of ∆PL − ∆PL is shown in Fig. 4-9 at two x1ℓ−1
f locations. The dashed lines in Fig.

4-9 represent theoretical normal distributions, and the symbols represent the computed

cumulative probabilities of the data. Figure 4-9 shows that as the value of x1ℓ−1
f increases,

the distributions deviate more significantly from the normal distribution. Specifically, the

probability of ∆PL being 3 to 8 dB lower than the average is lower than what is predicted

for a normal distribution.

The deviation of the distribution from the theoretical normal distribution as x1ℓ−1
f

increased is observed consistently across all rms velocities and loudness metrics considered

(PL, ISBAP, BSEL, DSEL, and ESEL). Each metric has a tendency to skew to the right

of a normal distribution as x1ℓ−1
f increases. It should be noted that ∆DSEL is skewed to

the right of a normal distribution for x1ℓ−1
f > 0.5, so it can only be approximated by a

normal distribution only for very small x1ℓ−1
f values.
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Figure 4-9. Probability plots of ∆PL with respect to the average for case 9 of the N-wave
simulations.

We examined the normality quantitatively by conducting hypothesis tests on the

distributions of each metric along the propagation direction. The two tests considered

to examine the normality of the distributions are the Anderson-Darling (AD) [186] and

the Kolmogorov-Smirnov (KS) [187] tests. The p-value of each test is computed, and

if the p-value is greater than the significance level (set to 0.05) then the distribution

is considered to be normal. A significance level of 0.05 is commonly used in statistical

studies [188]. It should be noted that the American Statistical Association has stated

that, “Scientific conclusions and business or policy decisions should not be based only on

whether a p-value passes a specific threshold” [188]. For this reason, probability plots are

provided as supplemental evidence to be used in conjunction with the hypothesis tests.

For each metric, except ∆DSEL, the hypothesis tests indicate that there is a value

of x1ℓ−1
f for each case where the p-values past these locations are always below the

significance level. We denote this location as the transition location xt, where hypothesis

tests indicate that for x < xt the metric can be considered normal and for x > xt

we cannot draw the conclusion of normality. The p-values for ∆DSEL are below the

significance level for x1ℓ−1
f > 0.5 at all turbulence levels. The values of xt for ∆BSEL,

∆ESEL, ∆ISBAP, and ∆PL are presented in Tables 4-3 and 4-4. Each hypothesis test
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is conducted at an interval of ∆x1ℓ−1
f = 0.1, and the xt is determined to be the location

where both hypothesis tests return p-values less than the significance level for x1 ≥ xt.

Tables 4-3 and 4-4 show that the value of xt is fairly consistent across all metrics for each

case. Since each test is conducted at an interval ∆x1ℓ−1
f = 0.1, each value of xt has the

associated uncertainty of ±0.1ℓf . The results indicate that to a good approximation,

the loudness metrics are no longer normally distributed for x1ℓ−1
f > 2.5. In terms of the

physical distance x1, the transition locations decrease as the rms velocity increases. At

the same dimensional propagation distance, x1, the distributions of the loudness metrics

will become increasingly skewed from a normal distribution as the turbulence intensity

increases.

It should be noted that the hypothesis tests conducted here examine the normality

of the distribution for all cumulative probabilities, and that our results are in agreement

with that of Stout [18]. Qualitative examination of the probability distributions of PL

and ISBAP obtained by Stout [18] for low, medium and high intensity turbulence shows

that as the turbulence intensity increases (i.e., increasing urms) the distributions skew

increasingly further to the right of a normal distribution. In fact, for the vast majority of

the N-wave data, Stout [18] states that the normal distribution closely approximates the

simulation data from 5-10% cumulative probability up to 90-95% cumulative probability.

Even for the highest urms case considered (case 9) in our simulations, Fig. 4-9 shows

that at x1ℓ−1
f = 5, the distribution follows a normal distribution between 10% and 95%

cumulative probability. Thus, the results presented here appear to be consistent with

previous results from numerical simulations. The remaining cases not shown follow the

same trend of cases 3, 5, 7, and 9.

Table 4-3. Values of the transition location (xt) for PL and ISBAP for cases 3, 5, 7, and 9.
Case ∆PL ∆ISBAP
3 2.3ℓf (3803.1 m) 2.4ℓf (3968.5 m)
5 2.1ℓf (1415.4 m) 2.4ℓf (1617.6 m)
7 2.4ℓf (1054.9 m) 2.4ℓf (1054.9 m)
9 2.4ℓf (780.6 m) 2.4ℓf (780.6 m)
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Table 4-4. Values of the transition location (xt) for BSEL and ESEL cases 3, 5, 7, and 9.
Case ∆BSEL ∆ESEL
3 2.1ℓf (3472.3 m) 1.9ℓf (3141.7 m)
5 2.1ℓf (1415.4 m) 1.8ℓf (1213.2 m)
7 2.3ℓf (1011.0 m) 2.2ℓf (967.0 m)
9 2.3ℓf (748.0 m) 2.1ℓf (683.0 m)

Figure 4-10 shows the PL distribution along x1ℓ−1
f for case 9. Initially, for small x1ℓ−1

f ,

the PL follows a normal distribution. We see that as x1ℓ−1
f increases, the PL distribution

becomes more skewed, which is consistent with the results above. This skewness in

the distribution appears to always be to the right of a theoretical normal distribution,

indicating a higher likelihood of PL values much larger than the average PL compared to

a normal distribution. Plots of the distributions of ISBAP and BSEL are also available in

appendix B.

4.2.4 Probability Distributions of Loudness Metrics for the Shaped Boom

Distributions of the ∆PL and ∆ISBAP for the low-boom waveform are similar to

those computed for the N-wave. In Fig. 4-11, the ∆PL probability distribution closely

follows a normal distribution for x1ℓ−1
f = 1. At x1ℓ−1

f = 5, the distribution is skewed to the

right of a normal distribution, which is consistent with the N-wave results.

Similar to the N-wave procedure, hypothesis tests are conducted to determine the

location of xt for the low-boom simulations. Table 4-5 presents the values of xt only for

the ∆PL and ∆ISBAP. For ∆DSEL, there is no clear transition region, as the p-values

that fell below 0.05 at nearly every location along the propagation direction. For ∆BSEL

and ∆ESEL, the distributions are normal only for x1ℓ−1
f < 1.0, which are true for all

rms velocities considered. Thus, the hypothesis tests show no indication of normality

for ∆DSEL, while ∆BSEL and ∆ESEL are only normal distributed for small values of

x1ℓ
−1
f . The transition region for ∆PL is only slighlty larger on average than the N-wave

results. The normality of ∆PL appears to be consistent for both waveforms considered.

The values of xt for ∆ISBAP are approximately twice as large as the N-wave results, a
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Figure 4-10. Probability plots of ∆PL with respect to the average for case 9 of the N-wave
simulations. Non-dimensional distances of A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C)

x1ℓ
−1
f = 4, D) x1ℓ−1

f = 6, E) x1ℓ−1
f = 8, and F) x1ℓ−1

f = 10.
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Figure 4-11. Probability plot of ∆PL with respect to the average for case 9 of the
low-boom simulations.

strong indication that ∆ISBAP is normally distributed for longer propagation distances

for the low-boom waveform than the N-wave. For case 3, hypothesis tests suggest that

∆ISBAP is normally distributed in the entire domain. Although the transition region in

terms of the non-dimensional distance x1ℓ−1
f is nearly constant for varying rms velocity,

the dimensional distance, x1, where xt is located decreases for both ∆PL and ∆ISBAP.

This result is consistent with the N-wave simulations.

Table 4-5. Values of the transition location (xt) for PL and ISBAP for cases 5, 7, and 9.
Case ∆PL ∆ISBAP
3 2.5ℓf (4091.6 m) N.A.
5 2.4ℓf (1729.1 m) 4.7ℓf (3386.2 m)
7 2.5ℓf (948.8 m) 4.9ℓf (1859.6 m)
9 2.6ℓf (722.4 m) 4.7ℓf (1305.9 m)

Figure 4-12 shows the PL distribution of the shaped waveform along x1ℓ−1
f for case 9.

The PL distribution for the shaped waveform remains normal for approximately the same

scaled propagation distance as the N-wave. This is an indication that the normality of the

PL distribution is dependent on the turbulence intensity, and not on the waveform shape.

Plots of the distributions of ISBAP and BSEL are also available in Appendix B.
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Figure 4-12. Probability plots of ∆PL with respect to the average for case 9 of the
low-boom simulations. Non-dimensional distances of A) x1ℓ−1

f = 1, B)
x1ℓ

−1
f = 2, C) x1ℓ−1

f = 4, D) x1ℓ−1
f = 6, E) x1ℓ−1

f = 8, and F) x1ℓ−1
f = 10.
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4.2.5 First and Second Moments of the Loudness Metrics

The average of the loudness metrics as a function of the normalized propagation

distance provides insight into the effect of the turbulent field on the perceived loudness

of both waveforms. Both the N-wave and low-boom waveform are propagated a physical

distance of 4094 m; however, since turbulent fields generated for the N-wave simulations

did not have exactly the same value as those for the low-boom simulations (Tables 4-1

and 4-2) the non-dimensional distances propagated by each waveform is different. This is

evident in the figures presented in this section, where the x1ℓ−1
f travelled is larger for the

low-boom simulations of case 9 than it is for the N-wave simulations. At all propagation

distances the average value of each loudness metric decreases with respect to the nominal.

Bradley et al. [20] argue that this decrease is due in part to the average increase in the

rise-time of the wave, observed by Lipkens and Blackstock [189]. In our simulations,

we also observed that the average rise time increased with propagation distance, which

is consistent with the viewpoint of Bradley et al. [20]. Figure 4-13 shows the curves of

average PL, ISBAP, BSEL, and ESEL for both waveforms and four separate cases. The

average DSEL is not shown because it overlaps with the curves for BSEL, making it

difficult to distinguish between the two. For the N-wave, the average value of each metric

decreases rapidly for x1ℓ−1
f ≤ 2. Beyond x1ℓ

−1
f ≥ 3, the decrease is approximately linear

for each turbulence condition. For the low-boom waveform (Fig. 4-13B) each metric

initially decreases rapidly along x1ℓ−1
f . As x1ℓ−1

f increases, each metric approaches a

constant value. The ∆ESEL is not shown in Fig. 4-13B since it nearly overlaps the ISBAP

results, and qualitatively there is not much to distinguish between the two. The N-wave

data is well collapsed for small values of x1ℓ−1
f ; however, the low-boom data does not

show a strong collapse when the propagation direction is scaled by ℓf . Specifically, the

propagation cases at lower turbulence intensities experience a larger drop-off in average

value at the same x1ℓ−1
f locations for both waveforms. This is due to the sensitivity of the

loudness to the rms velocity, shown in Figs. 4-8A and 4-8B. In order to obtain a better
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collapse of the low-boom metric data, ℓf would have to be modified to account for this

sensitivity.

A B

Figure 4-13. Mean values of ∆PL, ∆ISBAP, ∆BSEL, and ∆DSEL for both waveforms. A)
N-wave and B) low-boom waveform.

The standard deviation of PL (σ∆PL) along the normalized propagation direction

is shown in Fig. 4-14 for the N-wave simulations and low-boom simulations. The σ∆PL

of both waveforms are qualitatively very similar along x1ℓ−1
f . The standard deviation of

each metric is found to increase linearly for small values of x1ℓ−1
f . The slope of σ∆PL for

the N-wave in case 9 is determined to be 4.66, found by a linear regression performed for

x1ℓ
−1
f ≤ 0.5. For the low-boom waveform, the same process resulted in a computed slope

of 3.72 for small x1ℓ−1
f values. The standard deviations of ISBAP, BSEL, and ESEL for

both waveforms are shown in Figs. 4-15, 4-16, and 4-17. The curves are all qualitatively

very similar to the standard deviation for the PL, and show some collapse with respect

to ℓf . For the N-wave, the maximum value of the standard deviation of PL and ISBAP

occurs in the range 1.5 ≤ x1ℓ
−1
f ≤ 3.0. The transition location also lies in this interval.

For the low-boom, the maximum value of PL lies in the same range, along with the

transition location. For ISBAP, the maximum standard deviation occurs in the range

3.0 ≤ x1ℓ
−1
f ≤ 4.5, which is close to the transition locations determined from hypothesis

testing. For BSEL and ESEL of the N-wave, the location of the maximum standard

164



deviation lies in the same range as the PL and ISBAP maximum standard deviation

(1.5 ≤ x1ℓ
−1
f ≤ 3.0). The transition location for BSEL and ESEL is within this range.

One may infer from this numerical evidence that the transition location and location of

the maximum standard deviation are related in some manner. For each metric considered

here (PL, ISBAP, BSEL, DSEL, and ESEL), the slope of the standard deviation at small

values of x1ℓ−1
f is found to be consistently larger for the N-wave simulations than the

low-boom simulations. This is an indication that once the N-wave begins to propagate

through a layer of turbulence, the variance of the loudness levels increases at a faster

rate than the variance would for a shaped waveform like the one considered here. The

slopes of each metric with respect to x1ℓ−1
f for x1ℓ−1

f ≤ 0.5 are shown in Table 4-6. For

each metric considered, the slope of the standard deviation for the N-wave simulations is

approximately 1 dB greater than the slope of the low-boom simulations.

A B

Figure 4-14. Standard deviation of the PL for both waveforms. A) N-wave and B)
low-boom.

The maximum value of the standard deviation of each metric along the propagation

distance, denoted by σmax
∆PL for the PL, is fairly consistent across all turbulence rms

velocities. Since these values are close in magnitude for each turbulence case, we will

examine the average and standard deviation of σmax
∆PL, σmax

∆ISBAP, σmax
∆BSEL, σmax

∆DSEL, and

σmax
∆ESEL computed from all cases. The average value will be denoted µσmax

∆PL for the PL and
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A B

Figure 4-15. Standard deviation of the PL for both waveforms. A) N-wave and B)
low-boom.

A B

Figure 4-16. Standard deviation of the PL for both waveforms. A) N-wave and B)
low-boom.

Table 4-6. Numerical estimation of the rate of change of σ∆PL, σ∆ISBAP, σ∆BSEL, and
σ∆ESEL for small values of x1ℓ−1

f .
Metric N-wave Low-boom Difference
PL 4.66 3.72 0.94
ISBAP 3.03 1.98 1.05
BSEL 3.89 2.85 1.04
DSEL 3.00 2.00 1.00
ESEL 4.77 3.73 1.04
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A B

Figure 4-17. Standard deviation of the PL for both waveforms. A) N-wave and B)
low-boom.

the standard deviation is σσmax
∆PL . Table 4-7 shows values of µσmax ± σσmax for all metrics

of the N-wave and low-boom simulations. The deviation of σmax is small for the N-wave

simulations. This indicates that the magnitude of the maximum standard deviation of

each metric attained in the N-wave simulations is independent of the turbulence rms

velocity. However, the location where the maximum standard deviation occurs along the

propagation distance, depends on urms. For the low-boom simulations, the deviation of

σmax is larger than the N-wave simulations. However, the σσmax values are still less than

10% of the µσmax values for all but the DSEL, indicating that the spread of σmax is small

for the low-boom simulations as well. The µσmax values of the metrics for the N-wave

simulations are always larger than those for the low-boom, except for PL which matches

up to three significant figures. From this we can infer that the variation in loudness is

larger on average for the N-wave than the low-boom waveform.

Table 4-7. The average of the maximum values of the standard deviation of each metric
across all cases, µσmax, and associated standard deviations, σσmax.

N-wave Low-boom
µσmax
∆PL ± σσmax

∆PL 3.37± 0.01 3.37± 0.10
µσmax
∆ISBAP ± σσmax

∆ISBAP 3.11± 0.12 2.76± 0.21
µσmax
∆BSEL ± σσmax

∆BSEL 3.14± 0.03 2.74± 0.16
µσmax
∆DSEL ± σσmax

∆DSEL 2.65± 0.06 2.19± 0.39
µσmax
∆ESEL ± σσmax

∆ESEL 3.26± 0.02 2.87± 0.12
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4.3 Summary and Conclusions

The effects of a kinematic field of turbulence on the loudness metrics for an N-wave

and the low-boom waveform of the NASA X-59 QueSST were investigated numerically

with a one-way propagation method. The two waveforms were not greatly affected by

nonlinearity. A length scale, ℓf , was proposed to account for the effect of the rms velocity

and turbulent integral scale on the formation of caustics. Across the range of urms values

considered, the PDF of xcaust attained a maximum around x1ℓ
−1
f = 1. The mean values

of ∆PL, ∆ISBAP, ∆BSEL, ∆DSEL, and ∆ESEL collapse for the N-wave in the range

x1ℓ
−1
f ≤ 2. For shaped waveforms, scaling the propagation distance in terms of ℓf was not

adequate to collapse the mean loudness metric data, which at the same x1ℓ−1
f locations

varied with rms velocity of the turbulence. However, the standard deviation of ∆PL for

the shaped waveform is more consistent with some of the features observed in the N-wave

data; and showed a collapse of the data for high rms velocities. For the N-wave, the

agreement of σ∆PL across several different cases hints at the potential to model σ∆PL by a

function of the nondimensional distance. Researchers who desire a quick estimation of the

variance of PL would find such a function useful.

The loudness decreases along the propagation direction for both waveforms. Most of

the decrease in the loudness levels occurs in the range 100 Hz to 1000 Hz. The loudness

levels at fixed x1ℓ
−1
f locations show some sensitivity to the urms value. When the urms

increases at these fixed locations, the loudness increases slightly. For x1ℓ−1
f = 1, frequencies

between 355 to 560 Hz are the most sensitive to changes in urms, and as x1ℓ−1
f increases

the loudness at lower frequencies become more sensitive to changes in the rms velocity. In

the future, any improvements to ℓf would have to reduce the sensitivity in the range of

100 Hz to 1000 Hz.

The distributions of ∆PL, ∆ISBAP, ∆BSEL, and ∆ESEL are initially normal as

the sonic boom propagates through turbulence. Plots of the cumulative probability,

along with hypothesis testing, indicate that the ∆PL begins to deviate from a normal
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distribution as it propagates through turbulence. The hypothesis tests for the N-wave

simulations suggest that the location where ∆PL, ∆ISBAP, ∆BSEL, and ∆ESEL

transition from being normally distributed to skewed right of the normal distribution

is in the range 1.8 ≤ x1ℓ
−1
f ≤ 2.5. This is also the range where the standard deviation

of ∆PL, ∆ISBAP, ∆BSEL, and ∆ESEL reach a maximum value. In terms of physical

distance, the transition location for the N-wave simulations decreases as the rms velocity

increases. When considering the low-boom simulations, the transition locations for

∆PL are only slightly larger than the N-wave results. For the ∆ISBAP, the transition

locations are approximately twice as large as the N-wave results, indicating that the

distributions remain normal for longer propagation distances than the N-wave. The

simulations performed here suggest that the ∆PL and ∆ISBAP for both waveforms, while

initially normally distributed in the turbulent field, will not remain normally distributed

indefinitely as the sonic boom continues to propagate through a turbulent field. There is

also evidence from the hypothesis testing that the proposed scaling length, ℓf , is able to

parameterize the location where the loudness metrics are no longer normally distributed.

This location falls in the range 1.8ℓf ≤ xt ≤ 2.6ℓf for the N-wave loudness metrics and the

low-boom ∆PL, and 4.7ℓf ≤ xt ≤ 4.9ℓf for the low-boom ∆ISBAP.

The loudness metrics that correlate well with annoyance (PL, ISBAP, BSEL, DSEL,

and ESEL) all have mean values that decrease along the propagation direction. When

scaled by ℓf , the curves of each metric along the propagation direction are similar. The

isotropic turbulence field has a similar effect on the metrics across a wide range of rms

velocities for both waveforms. The standard deviation of each metric considered here is

directly proportional to x1ℓ−1
f for small values of x1ℓ−1

f . The maximum value attained

by the standard deviation of each metric in the simulations is independent of the rms

velocity of the turbulence for both the N-wave and low-boom. This implies that for a

real sonic boom propagating in the atmospheric boundary layer region, the maximum

variation in the loudness that is possible is dependent on the distance the waveform
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propagates through the turbulence. For lower turbulence rms velocities, the propagation

distance required to reach the location of maximum loudness variation is larger than

the distance required for higher turbulence rms velocities. In all of the simulations, the

standard deviation of ∆PL reaches a maximum value in the range 1 ≤ x1ℓ
−1
f ≤ 3.

Therefore, one can infer that sonic boom signals recorded on the ground in regions where

the propagation distance through the ABL is between ℓ−1
f and 3ℓ−1

f are likely to have the

highest variability in the PL metric, compared to other regions of the sonic boom carpet.
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CHAPTER 5
SONIC BOOM PROPAGATION IN THE ATMOSPHERIC BOUNDARY LAYER

In Chapter 4, the effect of homogeneous turbulence on the sonic boom loudness

metrics was examined. The results of these simulations indicated the potential to

parameterize the loudness distributions and caustic location distributions by the

standard deviation and length scale of the turbulence. However, in the ABL, turbulence is

inhomogeneous and anisotropic. As the sonic boom propagates from the top of the ABL

to the ground, it will encounter turbulence with integral scales that decrease, in general,

as the wavefront approaches the ground. The length scale, ℓf , proposed in Chapter 4 is no

longer applicable when the integral length scale and standard deviation of the turbulence

are a function of the propagation direction. The effect of this inhomogeneity on the

sonic boom is the focus of this chapter. An empirical adjustment to ℓf is proposed and

examined.

One critical aspect of this investigation is the model of the ABL turbulence that we

choose to implement in our simulations. The model presented in Chapter 3 (Eqns. 3-59

through 3-62), which assumes a von Kármán spectrum for the turbulent kinetic energy,

and models the variances and length scales as a function of the altitude following Wilson

[172], will be used here. This turbulence model has previously been implemented to study

the effect of inhomogeneous turbulence on vertical and slanted sound propagation in the

ABL by Kamrath et al. [190] and Ostashev et al. [191]. They obtained good agreement

between analytical predictions of the distribution of the mutual coherence function and

measurements during daytime conditions in the ABL. This agreement between predictions

and measurement for sound propagation in the ABL justifies the use of this spectral model

for sonic boom simulations in the ABL.

In this chapter, simulations of sonic boom propagation in the primary carpet region

will be conducted for a traditional sonic boom N-wave and a design iteration of the X-59

QueSST through inhomogeneous turbulence that is representative of the ABL. There are
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two main objectives of this study. The first is to develop a procedure for using sbABL to

obtain predictions of sonic boom propagation through ABL turbulence using PCBoom

results at the top of the ABL. The second is to examine the impact of meteorological

conditions in the ABL on the sonic boom overpressure, rise time, and loudness metrics.

The simulations performed here begin by predicting sonic boom propagation from the

aircraft to the temperature inversion height, zi, using PCBoom [11, 12]. The temperature

inversion height is approximately the location where capping inversion of the ABL occurs

(i.e. where temperature increases with altitude). The output waveform obtained by

PCBoom is used as the input to the simulations performed in sbABL. We consider here a

2D domain, shown in Fig. 5-1, since it was previously shown that the peak overpressure

distributions obtained with 2D simulations agree with results in 3D for most simulations,

while only slightly underpredicting extreme amplification events [192]. The computational

domain is inclined above the horizon at an elevation angle, θelv, which is determined by a

straight line distance approximation between the ray location at zi and the location where

the ray impacts the ground. Thus, the total propagation distance in the computational

domain is d = zi/ sin(θelv). In the computational domain, x1 is the propagation direction

and x2 is the transverse direction.

5.1 Atmospheric Boundary Layer Model

The atmospheric boundary layer is composed of the surface layer, mixed layer, and

the interfacial layer between the ABL and the free troposphere. In Fig. 5-2 (from Garratt

[75]), an illustration of the ABL during a 24 hour cycle is shown. In the surface layer,

gradients of the velocity and temperature are well described by MOST [71]. The surface

layer comprises approximately the lowest 10% of the ABL during the daytime. The

mixed layer is dominated by convection and is often referred to as the convective layer

during the daytime. In the convective layer, the mean wind speed and temperature are

approximately constant with altitude. The temperature inversion height, zi, is generally

between 1-2 km during the daytime. For the purpose of this investigation, we consider
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Figure 5-1. Computational domain of the simulations performed in the ABL.

zi to be the interface between the free troposphere and the ABL. The input waveforms

to our simulations are the results of propagation through the atmosphere to an altitude

of zi using PCBoom. We restrict our attention to daytime conditions, when the flow is

unstable, since sonic boom test flights are typically flown during the daytime. We do not

consider the effect of intermittency in our turbulence model, which is generally present at

the interface between the free troposphere and the ABL.

In the atmospheric surface layer, z ≤ 0.1zi, the intensity and length scale of the

temperature fluctuations are influenced by T∗ and Lo, which in turn are influenced directly

by u∗ and Q0. The expressions for the standard deviation of the temperature fluctuations

σT , and the von Kármán length scale LT , determined by Ostashev and Wilson [171] were

presented previously in Chapter 3 but are restated here for convenience. They are

σ2
T (z)

T 2
∗

=
4.0

[1 + 10(−ξ)]2/3
, (5-1)
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Figure 5-2. Illustration of the evolution of the ABL throughout the course of a day.

and

LT (z)

z
= 2.0

1 + 7.0(−ξ)
1 + 10(−ξ)

, (5-2)

where ξ = zL−1
o is the non-dimensional altitude.

Experimental evidence [193] has shown that the horizontal spectra of velocity

fluctuations do not obey MOST in unstable conditions. For the velocity fluctuations,

there are two production mechanisms to consider. The first is turbulence generated by

mean shear near the surface, in which the length scale of the fluctuations increase as a

function of the altitude. The standard deviation and von Kármán length scale of the shear

generated turbulence are provided by Ostashev and Wilson [126] as

σ2
s

u2∗
= 3.0 (5-3)

and

Ls

z
= 1.8. (5-4)
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The second mechanism is bouyancy, where temperature gradients cause hotter air near

the surface to rise in altitude. Bouyancy driven turbulence is dominated by mixed-layer

similarity, and the expressions for the standard deviation and length scale are

σ2
b

w2
∗
= 0.35 (5-5)

and

Lb

zi
= 0.23. (5-6)

The velocity fluctuations are generated with GRPM using a von Kármán spectral

model that accounts for both shear-driven and bouyancy-driven fluctuations. The von

Kármán model for the 1D cross-spectra (Eqns. 3-64, 3-65, and 3-66) are used to determine

the eigenvalues and eigenfunctions to construct the turbulent fields. The model spectra are

restated here,

R̃11 (kx, z, z
′) =

2σ2
uL

2
u√

πΓ(1/3)

(
ζ/2

1 + k2xL
2
u

)5/6 [
K5/6(ζ)−

ζ

2
K1/6(ζ)

]
, (5-7)

R̃33 (kx, z, z
′) =

2σ2
uL

2
u√

πΓ(1/3)

(
ζ/2

1 + k2xL
2
u

)5/6 [
4

3
K5/6(ζ)−

ζ/2

1 + k2xL
2
u

K11/6(ζ)

]
, (5-8)

and

R̃T (kx, z, z
′) =

2σ2
TL

2
T

3
√
πΓ(1/3)

(
ζ/2

1 + k2xL
2
u

)5/6 [
11

3
K5/6(ζ)−

ζ

1 + k2xL
2
T

K11/6(ζ)

]
, (5-9)

where ζ = ∥z − z′∥L−1
u (1 + k2xL

2
u)

1/2, σ2
u = σ2

s + σ2
b , and σ2

uLu = σ2
sLs + σ2

bLb. The

expressions for σu and Lu effectively interpolate between the shear and bouyancy induced

turbulence. This technique was proposed by Højstrup [173] and is commonly used for

sound propagation simulations in ABL turbulence [18, 180, 190, 191].

The length scales and standard deviations in Eqns. 5-1 through 5-6 are functions of

the altitude, z. However, the computational domain is inclined at an angle, θelv, from the

horizon, which means that the propagation direction, x1, is not aligned with z. The length
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scales and standard deviations can be formulated as a function of x1 if z is replaced by

(d−x1) sin(θelv), where d is the total propagation distance. The length scales and standard

deviations of the turbulent fluctuations are now

σ2
T (x1)

T 2
∗

=
4.0

[1 + 10(−(d− x1) sin(θelv)L−1
o )]2/3

, (5-10)

LT (x1)

(d− x1) sin(θelv)
= 2.0

1 + 7.0(−(d− x1) sin(θelv)L
−1
o )

1 + 10(−(d− x1) sin(θelv)L−1
o )

, (5-11)

σ2
s

u2∗
= 3.0, (5-12)

Ls

(d− x1) sin(θelv)
= 1.8, (5-13)

σ2
b

w2
∗
= 0.35, (5-14)

and

Lb

zi
= 0.23. (5-15)

The von Kármán spectral model, Eqns. 5-7 to 5-9, are modified in the same manner.

The transverse direction x2 is assumed to be aligned with x, and therefore the turbulent

fluctuations along the x2 direction are homogeneous.

The expressions for the von Kármán length scales and standard deviations of the

temperature and shear-driven fluctuations provided in Eqns. 5-1 through 5-4 are valid

in the surface layer. In a daytime convective ABL, the mean profiles of temperature

and velocity are approximately constant in the mixed layer region [77, 194]. Past

investigations of sound propagation in the ABL [190, 191] have assumed that σT , LT ,

σs, and Ls are constant for z ≥ 0.1zi, and equal to their value at 0.1zi. We will make the

same assumption here, since these past investigations have shown good agreement with

measurements. For the bouyancy-driven fluctuations, the model is valid for z ≤ 0.9zi, but

we will assume here that it is valid for z ≤ zi, since intermittency is neglected.

176



According to Wilson [172], the convective boundary layer is considered to have

weak convection levels when the ratio of inversion height to Lo is on the order of one,

log (−ziL−1
o ) ∼ 0. Wilson also defined moderate convection as log (−ziL−1

o ) ∼ 1 and strong

convection as log (−ziL−1
o ) ≳ 2. The convective parameter, log (−ziL−1

o ), is shown in Fig.

5-3 for typical values of u∗ and Q0 in unstable conditions, assuming that zi = 1 km. The

parameters u∗, Q0, and zi for our simulations are determined from previous experimental

measurements. For the purposes of this investigation, we consider weak convection to be

log (−ziL−1
o ) ≤ 0.5, moderate convection to be 0.5 < log (−ziL−1

o ) ≤ 1.5, and strong

convection to be log (−ziL−1
o ) > 1.5. The exact ranges of log (−ziL−1

o ) corresponding to

weak, moderate, and strong convection levels were defined in order to categorize each ABL

setpoint.

Figure 5-3. Convective parameter as a function of the surface heat flux Q0 and the friction
velocity u∗.

The turbulence intensity depends on u∗ and Q0, and the von Kármán length scales

depend on zi. Measurements of both of these parameters were made during the SonicBAT

flight test campaign, which examined the effects of turbulence on sonic boom waveforms.

The parameter space of the ABL that we will consider here will be based on measurements
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made at NASA Kennedy Space Center (KSC) and NASA Armstrong Flight Research

Center (AFRC) during the SonicBAT campaign. The flight passes considered here were

chosen based on the convection levels of the ABL, with the goal of considering several

cases corresponding to weak, moderate, and strong convection. The ABL parameters for a

few of the flight passes at KSC considered here are listed in Table 5-1, arranged in order of

increasing log (−ziL−1
o ). The number after the letters “KSC” denotes the flight pass from

the SonicBAT report. Three ABL setpoints from AFRC are also considered, representing

strong convection levels. These setpoints do not correspond to flight passes, but rather

meteorological measurements performed on different days. They are denoted with numbers

1-3.

Table 5-1. Data for Q0, u∗, and zi obtained during SonicBAT at KSC and AFRC.
Flight No. Q0

(K·m/s)
u∗ (m/s) zi (m) w∗ (m/s) T∗ (K) log (−ziL−1

o )

KSC20 0.010 0.345 411.6 0.512 −0.029 0.115
KSC1 0.025 0.375 457.3 0.720 −0.067 0.451
KSC12 0.095 0.468 640.2 1.253 −0.203 0.885
KSC6 0.225 0.390 457.3 1.484 −0.577 1.342
KSC17 0.188 0.315 487.8 1.428 −0.597 1.571
AFRC1 0.306 0.461 1000.0 2.138 −0.664 1.601
AFRC2 0.293 0.378 1347.0 2.324 −0.775 1.968
AFRC3 0.272 0.252 1344.0 2.258 −1.079 2.459

For each setpoint, 20 fields are generated and the sonic boom loudness metrics,

overpressure, and rise time are probed at 1024 points for each x1 plane in each simulation.

This results in a total of 20,480 predictions per x1 plane that are used to calculate

statistics. Figure 5-4 displays realizations of the u′1 and T ′ fields for cases KSC20, KSC6,

and AFRC3, which represent weak, moderate, and strong convection, respectively. The

temperature inhomogeneity becomes apparent as the convective parameter, log(−ziL−1
o ),

increases. In the lowest 10% of the ABL, σT increases and LT decreases. Correspondingly,

for the weakly convective case (KSC20) σu is constant throughout the ABL, but the von

Kármán length scale, Lu, decreases in the lowest 10% of the ABL. The model used to
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generate the turbulence assumes that the remaining 90% of the ABL is isotropic and

homogeneous. The homogeneity of the velocity and temperature fluctuations in this region

is visually apparent in Fig. 5-4.

The standard deviations along x1, or equivalently z, for each atmospheric setpoint

were computed from the synthesized fields to validate that the standard deviations of the

generated fields agree with the prescribed values. Figure 5-5 shows the computed σT and

σu as a function of z compared to the prescribed functions (Eqn. 5-1 and σ2
u = σ2

s + σ2
b ).

The computed standard deviations agree quite well with the model values, and do not

deviate from the prescribed values by more than 0.1 K or 0.1 m/s. The overall difference

between the prescribed and synthesized values is no more than 3% for any setpoint. This

was determined by computing the L2 norm.

Table 5-2 shows the standard deviations and von Kármán scales of the turbulence

generated in the mixed-layer region of the ABL using Eqns. 5-1 through 5-6. Each flight

number corresponds to turbulence generated for meteorological data shown in Table 5-1

for the same flight number. The weak convection setpoints (KSC20 and KSC1) correspond

to lower temperature and velocity fluctuation intensity. In contrast, the strong convection

setpoints (AFRC1-3) have the largest standard deviations of the velocity fluctuation,

and thus correspond to stronger turbulence intensities. A similar trend is observed for

the length scales, which are largest for the AFRC setpoints and smallest for the weakly

convective setpoints.

5.2 Flight Conditions

The flight conditions considered here correspond to a sonic boom N-wave produced

by an F-18 aircraft and a shaped sonic boom signal produced by a design iteration of

the NASA X-59. As in Chapter 4, we wish to compare N-wave results to X-59 waveform

results when the amplitudes are similar. Thus, simulations are performed for an additional

waveform, an N-wave obtained by PCBoom at an altitude of 1 km above the ground

corresponding to an F-18 in steady level flight at 53, 200 ft and M = 1.336. No reflection
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A B

C D

E F

Figure 5-4. Single realizations of the velocity and temperature fluctuations for three
different ABL setpoints at an elevation angle of 25◦. A) u′1 for KSC20, B) T ′

for KSC20, C) u′1 for KSC6, D) T ′ for KSC6, E) u′1 for AFRC3, and F) T ′ for
AFRC3.
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A B

Figure 5-5. Standard deviations of the velocity and temperature fluctuations for three
different ABL setpoints compared to model values. A) σu and B) σT .

Table 5-2. Turbulence intensities and von Kármán length scales in the mixed layer region
of the model ABL corresponding to meteorological measurements obtained
during the SonicBAT program.

Flight No. σT (K) LT (m) σu (m/s) Lu (m)
KSC20 0.044 68.3 0.67 78.3
KSC1 0.086 71.2 0.78 89.2
KSC12 0.198 94.1 1.10 129.8
KSC6 0.406 65.2 1.11 96.7
KSC17 0.354 69.1 1.01 105.0
AFRC1 0.385 141.5 1.50 215.8
AFRC2 0.341 189.4 1.52 297.4
AFRC3 0.327 188.4 1.41 302.6

factor was applied. The resulting N-wave, shown in Fig. 5-6, is similar in amplitude to the

X-59 waveform in Fig. 5-7.

The second flight condition corresponds to a sonic thump of the NASA X-59 at the

on-design condition (M = 1.4 and 53, 200 ft flight altitude). The atmosphere is obtained

from balloon measurements performed during the Quiet Supersonic Flights 2018 (QSF18)

testing that took place in Galveston, Texas. The atmospheric pressure, temperature,

density, and relative humidity supplied to PCBoom are shown in Fig. 5-7A normalized

by the ground values (p0 = 101028.0 Pa, T0 = 297.85 K, ρ0 = 1.17 kgm−3, hr = 90%).

The waveform is computed undertrack of the flight path at an altitude of 1 km above the

ground (an estimate for zi). This waveform is shown in Fig. 5-7B.
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Figure 5-6. N-wave at 1 km obtained by PCBoom with no reflection factor. Source
conditions correspond to an F-18 in steady level flight at 53, 200 ft and
M = 1.336.

A B

Figure 5-7. Galveston atmosphere and X-59 waveform obtained by PCBoom. A) Profiles
of atmospheric pressure, temperature, density, and relative humidity as a
function of the altitude, used in PCBoom simulations. B) X-59 waveform at 1
km above the ground obtained by PCBoom.
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5.3 Low Amplitude N-wave Results

Simulations for both waveforms were performed for θelv = 5, 10, 15, 25, 35, and

45, for each ABL setpoint. The elevation angles were chosen to correspond to the range

of elevation angles between the ray at zi and ground level that may be observed in the

primary carpet region. The elevation angle directly undertrack of the flight path for the

F-18 in a standard atmosphere was approximately 35◦, while the elevation angle for the

same flight conditions and atmosphere near the lateral cutoff was approximately 5◦. In

general, decreasing elevation angle will correspond to increasing lateral distance from the

flight path. Thus, by varying the elevation angle, we can simulate the propagation through

ABL turbulence in different regions of the primary carpet.

The grid spacing varies with elevation angle, since the number of gridpoints in each

direction is set fixed to 1024 and the propagation distance changes with θelv. However, the

grid spacing was kept below 0.1Lu for all simulations performed with θelv ≥ 5◦. In order

to obtain probability density functions of the caustic regions for the N-wave, additional

simulations were performed at θelv = 1◦ and 2◦. For these simulations, the number of

gridpoints were doubled in each direction, and the grid spacing was kept below 0.2Lu. A

slightly coarser grid did not effect the computation of the caustic PDFs. This was tested

by conducting simulations with decreased grid spacing for the KSC6 and AFR3 setpoints,

and observing no noticeable change in the caustic PDFs.

5.3.1 Length Scale

The length scale, ℓf , proposed in Chapter 4 (Eqn. 4-7) was formulated for a field of

homogeneous velocity fluctuations. The present investigation considers inhomogeneous

fields of velocity and temperature fluctuations. Thus, the index of refraction is no longer

determined solely by the rms velocity and the mean sound speed, but must also account

for fluctuations of the sound speed. In addition, the turbulent statistics as well as the

mean sound speed are functions of z, or x1. The equivalent focal distance of the field will

no longer be a scalar quantity, it will be a function of the altitude of the wavefront.
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Past investigations of sound propagation through turbulence have considered the

index of refraction of the turbulent field to be [126],

n = 1 +
u′ + c′

c0
, (5-16)

when considering both velocity fluctuations and temperature fluctuations. According to

the model of the ABL considered here (Eqns. 5-1 through 5-6), the intensity of the sound

speed fluctuations are a function of the altitude. The standard deviation of the velocity

and temperature can be used as a measure of the intensity of the velocity and sound

speed fluctuations. In the absence of humidity fluctuations, the sound speed fluctuation

is related to the temperature fluctuation by c′c−1
0 = 0.5T ′T−1

0 . Thus, the effective focal

length of the turbulent field can be formulated as,

ℓf (z) =
C1

2
L(Lu, LT (z))

1 + σuc
−1
0 + 0.5σT (z)T

−1
0

σuc
−1
0 + 0.5σT (z)T

−1
0

, (5-17)

The diameter of an equivalent spherical lens, L(Lu, LT ), is approximated by the variance

weighted average of the von Kármán length scales,

L(z) =

(
σu

c0

)2
Lu +

(
σT

2T0

)2
LT(

σu

c0

)2
+
(

σT

2T0

)2 . (5-18)

With this formulation, ℓf is not a constant value for each atmospheric setpoint, but rather

a function of the altitude.

The mixed layer, 0.1zi ≤ z ≤ 0.9zi, comprises the majority of the simulation domain

for all of the simulation conditions considered in this study. The model of the standard

deviations and length scales of the turbulence considered here assumes that they remain

constant in the mixed layer, and that the horizontal directions are homogeneous. Thus, it

may be appropriate to scale the propagation direction by the value of ℓf in the mixed layer

region, where it is constant. In the mixed layer, the length scales depend on the convective
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parameter such that

LTL
−1
o = 0.2ziL

−1
o

1− 0.7ziL
−1
o

1− ziL−1
o

, (5-19)

LsL
−1
o = 0.18ziL

−1
o , (5-20)

and

LbL
−1
o = 0.23ziL

−1
o . (5-21)

This leads to an expression for Lu,

LuL
−1
o =

0.54u2∗ + 0.08w2
∗

3.0u2∗ + 0.35w2
∗
ziL

−1
o . (5-22)

The standard deviations σu and σT in the mixed layer region can also be expressed in

terms of the convective parameter, the friction velocity, the mixed layer velocity scale, and

the temperature scale. These expressions are

σT
2T0

=
T∗
T0

1

(1− ziL−1
o )1/3

, (5-23)

and

σu
c0

=

√
3.0

u2∗
c20

+ 0.35
w2

∗
c20
. (5-24)

The diameter term, L, can now be expressed as

LmL
−1
o =

[
0.54

(
u∗
c0

)2
+ 0.08

(
w∗
c0

)2]
(1− ziL

−1
o )

5/3
+ 0.2

(
T∗
T0

)2
(1− 0.7ziL

−1
o )[

3
(

u∗
c0

)2
+ 0.35

(
w∗
c0

)2]
(1− ziL−1

o )5/3 +
(

T∗
T0

)2
(1− ziL−1

o )

ziL
−1
o ,

(5-25)

in the mixed layer region. The parameter ℓf now depends solely on the friction velocity,

mixed layer velocity scale, temperature scale, and the convection parameter. After some

algebra, we see that ℓf in the mixed layer region is
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ℓf = C1
zi
2

[
0.54

(
u∗
c0

)2
+ 0.08

(
w∗
c0

)2]
(1− ziL

−1
o )

5/3
+ 0.2

(
T∗
T0

)2
(1− 0.7ziL

−1
o )[

3
(

u∗
c0

)2
+ 0.35

(
w∗
c0

)2]
(1− ziL−1

o )5/3 +
(

T∗
T0

)2
(1− ziL−1

o )

×
(1− ziL

−1
o )

1/3
+

√
3
(

u∗
c0

)2
+ 0.35

(
w∗
c0

)2
(1− ziL

−1
o )

1/3
+ T∗

T0√
3
(

u∗
c0

)2
+ 0.35

(
w∗
c0

)2
(1− ziL−1

o )1/3 + T∗
T0

. (5-26)

The probability density functions of the caustic locations were computed for each

ABL setpoint. A caustic region was determined to be a region where the sonic boom

overpressure amplitude experiences a 50% increase in magnitude compared to the nominal

condition. The length scale, ℓf , for each case was computed using Eqn. 5-26, which is

valid for the mixed layer region, and assumed to be constant in the entire field. In order

to accurately compute the PDF of the caustic locations, we must propagate the waveform

to a distance were caustics have a very low probability of occurring. If the domain does

not extend out far enough, then the computed probability at each propagation distance

will be higher than the true probability of a caustic appearing, since the entire domain of

possibilities is not considered. Since ℓf in the mixed layer is rather large, this meant we

had to run additional simulations at an elevation angle of 1 degree for the KSC setpoints.

Figure 5-8 shows the computed PDFs of the first caustic location along the

normalized propagation direction for each atmospheric setpoint. It is clear that the

PDFs for the KSC setpoints are in agreement across varying convection levels, from weak

to moderate. However, the AFRC cases are in disagreement with the KSC setpoints.

One significant difference between the AFRC and KSC setpoints is the ABL height, zi,

which determines the von Kármán scales of turbulence in the mixed layer. The increase in

the turbulence length scales between the KSC and AFRC cases is likely the result of the

differences in the PDF, since AFRC1 and KSC17 have convection levels that are relatively

close in magnitude (see Table 5-1) and the velocity fluctuation intensity of KSC6 and

AFRC3 differ by only 0.3 m/s. Thus, the ℓf parameter in the mixed layer region is able
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to collapse the PDF of the caustic locations across different rms fluctuation magnitudes

for very similar turbulence integral scales. This was observed previously in Chapter 4 and

confirmed here for the case of an inhomogeneous ABL.
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Figure 5-8. Probability density functions of the location of the first caustic along the
propagation direction for each setpoint.

As it stands, with ℓf computed using Eqn. 5-26, predictions of the caustic location

PDF for the N-wave simulations do not collapse across different values of the ABL

altitude, zi. The PDF of the caustic locations for the AFRC setpoints exhibits a much

higher probability of finding a caustic region at x1 = 0.5ℓf than the KSC setpoints, and a

smaller probability of observing a caustic for x1ℓ−1
f > 1.5. The higher probability densities

occurring around x1ℓ
−1
f = 0.5 for the AFRC setpoints are likely due to the increase in

the turbulence integral scale in the mixed layer region, caused by the increase in the ABL

height, zi. The ℓf parameter is not able to collapse the data for significant increases in the

turbulence integral scale. The increasing turbulence integral scale results in a significant

increase in the caustics observed near the initial propagation plane.
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An empirical modification can be made to the current form of ℓf in order to collapse

the caustic PDFs. The constant C1 is assumed to be a function of the ABL height,

C1 = F (zi). Then, several simulations are performed at different zi values to determine the

values of C1 required at each zi to collapse the caustic PDFs. A line of best fit of this data

will then provide the functional form of C1. The setpoints KSC6, KSC12, AFRC1, and

AFRC3 were used to obtain C1(zi). Once the optimal C1 values to collapse the PDFs were

determined, a line of best fit was computed by least squares regression. The line of best fit

is shown in Fig. 5-9. The appropriate expression for C1 is thus,

C1(zi) = a1 − b1 log(zi), (5-27)

where a1 = 0.74 ± 0.03 and b1 = 0.208 ± 0.009. The exact numerical values used

in our predictions are shown in Fig. 5-9. Although the zi values used to obtain this

expression range from 457.3 m to 1344.0 m, C1(zi) is assumed to follow Eqn. 5-27 for

typical values of zi measured during SonicBAT (approximately 200 m to 2000 m) [20].

It is not recommended that Eqn. 5-27 be used outside of this range, without additional

simulation or experimental testing. Equation 5-27 replaces C1 in Eqn. 5-26 to collapse

the PDFs for all of the cases. These PDFs are shown in Fig. 5-10. The agreement is

significantly improved compared to the previous results.

For the remainder of Chapter 5, ℓf is computed in the mixed layer with C1 = C1(zi),

according to Eqn. 5-27. The values of ℓf in the mixed layer region are shown in Table 5-3.

For each setpoint considered, ℓf is between 2 to 4 km. This implies that, using PCBoom

or another ray-tracing sonic boom prediction software, an estimate for the ground

locations where a caustic is most likely to occur can be determined by examining the ray

path propagation distance from zi to the ground. If the propagation distance through the

ABL is between 0.5ℓf and 1.5ℓf , then the simulations performed here suggest that the

probability of a caustic occurring in this region is higher than anywhere else in the field.
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Figure 5-9. The optimal C1 coefficients for four different zi values, and a line of best fit
computed by least squares regression.
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Figure 5-10. Probability density functions of the location of the first caustic along the
propagation direction for each setpoint. Computed with C1 = C1(zi) in ℓf .
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Additionally, for regions of the sonic boom carpet where the propagation distance through

turbulence is greater than 5ℓf , there is a low probability of a caustic occurring.

Table 5-3. Values of ℓf in the mixed layer region for each ABL setpoint considered.
Flight No. ℓf (m)
KSC20 3890
KSC1 3540
KSC12 2948
KSC6 2369
KSC17 2763
AFRC1 2565
AFRC2 2724
AFRC3 3014

5.3.2 Waveforms

Figures 5-11, 5-12, and 5-13 show waveforms obtained at ground level for 5◦ and 35◦

elevation angles corresponding to KSC20, KSC6, and AFRC3 setpoints, respectively. An

elevation angle of 35◦ is representative of sonic boom propagation directly undertrack of

the flight path, and generally the propagation distance through turbulence x1ℓ−1
f is small

compared to regions in the primary carpet that are at a greater lateral distance from

the flight path. The waveforms in the undertrack region tend to follow an N-wave shape,

with some spikes present just behind the leading and trailing shocks. In contrast, the

waveforms at ground level for a 5◦ elevation angle show significantly more variability due

to turbulence, specifically for KSC6 and AFRC3. These waveforms represent waveforms

that may be present near the lateral cutoff region of the primary carpet. The increased

variability of the boom shape is due to the increase in x1ℓ
−1
f . Since ℓf incorporates both

changes in fluctuation intensity (σT and σu) and length scale (LT and Lu), an increase in

any of these parameters will lead to more significant turbulent distortion of the waveform

for the same dimensional propagation distance.

Maglieri and Sothcott [195] developed waveform classifications to categorize the

distortion of traditional N-wave sonic boom signatures by turbulence. These classifications

are shown in Fig. 5-14, adapted from Bradley et al. [20]. The letter designations signify
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Figure 5-11. Two sonic boom waveforms obtained with simulations through ABL
turbulence corresponding to the KSC20 setpoint. Waveforms are computed at
ground level for a 35◦ elevation angle (solid black line) and a 5◦ elevation
angle (dashed blue line).
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Figure 5-12. Two sonic boom waveforms obtained with simulations through ABL
turbulence corresponding to the KSC6 setpoint. Waveforms are computed at
ground level for a 35◦ elevation angle (solid black line) and a 5◦ elevation
angle (dashed blue line).
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Figure 5-13. Two sonic boom waveforms obtained with simulations through ABL
turbulence corresponding to the AFRC3 setpoint. Waveforms are computed
at ground level for a 35◦ elevation angle (solid black line) and a 5◦ elevation
angle (dashed blue line).

N-wave signatures (N), peaked signatures (P), spiked signatures (S), rounded signatures

(R), and signatures likely to be observed near the lateral cutoff (CO). The remaining

waveform types have attributes corresponding to more than one of the waveform types

previously listed. For example, NP signatures are considered to be between a traditional

N-wave and a peaked N-wave. Several of these waveform types are observed in Figs. 5-11,

5-12, and 5-13. The waveforms shown in Fig. 5-11 for KSC20 are of type N, which is to

be expected, since the turbulence intensity at this condition is low and zi is small as well.

For AFRC3 (Fig. 5-13), we see a type CO waveform for the 5◦ elevation case. Since this

elevation angle corresponds to a location near the lateral cutoff, it is unsurprising that a

type CO waveform is present at this location. Both waveforms shown for KSC6 (Fig. 5-12)

would likely be categorized as PP (peaked-peaked), since two distinct initial peaks are

observed. This type of waveform was the most observed waveform during the SonicBAT

campaign at AFRC, and the third most observed waveform at KSC [20].
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Figure 5-14. Categories of waveforms typically observed in a turbulent ABL when the
sonic boom at z = zi is a traditional N-wave type boom.

5.3.3 Sonic Boom Overpressure

Statistics of the sonic boom overpressure are computed along the propagation

direction for each atmosphere considered at 6 different elevation angles. Since sbABL

assumes a plane wave, geometrical spreading of the waveform is not accounted for in

these predictions, similar to Chapter 4. Geometrical spreading will act to attenuate the

waveform, and likely reduce the magnitude of the caustics that are likely to form in the

ABL. Thus, the average values of the sonic boom overpressure computed here are likely

not representative of a true sonic boom waveform propagating in the ABL, however, we

still choose to examine this quantity for the purposes of assessing the scaling of the results

by ℓf . The distributions of ∆p are likely representative of what would be measured during

sonic boom test flights, since they approximately follow a Gamma distribution, which

agrees with previous laboratory measurements of N-waves propagating through turbulence

[64]. However, there may be some disagreement in the highest amplitude overpressure

observations due to geometrical spreading and 3D effects that are neglected here.

Figure 5-15 displays the average and standard deviation of the sonic boom overpressure

normalized by the nominal value at the ABL height, zi, for a weakly convective atmosphere.
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The average overpressure for each elevation angle in Fig. 5-15 is collapsed along x1ℓ−1
f .

Although inhomogeneity is present in the computational domain, it only occurs in the

final 10% of propagation for each elevation angle. It appears that the inhomogeneity does

not have a significant impact on the overpressure statistics for the weak convection ABL,

since the ℓf parameter in the mixed layer region is effective at collapsing the data. If the

inhomogeniety near the ground had a siginificant impact on the average overpressure,

it is likely that the curves at 10◦ to 45◦ elevation would deviate slightly from the 5◦

results. This appears to happen for the standard deviation of the overpressure, where σ∆p

is slightly below the 5◦ results at the end of propagation of the larger elevation angles.

However, this deviation is quite small and may simply be a consequence of a finite sample

size of realizations to compute the statistics.

A B

Figure 5-15. Average and standard deviation of the sonic boom overpessure for KSC20. A)
∆p/∆pnom and B) σ∆p.

For each ABL setpoint, the results for different elevation angles for the sonic boom

overpressure, rise time, and loudness metrics are found to approximately follow the same

curve along x1ℓ−1
f . Therefore, when comparing the average and standard deviation of our

results across different setpoints, we examine only the 5◦ elevation angle results. The sonic

boom overpressure along the normalized propagation direction for the 5◦ elevation case

is plotted in Fig. 5-14 for each ABL setpoint. As the convection level of the atmosphere
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increases, there are several factors that effect the overpressure statistics. First, if the

inversion height, zi, increases, then so does the von Kármán length scales of the turbulence

(see Eqn. 5-6) in the mixed layer. Secondly, the rms magnitude of the temperature

fluctuations in the mixed layer increases. Lastly, the inhomogeneity in the rms magnitude

of the temperature fluctuations near the ground increases. The ℓf parameter has been

empirically modified to account for large changes in the von Kármán scales of turbulence,

which double or triple in magnitude in the mixed layer for the AFRC setpoints with

respect to the KSC setpoints. It has previously been suggested that increasing the outer

length scale of the turbulent field could lead to additional attenuation of the average

overpressure [196]. The empirical correction to ℓf results in better agreement of the

overpressure curves across all of the setpoints considered. No modification was made

to ℓf to account for inhomogeneity of the turbulence. The simulation results suggest

that this inhomogeneity in the lowest 10% of the atmosphere does not have a significant

effect on the simulation results for the overpressure, since no significant changes to the

average overpressure occurred in the last 10% of propagation. Not only does the increasing

length scale of the turbulence affect the average overpressure, it also has an impact on

the standard deviation. In Fig. 5-16B, as the von Kármán scales increase, so does the

maximum standard deviation attained by the sonic boom overpressure.

The sonic boom overpressure distributions at the ground for two elevation angles of

KSC20 are shown in Fig. 5-17. The 5◦ elevation angle is representative of observations at

large lateral distances from the flight track, and the 35◦ elevation angle is representative

of the overpressure observations directly undertrack. As the elevation angle increases, the

propagation distance through the turbulent ABL decreases, and therefore the distributions

exhibit less spreading. The distributions also appear to follow a Gamma distribution,

which is consistent with previous experimental measurements [64].

An increase in the convective parameter, ziL−1
o , appears to lead to an increase in the

spread of the overpressure distributions at the ground. Figure 5-18 shows the distributions
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Figure 5-16. Average and standard deviation of the sonic boom overpressure for each ABL
setpoint at a 5◦ elevation angle. A) ∆p/∆pnom and B) σ∆p.

A B

Figure 5-17. Overpressure distributions at the ground for KSC20 at two elevation angles.
A) 5◦ and B) 35◦.

of the sonic boom overpressure on the ground for KSC6 at the same 2 elevation angles.

Similar to the results for KSC20, larger elevation angles (and correspondingly shorter

propagation distances) lead to a lower spread of the overpressure data. This implies

that directly undertrack of the flight path, a caustic region is less likely to occur.

However, far from the flight path where the elevation angle is smaller, a caustic region

is more likely to occur, but the average overpressure measurement will be lower than

directly undertrack of the aircraft. Similar conclusions can be drawn about the AFRC3

overpressure distributions at 5◦ and 35◦ elevation angles, shown in Fig. 5-19.
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A B

Figure 5-18. Overpressure distributions at the ground for KSC6 at two elevation angles.
A) 5◦ and B) 35◦.

A B

Figure 5-19. Overpressure distributions at the ground for AFRC3 at two elevation angles.
A) 5◦ and B) 35◦.

The distributions of the sonic boom overpressure are compared to Gamma distributions

that fit the data at several locations along the propagation direction for 3 atmospheres

that represent an atmosphere with weak, moderate, and strong convection. These

setpoints are KSC20, KSC6, and AFRC3, respectively. Probability plots of the sonic

boom overpressure are used to determine if the data followed a Gamma distribution. For

KSC20, the overpressure data was examined up to a propagation distance of x1ℓ−1
f = 7,

which corresponds to an elevation angle of 1◦. Figure 5-20 shows the probability plots at

x1ℓ
−1
f = 1 and x1ℓ

−1
f = 7. At no point along the propagation direction for KSC20 did the
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overpressure data follow a Gamma distribution in the 5% to 95% range. Thus, the sonic

boom overpressure for the atmosphere with weak convection was determined to not follow

a Gamma distribution for x1ℓ−1
f ≤ 7. However, Fig. 5-20 shows that the data tends to

become more “Gamma like” as x1ℓ−1
f increases. This is a trend that is observed in each

ziL
−1
o condition for the N-wave simulations.
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Figure 5-20. Overpressure distributions compared to a Gamma distribution for KSC20. A)
x1ℓ

−1
f = 1 and B) x1ℓ−1

f = 7.

For KSC6, the distributions more closely follow a Gamma distribution as x1ℓ−1
f

increases. Figure 5-21 shows the overpressure distributions at x1ℓ−1
f = 0.5, 1, 2, and 4.

The observations are skewed to the right of a Gamma distribution at x1ℓ−1
f = 0.5, but

more closely follow a Gamma distribution at x1ℓ−1
f = 4. For the same x1ℓ−1

f locations,

the overpressure observations more closely follow a Gamma distribution as the convective

parameter increases. This is confirmed by the results for AFRC3.

Figure 5-22 shows the sonic boom overpressure distributions for x1ℓ−1
f = 0.5, 1, 2, and

4 for the ABL with strong convection, AFRC3. The sonic boom overpressure is initially

not Gamma distributed at x1ℓ−1
f = 0.5, but quickly becomes Gamma distributed for

x1ℓ
−1
f ≥ 2. For x1ℓ−1

f ≥ 2, the distributions follow a Gamma distribution for almost all

of the observations, including the largest increases in the overpressure (∆p/∆pnom > 2).

Thus, the simulation results indicate that as the convective parameter increases, the
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Figure 5-21. Overpressure distributions compared to a Gamma distribution for KSC6. A)
x1ℓ

−1
f = 0.5, B) x1ℓ−1

f = 1, C) x1ℓ−1
f = 2, and D) x1ℓ−1

f = 4.

location where the sonic boom overpressure becomes Gamma distributed decreases,

in terms of x1ℓ−1
f . In general, whether or not the sonic boom overpressure is Gamma

distributed on the ground will depend on the ray path propagation distance from the top

of the ABL to the ground, ∥r(x, y, z = zi) − r(x, y, z = 0)∥, the value of ℓf in the mixed

layer, and the convection parameter, ziL−1
o . For weak and moderate convection levels,

the overpressure observations will likely not follow a Gamma distribution in any region of

the primary carpet. However, for moderate convection, a Gamma distribution may be a

sufficient approximation of the overpressure observations at large lateral distances from the

flight path.
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Figure 5-22. Overpressure distributions compared to a Gamma distribution for AFRC3.
A) x1ℓ−1

f = 0.5, B) x1ℓ−1
f = 1, C) x1ℓ−1

f = 2, and D) x1ℓ−1
f = 4.

5.3.4 Rise Time

Similar to the sonic boom overpressure results, the average and standard deviation

of the rise time across all elevation angles for a single ABL setpoint was found to collapse

onto a single curve along x1ℓ−1
f . Thus, we only consider the results for a 5◦ elevation angle

for each ABL setpoint in Fig. 5-23. Figure 5-23 shows the average and standard deviation

of the rise time for each ABL setpoint. The average rise time along the propagation

direction for all the values of ziL−1
o considered here increases linearly along x1ℓ−1

f . The

rate of increase of τ s/τ snom also increases with respect to the turbulence integral scale

in the mixed layer. The curves of στs for weak to moderate convection levels appear to
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be quite similar, deviating only in magnitude as x1ℓ−1
f increases. However, for strong

convection, στs increases at an approximately linear rate for all x1ℓ−1
f examined. Both the

average and standard deviation of the rise time are sensitive to increases in the turbulence

integral length scales.
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Figure 5-23. Average and standard deviation of the rise time for each ABL setpoint at a 5◦

elevation angle. A) ∆τ s/∆τnom
s and B) στs .

The distribution of the rise times at ground level for 5◦ and 35◦ elevation angles are

shown in Figs. 5-24, 5-25, and 5-26 for KSC20, KSC6, and AFRC3, respectively. The

distributions approximately follow a Log-Normal distribution on the ground. At larger

elevation angles, the distribution is more concentrated around the nominal rise time.

However, at these elevation angles, the rise time can still experience increases of 10 to 20

times the nominal condition, depending on the atmosphere. A general trend is observed

that the spread of the rise time distribution increases with the convection level of the

atmosphere.

The rise time distributions are compared to a theoretical Log-Normal distribution at

several locations along the propagation direction. Figure 5-27 shows the probability plots

of the rise time distributions for KSC20 at x1ℓ−1
f = 1 and x1ℓ

−1
f = 6. At no point along the

propagation direction was it determined that the data follows a Log-Normal distribution

between 5% and 95% cumulative probability. However, the data becomes increasingly
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A B

Figure 5-24. Rise time distributions at the ground for KSC20 at two elevation angles. A)
5◦ and B) 35◦.

A B

Figure 5-25. Rise time distributions at the ground for KSC6 at two elevation angles. A) 5◦

and B) 35◦.

Log-Normal as x1ℓ−1
f increases, as can be seen in Fig. 5-27. Specifically, only the data

above 90% cumulative probability at x1ℓ−1
f = 6 deviates from a Log-Normal distribution.

This data represents large increases in the rise time from the nominal condition, on the

order of 20 to 50 times the nominal rise time. The distance x1ℓ−1
f = 6 corresponds to

a physical distance greater than 21 km for the KSC20 setpoint. It is unlikely that even

the ray paths corresponding to the edge of the primary carpet propagate a distance of 21

km through the turbulent ABL before reaching the ground. Thus, in an ABL with weak

convection, we can expect distributions of the rise time throughout the primary carpet
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A B

Figure 5-26. Rise time distributions at the ground for AFRC3 at two elevation angles. A)
5◦ and B) 35◦.

region to not follow a Log-Normal distribution. The Log-Normal distribution may only

serve as a very crude approximation of the rise time distributions in this situation.
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Figure 5-27. Rise time distributions compared to a Log-Normal distribution for KSC20.
A) x1ℓ−1

f = 1 and B) x1ℓ−1
f = 6.

Figure 5-28 shows the probability plots of the rise time distributions for KSC6 at

x1ℓ
−1
f = 0.5, 1, 2, and 3. In contrast to an atmosphere with weak convection, events

representing a substantial decrease in the rise time (up 10% cumulative probability) occur

less frequently than what is predicted by a Log-Normal distribution for x1ℓ−1
f ≤ 1. From

the plots in Fig. 5-28, we can see that the rise time distribution becomes Log-Normal in
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the 0.1% to 90% range when x1ℓ
−1
f ≥ 2. Similar to the KSC20 results, events that cause

significant increases in the rise time (in this case, greater than 20 times the nominal rise

time) do not follow a Log-Normal distribution. This is a general trend observed for all

simulations.

10
0

10
1

0.0001

      
0.001 

0.005 
      

0.05  

      

0.25  

0.5   

0.75  

      

0.95  

      
0.995 

0.999 
      

0.9999

A

10
0

10
1

0.0001

      
0.001 

0.005 
      

0.05  

      

0.25  

0.5   

0.75  

      

0.95  

      
0.995 

0.999 
      

0.9999

B

10
0

10
1

10
2

0.0001

      
0.001 

0.005 
      

0.05  

      

0.25  

0.5   

0.75  

      

0.95  

      
0.995 

0.999 
      

0.9999

C

10
0

10
1

10
2

0.0001

      
0.001 

      
0.01  

0.05  
      

0.25  

0.5   

0.75  

      
0.95  

0.99  
      

0.999 
      

0.9999

D

Figure 5-28. Rise time distributions compared to a Log-Normal distribution for KSC6. A)
x1ℓ

−1
f = 0.5, B) x1ℓ−1

f = 1, C) x1ℓ−1
f = 2, and D) x1ℓ−1

f = 4.

Figure 5-29 shows the rise time distributions at x1ℓ−1
f = 0.5, 1, 2, and 3 for AFRC3.

Decreases in the rise time from the nominal condition are not well represented by the

Log-Normal distribution at any x1ℓ−1
f simulated for AFRC3. For AFRC3, the rise time

data becomes Log-Normal between 1% to 90% cumulative probability for x1ℓ−1
f ≥ 3. For

this setpoint, we do not observe any decreases in the rise time from the nominal condition
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past x1ℓ−1
f = 3. Consistent with the weak to moderate convection conditions, the largest

increases in the rise time do not conform to a Log-Normal distribution for any x1ℓ−1
f .

10
0

10
1

0.0001

      
0.001 

      
0.01  

0.05  
      

0.25  

0.5   

0.75  

      
0.95  

0.99  
      

0.999 
      

0.9999

A

10
0

10
1

0.0001

      
0.001 

0.005 
      

0.05  

      

0.25  

0.5   

0.75  

      

0.95  

      
0.995 

0.999 
      

0.9999

B

10
0

10
1

10
2

0.0001

      
0.001 

0.005 
      

0.05  

      

0.25  

0.5   

0.75  

      

0.95  

      
0.995 

0.999 
      

0.9999

C

10
0

10
1

10
2

0.0001

      
0.001 

      
0.01  

0.05  
      

0.25  

0.5   

0.75  

      
0.95  

0.99  
      

0.999 
      

0.9999

D

Figure 5-29. Rise time distributions compared to a Log-Normal distribution for AFRC3.
A) x1ℓ−1

f = 0.5, B) x1ℓ−1
f = 1, C) x1ℓ−1

f = 2, and D) x1ℓ−1
f = 3.

5.3.5 Noise Metrics

Similar to the overpressure and rise time statistics, the average and standard

deviation of the loudness metrics for different elevation angles tend to follow the same

curve for the same atmospheric setpoint. Thus, we will compare the results at a 5◦

elevation angle for different atmospheric setpoints and omit showing the plots of the

average and standard deviations for elevation angles between 5◦ and 45◦. Figure 5-30

shows the average and standard deviation of the ∆PL for each ABL setpoint. For the KSC
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setpoints, the ∆PL are very similar along x1ℓ−1
f . This is likely due to zi for each setpoint

being relatively close in value, and therefore causing the integral scale of the turbulence

in the mixed layer region to be similar for the two setpoints. In contrast, zi for the AFRC

setpoints is much larger than the KSC setpoints, this leads to a much larger decrease in

the ∆PL as a function of x1ℓ−1
f . The standard deviation of ∆PL for the KSC setpoints

approximately agree along x1ℓ−1
f , with the maximum acheived σ∆PL increasing with zi.

The AFRC setpoints deviate slightly from the KSC setpoints, with a larger maximum

σ∆PL attained past x1ℓ−1
f = 1. However, the initial rate of increase of σ∆PL collapsed in

the region x1ℓ
−1
f ≤ 0.4. The results in Fig. 5-30, and the additional results shown for

∆ISBAP, ∆BSEL, ∆DSEL, and ∆ESEL in Figs. 5-31, 5-32, 5-33, and 5-34, indicate the

ability of ℓf to collapse the standard deviations for x1ℓ−1
f ≤ 0.4. For log(−ziL−1

o ) ≲ 1,

ground locations in the primary carpet that are undertrack of the flight path tend to

have propagated less than 0.5ℓ−1
f .1 This suggests that directly undertrack, flight test

measurements of the standard deviation of the loudness metrics for KSC20, KSC1, and

KSC12 may increase linearly with x1ℓ
−1
f .

The statistics of the ∆ISBAP, ∆BSEL, ∆DSEL, and ∆ESEL along x1ℓ−1
f are very

similar to the results obtained for the ∆PL. Figures 5-31, 5-32, 5-33, and 5-34 show

the average and standard deviation of the difference in each metric from the nominal

condition for ISBAP, BSEL, DSEL, and ESEL, respectively. The results for the KSC

setpoints show good agreement for each metric, and the AFRC results consistently

experience a larger average decrease of the metric value from the nominal condition. For

each metric considered, the standard deviation of the data does not exceed 4 dB for any

of the atmospheric setpoints. The maximum standard deviations for the KSC setpoints

1 This was determined by computing the elevation angle from the PCBoom results at
zi and z = 0 directly undertrack of the flight path. Then determining the dimensional
propagation distance and computing ℓf for each convection level.
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Figure 5-30. Average and standard deviations of the ∆PL for each ABL setpoint. A) ∆PL
and B) σ∆PL.

are between 3.25 dB and 3.75 dB for each metric, which is consistent with PL standard

deviations recently obtained with KZK simulations [197].
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Figure 5-31. Average and standard deviations of the ∆ISBAP for each ABL setpoint. A)
∆ISBAP and B) σ∆ISBAP.

The distributions of ∆PL are shown in Fig. 5-35 at ground level for KSC20. Similar

to the overpressure and rise time distributions, the spread of the data is more significant

for smaller elevation angles, where the propagation distance through turbulence is larger.

Shown in Fig. 5-35 are normal distributions fit to the data. The ∆ISBAP, ∆BSEL,

∆DSEL, and ∆ESEL loudness metric distributions (shown in Appendix C) can also be
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Figure 5-32. Average and standard deviations of the ∆BSEL for each ABL setpoint. A)
∆BSEL and B) σ∆BSEL.
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Figure 5-33. Average and standard deviations of the ∆DSEL for each ABL setpoint. A)
∆DSEL and B) σ∆DSEL.

approximated by a normal distribution. The normal distribution assumption will be fairly

accurate for cumulative probabilities between 10% and 90%, as has been shown in previous

work [18] and Chapter 4.

The ∆PL distributions are also displayed at ground level for moderate (Fig. 5-45) and

strong convection (Fig. 5-47). Consistent with the weak convection ABL, the distributions

here can also be approximated by a normal distribution and exhibit a larger spread for

larger propagation distances. For the 5◦ elevation angle, a skewness to the right of a
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Figure 5-34. Average and standard deviations of the ∆ESEL for each ABL setpoint. A)
∆ESEL and B) σ∆ESEL.

A B

Figure 5-35. Distributions of the ∆PL at ground level for KSC20 at two elevation angles.
A) 5◦ and B) 35◦.

normal distribution is visually apparent in the data. This suggests that as the propagation

distance through turbulence increases, the distribution of PL skews to the right of normal.

This will be investigated by examining probability plots of the data.

In Chapter 4, it was shown that the PL metric for an N-wave is normally distributed

for x1ℓ−1
f ≤ 2.1 when the integral scale of the turbulence is set to 100 m and there

are no temperature fluctuations present. Beyond x1ℓ
−1
f = 2.1, the distributions

became right-skewed of a normal distribution. We observe a similar trend for the ∆PL

distributions in the simulations performed here. Figure 5-38 displays the cumulative
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A B

Figure 5-36. Distributions of the ∆PL at ground level for KSC6 at two elevation angles.
A) 5◦ and B) 35◦.

A B

Figure 5-37. Distributions of the ∆PL at ground level for AFRC3 at two elevation angles.
A) 5◦ and B) 35◦.

probability of the data compared to a normal distribution for KSC20 at x1ℓ−1
f = 1, 2, 4,

and 6. At x1ℓ−1
f = 2, the data follows a normal distribution from 1% to 99% cumulative

probability. Beyond x1ℓ
−1
f = 2 and up to x1ℓ−1

f = 4, the data is only slightly skewed to

the right of normal, such that a normal distribution is a very good approximation of the

∆PL observations in this range. By the time x1ℓ−1
f = 6 the data is noticeably skewed to

the right of a normal distribution.

Figures 5-39 and 5-40 show the probability plots of the ∆PL distributions for the

moderately convective and strongly convective setpoints. For the KSC6 setpoint (Fig.
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Figure 5-38. Cumulative probability plots of the ∆PL distributions for KSC20 compared
to a Normal distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 4, and D)
x1ℓ

−1
f = 6.

5-39) and AFRC3 setpoint (Fig. 5-40), skewness in the ∆PL distribution is apparent for

x1ℓ
−1
f ≥ 2, which is consistent with the simulations through homogeneous turbulence.

However, in the 2 ≤ x1ℓ
−1
f ≤ 3 range, the ∆PL observations are still well approximated

by a normal distribution. Figures 5-39A and 5-40A also show that the PL distribution is

peaked for x1ℓ−1
f ≲ 1, which means that the PL values are more concentrated near the

mean.

The ∆ISBAP distributions compared to a theoretical normal distribution are shown

in Figs. 5-41, 5-42, and 5-43 for KSC20, KSC6, and AFRC3, respectively. The ∆ISBAP
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Figure 5-39. Cumulative probability plots of the ∆PL distributions for KSC6 compared to
a Normal distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 4, and D)
x1ℓ

−1
f = 6.

transitions occur in approximately the same region as the ∆PL transitions, and so

do the ∆BSEL, ∆DSEL, and ∆ESEL (shown in Appendix C). Figures 5-41a, 5-42a,

and 5-43a show the ∆ISBAP distribution closely adhering to a normal distribution

before the transition region, except for the most extreme events (deviations from the

average ∆ISBAP of more than 6 to 8 dB). After the transition region, Figs. 5-41b, 5-42b,

and 5-43b show that the data becomes right-skewed of normal, similar to the PL data

previously shown. This right-skewness appears to be consistent for the loudness metrics
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Figure 5-40. Cumulative probability plots of the ∆PL distributions for AFRC3 compared
to a Normal distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 3, and D)
x1ℓ

−1
f = 4.

considered. Also, for the range of x1ℓ−1
f simulated here, the loudness metrics are well

approximated by a normal distribution in the 10% to 90% cumulative probability range.

The distributions are normal for x1ℓ−1
f ≲ 2 and the standard deviations are collapsed

across each ABL setpoint for x1ℓ−1
f ≤ 0.4. Therefore, the PDF of each loudness metric

considered here in the x1ℓ−1
f ≤ 0.4 range is,

f(∆χ) =
1

MN
∆χx1ℓ

−1
f

√
2π

exp

−0.5

(
∆χ−∆χ

MN
∆χx1ℓ

−1
f

)2
 , (5-28)
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Figure 5-41. Cumulative probability plots of the ∆ISBAP distributions for KSC20
compared to a Normal distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C)

x1ℓ
−1
f = 4, and D) x1ℓ−1

f = 6.

where ∆χ is any one of ∆PL, ∆ISBAP, ∆BSEL, ∆DSEL, or ∆ESEL, and ∆χ is the

average value. Also, the standard deviation in f(∆χ) has been replaced by MN
∆χx1ℓ

−1
f ,

where MN
∆χ is the slope of the standard deviation of the loudness curves for the N-wave.

The average of MN
∆χ, as well as the standard deviation, are provided in Table 5-4 for

each loudness metric. In Eqn. 5-28, MN
∆χ can be replaced by its average value across all

setpoints to obtain an estimate of the distributions for ∆χ−∆χ.
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Figure 5-42. Cumulative probability plots of the ∆ISBAP distributions for KSC6
compared to a Normal distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C)

x1ℓ
−1
f = 4, and D) x1ℓ−1

f = 6.

Table 5-4. Average and standard deviation of MN
∆χ for each loudness metric of the N-wave

simulations.
Metric Average of MN

∆χ (dB) Std. Dev. of MN
∆χ (dB)

PL 7.87 1.16
ISBAP 5.61 0.53
BSEL 6.85 0.79
DSEL 6.13 0.72
ESEL 7.99 1.14
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Figure 5-43. Cumulative probability plots of the ∆ISBAP distributions for AFRC3
compared to a Normal distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C)

x1ℓ
−1
f = 4, and D) x1ℓ−1

f = 5.

5.4 Shaped Waveform Results

5.4.1 Waveforms

Figures 5-44, 5-45, and 5-46 display the shaped booms at ground level for two

elevation angles (5◦ and 35◦) of the KSC20, KSC6, and AFRC3 simulations, respectively.

For the atmosphere with weak convection, the waveform near the carpet edge is not

significantly distorted by the turbulence with respect to the waveform for a 35◦ elevation

angle, which is likely to be directly undertrack of the flight path. The combination of the

low turbulence intensity and length scale, along with the shorter propagation distance
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through ABL turbulence (as a result of a smaller zi), leads to no significant distortion

of the X-59 waveforms from the nominal condition at z = zi for an atmosphere with

weak convection. The KSC6 waveforms in Fig. 5-45 display the increasing turbulent

distortion of the waveforms caused by the increasing turbulence levels. There is additional

rounding of the waveform for 5◦ elevation (x1ℓ−1
f = 2.27) compared to the waveform

at an undertrack location. There is also some noticeable post-boom noise present at

x1ℓ
−1
f = 2.27, which is a result of turbulent scattering. For AFRC3, the 5◦ elevation

(x1ℓ−1
f = 4.95) simulation shows considerable post-boom levels, with pressure fluctuations

on the order of the initial boom. The effect of turbulent scattering on the waveform at this

location has led to a signal that no longer has a shape similar to the nominal condition.
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Figure 5-44. Two X-59 sonic boom waveforms obtained with simulations through ABL
turbulence corresponding to the KSC20 setpoint. Waveforms are computed at
ground level for a 35◦ elevation angle (solid black line) and a 5◦ elevation
angle (dashed blue line).

5.4.2 Sonic Boom Overpressure

The average and standard deviation of the sonic boom overpressure for the X-59

waveform are shown in Fig. 5-47. These predictions are obtained at a 5◦ elevation angle.

The average overpressure decreases linearly along the propagation direction, with the
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Figure 5-45. Two X-59 sonic boom waveforms obtained with simulations through ABL
turbulence corresponding to the KSC6 setpoint. Waveforms are computed at
ground level for a 35◦ elevation angle (solid black line) and a 5◦ elevation
angle (dashed blue line).
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Figure 5-46. Two X-59 sonic boom waveforms obtained with simulations through ABL
turbulence corresponding to the AFRC3 setpoint. Waveforms are computed
at ground level for a 35◦ elevation angle (solid black line) and a 5◦ elevation
angle (dashed blue line).
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slope of the average overpressure increasing in magnitude as zi increases. The maximum

standard deviation attained for the X-59 sonic boom overpressure increases with zi as well.

The maximum overpressure standard deviation range for the simulations considered here is

2 (Pa) ≤ σ∆p ≤ 6 (Pa).

A

x1ℓf
− 1

0 1 2 3 4 5
σ

Δ
p
(P

a)
0

1

2

3

4

5

6

7

8

9

10

KSC20 KSC1
KSC12 KSC6
KSC17 AFRC1
AFRC2 AFRC3

B

Figure 5-47. Average and standard deviation of X-59 sonic boom overpressure for each
ABL setpoint at a 5◦ elevation angle. A) ∆p/∆pnom and B) σ∆p.

Histogram plots of the overpressure PDFs at ground level for elevation angles of 5◦

and 35◦ are shown in Appendix D for KSC20, KSC6, and AFRC3. The overpressure is

Gamma distributed except for AFRC3 when x1ℓ
−1
f ≳ 6. To demonstrate this, the sonic

boom overpressure is compared to a Gamma distribution in Figs. 5-48, 5-49, and 5-50.

For the KSC setpoints (Figs. 5-48 and 5-49) the X-59 sonic boom overpressure follows

a Gamma distribution throughout the entire range of x1ℓ−1
f considered. This is clear in

the plots for locations x1ℓ−1
f = 1, 2, 4, and 6, where the solid dashed line represents a

theoretical Gamma distribution. For the AFRC3 setpoint (Fig. 5-50), the overpressure

data follows a Gamma distribution up until x1ℓ−1
f ≳ 10, where the data then is skewed

to the right of a Gamma distribution. It is very unlikely that even at the carpet edge

the x1ℓ−1
f distance would be greater than 10, based on the simulations performed with

PCBoom.
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Figure 5-48. Cumulative probability plots of X-59 overpressure distributions for KSC20
compared to a Gamma distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C)

x1ℓ
−1
f = 4, and D) x1ℓ−1

f = 6.

The simulation results for the overpressure of the X-59 waveform in various

atmospheric boundary layers have implications for observations made in flight tests.

The first of which is the significant impact of the turbulence integral scale on the average

sonic boom overpressure observed at ground level. The simulation results here (Fig.

5-47) suggest that the average overpressure will be lower at the same x1ℓ−1
f locations

increasing zi. Measurements made during SonicBAT indicate that in general, the ABL

height at AFRC is larger during the daytime than KSC. NASA AFRC is also a dry

desert environment, in contrast to the humid climate of NASA KSC. Sonic boom flight
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Figure 5-49. Cumulative probability plots of X-59 overpressure distributions for KSC6
compared to a Gamma distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C)

x1ℓ
−1
f = 4, and D) x1ℓ−1

f = 6.

tests flown in atmospheric boundary layer environments similar to KSC (small zi, high

humidity) will likely record higher average overpressure measurements compared to dry

desert-like environments, which will have higher zi and lower humidity on average. It is

also apparent that zi does not have a significant influence on the distribution of the sonic

boom overpressure in the primary carpet region, since the simulations indicate here that

the overpressure follow a Gamma distribution everywhere except x1ℓ−1
f ≳ 10 for AFRC3.

In terms of physical distance, the sonic boom would have to propagate more than 30 km

through turbulence for an atmosphere with strong convection before the overpressure
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Figure 5-50. Cumulative probability plots of X-59 overpressure distributions for AFRC3
compared to a Gamma distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 4, C)

x1ℓ
−1
f = 6, and D) x1ℓ−1

f = 10.

observations became skewed right of a Gamma distribution. Thus, we can infer that the

overpressure distribution in the primary carpet region for the X-59 is likely to be Gamma

distributed for all zi, log(−ziL−1
o ), and turbulence intensities.

5.4.3 Loudness Metrics

The decrease in the average PL, ISBAP, BSEL, DSEL, and ESEL with respect to

their nominal values is shown in Figs. 5-51, 5-52, 5-53, 5-54, and 5-55 for each setpoint.

The decrease in the PL and ISBAP is more significant for the AFRC setpoints than

the weighted SELs, experiencing decreases between 3 to 5 dB from the nominal value
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on average for the 5◦ elevation cases. For ∆ISBAP, ∆BSEL, ∆DSEL, and ∆ESEL the

maximum average decrease is not greater than 1 dB for the KSC setpoints. For ∆PL, the

decrease from the nominal is on average not more than 2 dB. The standard deviations

of each loudness metric increase linearly for x1ℓ−1
f ≲ 0.5. The results in this region are

collapsed across all setpoints considered with respect to ℓf .
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Figure 5-51. Average and standard deviations of the ∆PL for each ABL setpoint of the
X-59 simulations. A) ∆PL and B) σ∆PL.
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Figure 5-52. Average and standard deviations of the ∆ISBAP for each ABL setpoint of the
X-59 simulations. A) ∆ISBAP and B) σ∆ISBAP.

For the N-wave, it was observed that the distributions of ∆PL and ∆ISBAP remain

normal for x1ℓ−1
f ≲ 2, but become increasingly skewed to the right of a normal distribution
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Figure 5-53. Average and standard deviations of the ∆BSEL for each ABL setpoint of the
X-59 simulations. A) ∆BSEL and B) σ∆BSEL.
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Figure 5-54. Average and standard deviations of the ∆DSEL for each ABL setpoint of the
X-59 simulations. A) ∆DSEL and B) σ∆DSEL.

as x1ℓ−1
f increases. Figures 5-56, 5-57, and 5-58 show a similar trend to the N-wave

results for the KSC20, KSC6, and AFRC3 setpoints of the X-59 waveform simulations.

Figure 5-56 shows that the distribution of ∆PL becomes right-skewed in the interval

4 ≤ x1ℓ
−1
f ≤ 6. In Figs. 5-57 and 5-58, we see that the PL distribution becomes skewed

for smaller x1ℓ−1
f , specifically in the range 2 ≤ x1ℓ

−1
f ≤ 4. For the KSC atmospheres,

directly undertrack of the flight path is generally x1ℓ−1
f < 1. Therefore, we can expect that

the ∆PL observations undertrack of the flight path for the KSC setpoints follow a normal
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Figure 5-55. Average and standard deviations of the ∆ESEL for each ABL setpoint of the
X-59 simulations. A) ∆ESEL and B) σ∆ESEL.

distribution. As the lateral distance from the flight path increases, the distributions are

likely to become skewed. The ∆PL observations directly undertrack of the flight path in

the AFRC ABL are also likely to be normally distributed, according to Fig. 5-58.

The ∆ISBAP distributions, shown in Figs. 5-59, 5-60, and 5-61 for KSC20, KSC6,

and AFRC3, follow the same trend as the PL distributions. Observations of the ∆ISBAP

for the weakly convective atmosphere transition from normally distributed to right-skewed

in the range 4 ≤ x1ℓ
−1
f ≤ 6. For the KSC6 and AFRC3 setpoints, this transition

occurs in the range 2 ≤ x1ℓ
−1
f ≤ 4. Thus, it appears that the conclusions drawn

for the ∆PL observations also apply to the ∆ISBAP observations. The observations

directly undertrack of the flight path are likely to be normally distributed, and become

increasingly right-skewed as the lateral distance from the flight path increases. The

∆BSEL, ∆DSEL, and ∆ESEL distributions follow the same trend. The transition region

is consistent for the moderate and strong convection setpoints, however, while the weak

convection case remains normally distributed for greater x1ℓ−1
f .

The distributions are normal for x1ℓ−1
f ≲ 2 and the standard deviations are collapsed

across each ABL setpoint for x1ℓ−1
f ≤ 0.4. Therefore, the PDF of each loudness metric

considered here in the x1ℓ−1
f ≤ 0.4 follows Eqn. 5-28, with MN

∆χ replaced by MX−59
∆χ .
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Figure 5-56. Cumulative probability plots of the ∆PL distributions for KSC20 compared
to a Normal distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 4, and D)
x1ℓ

−1
f = 6.

The average and standard deviations of MX−59
∆χ across all setpoints are provided in Table

5-5. The deviation of MX−59
∆χ across different setpoints is small for each loudness metric,

therefore, f(∆χ) can be obtained using the average value of MX−59
∆χ for each metric.

5.5 Summary

In this chapter, we have investigated the effects of modeled ABL turbulence on

the propagation of two sonic boom waveforms, an N-wave and shaped waveform of

similar amplitude. The ABL setpoints correspond to measurements taken at KSC and

AFRC during SonicBAT. An expression for ℓf was developed to collapse the PDF of
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Figure 5-57. Cumulative probability plots of the ∆PL distributions for KSC6 compared to
a Normal distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 4, and D)
x1ℓ

−1
f = 6.

Table 5-5. Average and standard deviation of MX−59
∆χ for each loudness metric of the X-59

simulations.
Metric Average of MX−59

∆χ (dB) Std. Dev. of MX−59
∆χ (dB)

PL 6.44 0.50
ISBAP 4.68 0.24
BSEL 3.80 0.20
DSEL 2.23 0.20
ESEL 4.03 0.22
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Figure 5-58. Cumulative probability plots of the ∆PL distributions for AFRC3 compared
to a Normal distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 4, and D)
x1ℓ

−1
f = 5.

the caustic locations in the N-wave simulations. This expression for ℓf approximates the

intensity and von Kármán length scales of turbulence in the mixed layer using the model

proposed by Wilson [198]. The results indicated that in order to collapse the caustic

PDFs, the coefficient C1 had to be empirically modified to be a function of zi. With this

modification, the caustic PDFs collapsed along x1ℓ−1
f .

The standard deviations of ∆p, ∆τ s, and the loudness metrics increase linearly for

the N-wave simulations when x1ℓ
−1
f ≤ 0.4. The slope of the curves for each setpoint

in this range may be approximated as equal for the purposes of quick estimation of the
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Figure 5-59. Cumulative probability plots of the ∆ISBAP distributions for KSC20
compared to a Normal distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C)

x1ℓ
−1
f = 4, and D) x1ℓ−1

f = 6.

variance of each quantity. The average values of the derivatives of the standard deviations

of the loudness metrics for the N-wave are provided in Table 5-4. These values, combined

with Eqn. 5-28, provide an estimate of the PDFs of each loudness metric in the range

x1ℓ
−1
f ≤ 0.4, which may be suitable for locations directly undertrack of the flight path in

an ABL with low to moderate turbulence intensity and convectiveness. Beyond this range,

the deviations are no longer collapsed and the model is no longer applicable. Additionally,

the simulation results here indicate that the loudness metrics are normally distributed
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Figure 5-60. Cumulative probability plots of the ∆ISBAP distributions for KSC6
compared to a Normal distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C)

x1ℓ
−1
f = 4, and D) x1ℓ−1

f = 6.

for x1ℓ−1
f ≤ 2 for each ABL setpoint. Beyond this location, the loudness metrics become

skewed to the right of normal.

The X-59 shaped waveform simulations indicate that the overpressure is Gamma

distributed in the primary carpet region for all convection levels investigated here.

Additionally, the loudness metrics are normally distributed in approximately the same

range as the loudness metrics for the N-wave, x1ℓ−1
f ≤ 2. This range is consistent with

the results in Chapter 4, except for the shaped waveform ISBAP results. The shaped

waveform investigated in Chapter 4 is different from the one considered here, and that
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Figure 5-61. Cumulative probability plots of the ∆ISBAP distributions for AFRC3
compared to a Normal distribution. A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C)

x1ℓ
−1
f = 4, and D) x1ℓ−1

f = 5.

may effect the distribution of the ISBAP metric. The standard deviations of each metric

collapsed in the x1ℓ−1
f ≤ 0.4 range, similarly to the N-wave metrics. The average values

of the derivatives of the standard deviations of the loudness metrics for the X-59 shaped

waveform are provided in Table 5-5. With knowledge of the standard deviations, an

estimate of the distribution of each metric relative to the mean value is obtained.
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CHAPTER 6
SONIC BOOM PROPAGATION BEYOND THE LATERAL CUTOFF

The objective of this chapter is to investigate the scattering and evanescent decay

of sonic boom waveforms into the shadow zone region, beyond the primary carpet. The

sonic boom carpet was introduced in Chapter 1, but will be revisited here for context.

The on-design cruising altitude of the NASA X-59 is approximately 50,000 ft [199],

which means that the sonic boom originates in the constant temperature layer of the

stratosphere, according to the ISO standard atmosphere [200]. Neglecting the effect of

atmospheric winds for the moment, the rays emanating from the source will follow a

straight line path through the constant temperature layer. This straight line propagation

is illustrated in Fig. 6-1. As the rays reach the troposphere, the temperature begins to

increase as the altitude decreases. This leads to upwards refraction of the sonic boom.

Eventually, only a portion of the ground directly under the aircraft is directly impacted

by the rays, this region is referred to in Chapter 1 as the primary sonic boom carpet.

At the edge of the primary carpet is the lateral cutoff, labeled in Fig. 6-1B (adapted

from Maglieri et al. [14]). Beyond the lateral cutoff is the shadow zone region. Standard

geometrical acoustics does not predict sonic boom in the shadow zone region. However,

the sonic boom waveform will decay into the shadow zone region beyond the lateral

cutoff location. This is due to the diffraction caused by the presence of the ground on the

waveform, as well as the scattering of the sonic boom caused by atmospheric turbulence.

Figure 6-2 provides a diagram of the limiting ray propagating from the aircraft down

to the lateral cutoff location, and back up into the atmosphere. In this diagram, R is the

radius of curvature of the limiting ray at the cutoff location, and x∗ is the coordinate

corresponding to the projection of the ray path on the ground. Figure 6-2 also shows the

computational domain of the simulations. The propagation direction x1 is aligned with x∗,

and the vertical coordinate x3 = z, where z is the altitude. The direction of the wind at

ground level is defined by θwind relative to the x direction. The wind direction relative to

232



A B

Figure 6-1. Illustrations of sonic boom raypaths through the atmosphere and a sonic boom
footprint. A) Sonic boom raypaths through the atmosphere and B) sonic
boom footprint at the ground.

x1 is θ1 = θwind − θwave, where θwave is angle between the wavefront normal at the carpet

location and the x coordinate,

θwave = tan−1

(
ny

nx

)
, (6-1)

nx is the component of the wavefront normal in x, and ny is the component of the

wavefront normal in y. The wavefront normal components can be obtained from PCBoom.

A B

Figure 6-2. Computational domain of the simulations. A) Illustration of the raypath from
aircraft to the cutoff location. B) Computational domain.
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6.1 Previous Approaches to Sonic Boom Prediction in the Shadow Zone

The decay of sound into a shadow zone region in a refractive atmosphere has been

the focus of several investigations [201–204]. Exact solutions exist, in the form of a

residue series, for linear sound decay into a shadow zone in a refractive medium with

no turbulence. The presence of turbulence in the medium is a complicating factor, as

the acoustic pressure in the wave region will scatter into the shadow zone region. In the

present investigation, we will examine how this scattering process affects the sonic boom

in the shadow zone region. Previous efforts have examined sonic boom in the shadow zone

region for a non-turbulent atmosphere by extending approaches used in linear acoustics.

Coulouvrat [205] approached the problem of sonic boom decay into the shadow

zone region by separating the propagation into two distinct parts. First, the sonic boom

propagates from the source to the carpet region. The effects of nonlinear distortion,

atmospheric absorption, and refraction strongly influence the sonic boom signal during

propagation from the source to the primary carpet. Predictions can be made for the

first step with geometrical acoustics. Second, the sonic boom signal at the lateral cutoff

location decays into the shadow zone due to diffraction effects caused by the presence of

the ground. The assumption that propagation during this second step is linear was made

by Coulouvrat [205] in order to approach the problem analytically. This assumption was

justified by performing an order of magnitude analysis on the nonlinear Tricomi equation,

and comparing the magnitude of the diffraction terms to the nonlinear terms for two

atmospheric models. These two atmospheric models are a standard atmosphere [200]

and a low temperature gradient atmosphere. For the standard atmosphere, the nonlinear

effects were small compared to diffraction. For the low temperature atmosphere, one

might expect that the nonlinear terms would become more important since the rays do

not undergo significant refraction as they propagate through the atmosphere. However,

the width of the primary carpet increases when the upwards refraction effects are smaller,

and hence the waveform at the lateral cutoff will undergo attenuation from geometrical
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spreading and atmospheric absorption. Coulouvrat [205] found that this attenuation kept

the magnitude of the nonlinear term small compared to the diffraction term. Thus, he

concluded that the linear acoustic assumption at the lateral cutoff is justified.

The results obtained here will be examined in a non-dimensional fashion similar

to the approach of Pierce [21] for diffraction near a caustic and Coulouvrat [205] for

diffraction at the lateral cutoff. Coulouvrat [205] provided an estimate of the propagation

time from the lateral cutoff to some point M in the shadow zone as,

ψt =
x∗

c0
+

√
8z3

9c20R
, (6-2)

where c0 is the speed of sound at ground level, R is related to the sound speed profile at

the cutoff location by

R = −c0
(
dc

dz

∣∣∣∣
z=0

)−1

, (6-3)

and z is the altitude. He then introduced the following non-dimensional variables to

examine the problem,

t̃ =
t− x∗c−1

0

Tinc
, (6-4)

x̃ =
x∗

(2c0TincR2)1/3
, (6-5)

z̃ =
21/3z

(c20T
2
incR

2)
1/3
, (6-6)

and

p̃ =
p

Pinc

, (6-7)

where Pinc is the incident overpressure at the lateral cutoff, and Tinc is the duration of the

pulse at the lateral cutoff. Using the nonlinear unsteady Tricomi equation, Coulouvrat

was able to obtain an analytical expression for the sound field beyond the cutoff in the

form of a series of creeping waves. This analytical result neglects the presence of any

atmospheric turbulence and compares favorably to maximum overpressure measurements
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of the Concorde sonic boom beyond the cutoff (Parmentier et al. [206]). It does, however,

underestimate the rise time of the sonic boom beyond the cutoff. This is not surprising,

since it is likely that the evanescent decay of pressure beyond the cutoff is the dominant

factor contributing to the maximum overpressure, while atmospheric turbulence is likely

to contribute to increased rise times of the sonic boom waveform (see for example, Lipkens

and Blackstock [189], or Yuldashev et al. [106]).

For the simulations performed here, we examine the results on a non-dimensional

basis. In Sec. 6.3, we generalize R to account for the effect of varying wind direction

on the refraction of the sonic boom through the effective sound speed. Since R will

account for varying wind direction, results obtained on a non-dimensional basis for a single

turbulence condition will hold for all values of the wind direction, as long as the refraction

remains upward. This is the reason for examining the results on a non-dimensional

basis. Before incorporating the mean wind into the non-dimensional variables in Eqns.

6-4 through 6-7, they must be modified to account for randomness in the atmosphere

due to turbulence. We can do this by replacing Pinc, R, and Tinc by their average values

P inc, R, and T inc. The average of R is computed using 250 realizations of the turbulent

atmosphere. The incident pressure and pulse duration, Pinc and Tinc, are determined by

propagating the limiting ray along a straight line path from the inversion layer height

in the ABL to the lateral cutoff location. The average of Pinc and Tinc is obtained by

averaging the results of these simulations at the cutoff location. The coordinate system of

sbABL is also aligned with x∗ and z such that, x1 = x∗, x3 = z, and τ = t − x∗c−1
0 . The

new non-dimensional variables for the simulations performed are,

τ̃ =
τ

T inc

, (6-8)

x̃1 =
x1(

2c0T incR
2
)1/3 , (6-9)

x̃3 =
21/3x3(

c20T
2

incR
2
)1/3 , (6-10)
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and

p̃ =
p

P inc

. (6-11)

6.2 Flight Conditions

The flight conditions considered in this chapter correspond exactly to the flight

conditions of Chapter 5. The first condition corresponds to an F-18 in steady level flight

at 53,200 ft and M = 1.336. No reflection factor was applied. In this study, the waveform

of the limiting ray at the top of the ABL is required as input to simulations performed

with sbABL in the shadow zone region. The waveform at the top of the ABL is first

propagated through the turbulent ABL by sbABL to simulate turbulence effects at the

lateral cutoff location in a real atmosphere. Then, the resulting “turbulized” waveform

is used as input to simulations into the shadow zone region. The waveform at the top of

the ABL is obtained using PCBoom, by first identifying the emission angle of the limiting

ray and then simulating the propagation of the limiting ray to an altitude equal to the

inversion height, zi. Thus, a different waveform is obtained by PCBoom for each ABL

condition considered here: KS20, KSC6, and AFRC3. A standard atmospheric profile is

used in PCBoom with no mean wind. The resulting sonic boom footprint for a flat Earth

assumption is symmetric about the flight path. Figure 6-3 shows the sonic boom footprint

along with the PCBoom prediction of the N-wave for the limiting ray at z = zi for KSC20.

The emission angle for the limiting ray is ϕem = ±34.75◦. This is the waveform that will

be used as input for the N-wave simulations.

The second flight condition corresponds to a sonic thump of the NASA X-59 at the

on-design condition (M = 1.4 and 53, 200 ft flight altitude). The near-field pressure

cylinder input to PCBoom is obtained from a CFD computation of the C609 design

iteration of the NASA X-59 QueSST. The atmosphere is the same as that considered

in Chapter 5, which was obtained from balloon measurements taken during the Quiet

Supersonic Flights 2018 (QSF18) testing that took place in Galveston, Texas. The
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A B

Figure 6-3. PCBoom results for an N-wave in a standard atmosphere. A) Sonic boom
footprint as a function of the lateral distance from the flight path, x. B)
N-wave of the limiting ray at the inversion height, z = zi.

atmospheric pressure, temperature, density, and relative humidity supplied to PCBoom

are shown in Fig. 5-7A normalized by the ground values (p0 = 101028.0 Pa, T0 = 297.85

K, ρ0 = 1.17 kg/m3, hr = 90%). The wind speed and direction are shown in Fig. 6-4.

The wind direction, θwind, is measured from due East (positive x). This means that for

θwind = 0◦, the wind is traveling from west to east.

A B

Figure 6-4. Profiles of the atmospheric wind speed and direction as a function of the
altitude, used in PCBoom simulations. A) Wind speed (m/s) and B) wind
direction (θwind).

The footprint on the ground for the X-59 on-design condition is shown in Fig. 6-5.

Due to the atmospheric winds, the sonic boom footprint is not symmetric about the flight
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path. This means that the cutoff characteristics will be asymmetric as well. For the lateral

cutoff location east of the flight path, the emission angle is ϕem = −38.20◦. West of the

flight path, the emission angle is ϕem = 25.68◦.

A B

Figure 6-5. Sonic boom footprint of the X-59 on-design cruise condition in the specified
atmosphere predicted by PCBoom. Results as a function of the A) lateral
distance from the flight track and B) emission angle.

A B

Figure 6-6. X-59 waveforms at z = zi predicted by PCBoom. Results to the A) east of the
flight path (ϕem = −38.20◦), and B) to the west of the flight path
(ϕem = 25.68◦).

6.3 Atmospheric Boundary Layer Flow at the Lateral Cutoff

Refraction of the sonic boom waveform in the atmospheric boundary layer near

the lateral cutoff region is influenced by the effective sound speed. In the absence of
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turbulence, the effective sound speed is a function of the vertical coordinate (z) only,

ceff (z) = c(z) + u(z) cos(θ1), (6-12)

where c is the mean sound speed, u is the mean velocity, and θ1 is the angle between

the direction of propagation of the wavefront and the mean velocity. In the atmospheric

surface layer, the mean temperature and velocity can be modeled with Monin-Obukhov

similarity theory (MOST), reviewed previously in Chps. 3 and 5. In the daytime ABL,

the mean flow refraction and turbulence levels are determined by the friction velocity,

u∗, the surface heat flux, Q0, the inversion height, zi, and the Obukhov length scale, Lo.

The convective parameter, log(−ziL−1
o ), defined in Chapter 5 represents the degree of

convection for each setpoint considered. In this investigation, we examine the setpoints

KSC20, KSC6, and AFRC3, from Chapter 5. This reduced test matrix is representative of

weak, moderate, and strong convection levels in the atmosphere.

In addition to the convective parameter, it is also important to consider the setpoints

in terms of the daytime weather conditions that they represent. The daytime weather

conditions play a significant role in the mean refraction of the sonic boom waveform at the

cutoff. Specifically, three different regimes exist, each with different effects on the sonic

boom propagation near the lateral cutoff. These regimes are,

1. Low wind, cloudy conditions;

2. Low wind, clear daytime conditions;

3. High wind, cloudy or clear daytime conditions.

In low wind and cloudy conditions the refraction effects are small, and the width of

the lateral cutoff transition region will be larger than clear daytime conditions. For low

wind clear daytime conditions, refraction is upwards for all wind directions relative to

the wavefront. In this sense, refraction effects for low wind conditions are dominated

by the sensible heat flux. For high wind conditions, refraction will depend on the angle

between the wavefront normal and wind direction. In the upwind direction, refraction
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will be upwards. In the downwind direction, refraction will depend on the magnitude of

the sensible heat flux. Figure 6-7 shows 4 representative profiles of the effective sound

speed in the atmospheric surface layer for each regime. Three of the effective sound speed

profiles result in upwards refraction of the sonic boom waveform. However, for windy

conditions where the mean wind direction is aligned with the direction of propagation (i.e.

downwind), there is downwards refraction of the waveform.

A

Figure 6-7. Normalized effective sound speed in the near ground atmosphere for several
different daytime weather conditions.

We avoid the situation where refraction of the sonic boom waveform is downwards

by assuming the direction of the mean flow velocity to be opposing the direction of

propagtion of the boom. However, in the general case where velocity can be in any

direction relative to the propagation direction, we must take into consideration the

velocity and temperature gradients near the ground to determine regions where the

refraction is upwards. Simulations of sonic boom propagation beyond the lateral cutoff

should avoid cases where the refraction of the sonic boom is downwards, since this will not

be a true shadow zone region. By considering the effect of the mean flow gradients on the

refraction of the sonic boom waveform at the lateral cutoff region, we must replace the

sound speed in the definition of R by the effective sound speed,

R = −ceff
(
dc′eff
dz

)−1
∣∣∣∣∣
z=0

. (6-13)
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If R is positive, then the waveform will refract upwards. If R is negative, then the

waveform will refract downwards. Therefore, before performing simulations in sbABL

beyond the lateral cutoff, R should be computed to determine that it is positive. The

sign of R is determined by the sign of the derivative of ceff in the limit z → 0. In the

atmospheric surface layer, the effective sound speed should follow MOST. Wilson [198]

showed that the expression for the effective sound speed gradient in the atmospheric

surface layer is,

κvKz

u∗

∂ceff
∂z

=
c0PtT∗
2T0u∗

φh (ζ)−
Γdc0κvKz

2T0u∗
+ cos(θ1)φm (ζ) . (6-14)

In the limit z → 0, we require the sign of ∂ceff/∂z to be negative. Thus, the resulting

inequality should hold

A∗Pt lim
ζ→0−

φh (ζ) + cos(θ1) lim
ζ→0−

φm (ζ) < 0, (6-15)

where A∗ = c∗/u∗, and

c∗ =
c0T∗
2T0

. (6-16)

The expressions of φh (ζ) and φm (ζ) for a convective boundary layer, ζ < 0, are provided

in Eqns. 3-3. The limit of both functions as ζ → 0− is 1. Thus, in order for the refraction

to be upwards,

A∗Pt + cos(θ1) < 0. (6-17)

In our simulations, we considered θ1 to be directly opposing the direction of

propagation. Therefore, the inequality in Eqn. 6-17 will hold for all setpoints considered.

However, if the direction of the wind is known near ground level, then the inequality in

Eqn. 6-17 needs to be considered. Figure 6-8 shows the regions where A∗Pt + cos(θ1)

is positive and negative when wind direction is varied relative to x1 for the three ABL

setpoints considered. When the wind direction is directly opposing x1, θ1 = 180◦,

A∗Pt + cos(θ1) is always negative. For strong convection levels, the mean temperature

gradient near the ground causes upwards refraction of the sonic boom for all θ1. When the
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convection is weak, we observe that the range where refraction is downwards approaches

θ1 < ±90◦. This is because the temperature gradient near the ground for weak convection

is very small.

A

Figure 6-8. Values of A∗Pt + cos(θ1) when the wind direction is varied. Convection levels
of weak (solid blue line), moderate (red dashed line), and strong (green dotted
line) convection are examined. Wind direction is varied relative to x1.

The effective sound speed for all three ABL setpoints is shown in Fig. 6-9. The

effective sound speed gradient near the ground plays an important role in the formation of

the shadow zone. The gradient of ceff for the KSC20 setpoint is smaller than the gradient

for KSC6 and AFRC3, which are approximately the same value. The value of ceff for the

moderate and strong convection setpoints is more than 2% greater than ceff at z = 10

m. The values of ceff for KSC6 and AFRC3 show that the convection level of the ABL is

not necessarily indicative of the degree of refraction that will occur at the lateral cutoff.

Rather, the increased turbulence length scales and velocity fluctuation magnitude for the

strong convection setpoint will cause the sonic boom waveform beyond the lateral cutoff to

be more affected by turbulent scattering than for weak and moderate convection levels.
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A

Figure 6-9. The average effective sound speed profile normalized by ceff at z = 10 m.
Convection levels of weak (solid blue line), moderate (red dashed line), and
strong (green dotted line) convection are shown.

The turbulent fields are generated in the same manner as Chapter 5. The only

difference here is that the direction of propagation, x1, is now parallel to the ground,

and x2 is the vertical direction. Additionally, there is no elevation angle to consider, so

the appropriate expressions for the 1D cross-spectra are Eqns. 5-7, 5-8, and 5-9, with

kx = k1 and z = x2. The standard deviations and velocities are prescribed according to

Eqns. 5-1 through 5-2, with x1 replaced by x2. GRPM is used to generate the velocity and

temperature fluctuations in the domain. A total of 250 turbulent fields are generated for

each setpoint.

6.4 N-wave Results

6.4.1 Waveforms

Waveforms of the sonic boom N-wave signal are shown at three locations along the

ground beyond the lateral cutoff for KSC20 and AFRC3 in Fig. 6-10. For KSC20, the

convection levels in the ABL are weak, thus the waveform at the lateral cutoff location
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(x̃1 = 0) maintains a traditional N-wave shape. As the signal decays into the shadow zone

region, the waveform becomes increasingly rounded. There is also significant attenuation

of the amplitude, as well as a phase shift due to the non-zero mean velocity. When the

convection level in the ABL is weak, the sonic boom signal beyond the lateral cutoff region

is distinguished from the post-boom noise, which is caused by turbulence scattering. Thus,

the loudness levels beyond the lateral cutoff for KSC20 are likely influenced more by the

attenuation of the sonic boom signal, rather than the post-boom noise levels caused by

turbulent scattering.

In contrast, the waveforms for AFRC3 undergo significant distortion caused by

turbulent scattering. At the lateral cutoff, an N-wave shape is still present in the

signal. However, after the initial N-wave, post-boom noise levels of ±3 Pa in magnitude

persist for nearly half a second. Further into the shadow zone region, the initial N-wave

attenuates in amplitude while the post-boom noise levels increase. The maximum pressure

levels in the waveform for both x̃1 = 20 and x̃1 = 40 are due to the post-boom pressure

fluctuations, and not the initial shock structure. The higher intensity turbulence levels for

AFRC3, combined with the larger turbulence integral length scales, result in substantial

scattering of the sonic boom signal into the shadow zone region. This in turn produces

a signal at ground level that is heavily influenced by turbulent scattering, where the

loudness levels are likely to be more influenced by the post-boom noise.

6.4.2 Maximum Pressure

The waveforms shown in Fig. 6-10 indicate that the sonic boom in the shadow zone

region is influenced significantly by scattering due to ABL turbulence, when the convection

level is moderate to strong. Contour plots of the maximum pressure beyond the lateral

cutoff are shown in Figs. 6-11, 6-12, and 6-13, for two individual simulations performed

at each ABL setpoint; KSC20, KSC6, and AFRC3, respectively. In Fig. 6-11, a clear and

distinct shadow zone has formed for both of the simulations shown here. In the wave

field, the effect of turbulence is observed in the fluctuations of the maximum pressure. In
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Figure 6-10. Waveforms at ground level for three different locations of the N-wave
simulations. x̃1 = 0 is the lateral cutoff location (black solid line), x̃1 = 20
(red dashed line), and x̃1 = 40 (blue dotted line). Non-dimensional locations
shown in the legends.

the shadow zone region, attenuation of the waveform is the factor that most significantly

influences the maximum pressure attained, with little influence from the turbulence.

A B

Figure 6-11. Maximum pressure of the sonic boom signal for two realizations of the
turbulent field in an ABL with weak convection levels, KSC20. A) Simulation
1 and B) simulation 2.

For moderate and strong convection levels, shown in Figs. 6-12 and 6-13, turbulent

scattering is a more influential factor for the maximum pressure observed in the shadow

zone region. There is considerable scattering of the sonic boom waveform that occurs for

AFRC3. This can be observed in Fig. 6-13, where there is no clear boundary between the
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wave region and the shadow zone region, and the maximum pressure levels in the shadow

zone region are similar to those found in the wave region. The initial boom signature still

attenuates significantly as the distance beyond the lateral cutoff increases, as shown in

Fig. 6-10B, but the post-boom pressure fluctuations are considerably larger than the KSC

setpoints due to the increased convection levels. This increase in the post-boom pressure

fluctuations is a direct result of scattering of the sonic boom.

A B

Figure 6-12. Maximum pressure of the sonic boom signal for two realizations of the
turbulent field in an ABL with moderate convection levels, KSC6. A)
Simulation 1 and B) simulation 2.

A B

Figure 6-13. Maximum pressure of the sonic boom signal for two realizations of the
turbulent field in an ABL with strong convection levels, AFRC3. A)
Simulation 1 and B) simulation 2.
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Figures 6-14A and 6-14B show the average maximum pressure and standard deviation

of the maximum pressure, respectively. The maximum pressure at the same x̃1 locations

increases, on average, when the convection level of the ABL increases. The standard

deviation of the maximum pressure increases with convection level as well.

A B

Figure 6-14. Average and standard deviation of the maximum acoustic pressure along the
ground for 3 different ABL setpoints. A) ∆p/∆pnom and B) σ∆p.

The distributions of the maximum pressure along the ground beyond the lateral

cutoff are shown alongside a theoretical normal distribution (solid black line) in Figs.

6-15, 6-16, and 6-17 for setpoints KSC20, KSC6, and AFRC3, respectively. For KSC20,

the convection level of the ABL is weak, along with the intensity of the turbulence

fluctuations. The estimated straight line propagation distance of the waveform from zi

to z = 0 is 4092 m, and ℓf = 3890. Thus, at the cutoff location for this ABL condition,

the waveform has only propagated a distance of x1ℓ−1
f = 1.05. Therefore, according

to the results of Chapter 5, the overpressure observations will likely not be Gamma

distributed at the cutoff location. This is confirmed by Fig. 6-15A. As the signal decays

into the shadow zone region, the maximum pressure distribution more closely follows a

Gamma distribution. From the observations in Figs. 6-15C and 6-15D, we can say that

the simulations performed here indicate that the maximum pressure is Gamma distributed

for the KSC20 setpoint when x̃1 ≥ 30, up until the propagation range examined here. The
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Gamma distribution is an acceptable approximation of the distribution for observations

falling between 10% to 90% cumulative probability, when an analytical estimate of the

distribution is desired.
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Figure 6-15. N-wave maximum pressure observations at ground level beyond the lateral
cutoff for KSC20 compared to a theoretical Gamma distribution.
Non-dimensional distances of A) x̃1 = 0, B) x̃1 = 15, C) x̃1 = 30, and D)
x̃1 = 45.

The maximum pressure observations for KSC6 closely adhere to a Gamma distribution,

with some slight skewness apparent for x̃1 ≥ 30. For AFRC3, the overpressure

observations show more substantial skewness to the right of a Gamma distribution

as the distance beyond the cutoff increases. A Gamma distribution is not a sufficient
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approximation of the maximum pressure distribution for the AFRC3 setpoint beyond

x̃1 = 30. It is likely that this is due to the post-boom pressure fluctuations, because as the

boom decays further into the shadow zone region the post-boom pressure fluctuations can

become larger in magnitude than the boom itself.
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Figure 6-16. N-wave maximum pressure observations at ground level beyond the lateral
cutoff for KSC6 compared to a theoretical Gamma distribution.
Non-dimensional distances of A) x̃1 = 0, B) x̃1 = 15, C) x̃1 = 30, and D)
x̃1 = 45.

6.4.3 Loudness Metrics

The average and standard deviations of several loudness metrics (PL, ISBAP, BSEL,

DSEL, and ESEL) are presented in Figs. 6-18 through 6-22, for the three ABL setpoints.
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Figure 6-17. N-wave maximum pressure observations at ground level beyond the lateral
cutoff for AFRC3 compared to a theoretical Gamma distribution.
Non-dimensional distances of A) x̃1 = 0, B) x̃1 = 15, C) x̃1 = 30, and D)
x̃1 = 45.

The general trend for the average and standard deviation is consistent across all of the

loudness metrics considered here. For the KSC setpoints, there is an initial rapid decrease

in the loudness just beyond the lateral cutoff location, then each loudness metric follows a

linear decrease for the remaining propagation distance considered in the simulations. For

the AFRC3 setpoint, there is not an initial rapid decrease of the loudness metrics and the

metrics do not decrease linearly. The standard deviation of each loudness is approximately
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constant beyond the cutoff region, and lies in the range of 1 to 2 dB. As the convection

level increases, the standard deviation of each loudness metric increases as well.

A B

Figure 6-18. Average and standard deviation of ∆PL beyond the lateral cutoff for the
N-wave simulations. A) ∆PL and B) σ∆PL.

A B

Figure 6-19. Average and standard deviation of ∆ISBAP beyond the lateral cutoff for the
N-wave simulations. A) ∆ISBAP and B) σ∆ISBAP.

The cumulative probability of simulation results for the ∆PL are shown in Figs. 6-23,

6-24, and 6-25 for KSC20, KSC6, and AFRC3, respectively. A comparison is made to a

theoretical normal distribution (dashed black line) with a mean and standard deviation

prescribed that matches the simulation results presented in Figs. 6-18, 6-19, 6-20, 6-21,

and 6-22. For the KSC20 setpoint, the ∆PL observations at the lateral cutoff location

follow a normal distribution. As the sonic boom waveform decays into the shadow zone
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A B

Figure 6-20. Average and standard deviation of ∆BSEL beyond the lateral cutoff for the
N-wave simulations. A) ∆BSEL and B) σ∆BSEL.

A B

Figure 6-21. Average and standard deviation of ∆DSEL beyond the lateral cutoff for the
N-wave simulations. A) ∆DSEL and B) σ∆DSEL.

region that forms beyond the cutoff, the observations become skewed to the right of

normal. Then, for x̃1 ≥ 45, the ∆PL results follow a normal distribution again. Although

there is some skewness present in the simulation results, approximating the ∆PL beyond

the lateral cutoff by a normal distribution is fairly accurate for cumulative probabilities up

to 90% for the KSC20 setpoint.

Similar trends to the KSC20 results are observed in the ∆PL results for KSC6. The

distribution of KSC6 is initially normal at the lateral cutoff location, but begins to exhibit

some right-skewness at x̃1 = 15 and 30. Then, as the decay distance into the shadow zone
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A B

Figure 6-22. Average and standard deviation of ∆ESEL beyond the lateral cutoff for the
N-wave simulations. A) ∆ESEL and B) σ∆ESEL.

continues to increase, the ∆PL simulation results become less skewed. It is more difficult

to establish the range in which the AFRC3 result can be considered normal. At the cutoff

location, the distribution is right-skewed, which is expected based on the propagation

distance to the cutoff for this setpoint considering the results obtained in Chapter 5.

Beyond the cutoff location, the skewness in the distributions reduces for cumulative

probabilities below 25%, and for x̃1 = 30 and 45 the distributions are normal between 25%

and 90%. However, the results at x̃1 = 15 has cumulative probabilities that are larger, and

also smaller, than a theoretical normal distribution for cumulative probabilities above 50%.

In the future, more simulations may need to be performed to verify the results observed

here.

6.5 Shaped Waveform Results

6.5.1 Waveforms

Three waveforms of the X-59 at the lateral cutoff and in the shadow zone region

computed for a single simulation are shown in Fig. 6-26 for KSC20 and AFRC3. For

the ABL condition with weak convection, the shape of the X-59 waveform at the lateral

cutoff is similar to the waveform at the top of the ABL, since the turbulence intensity is

weak and the ABL height is small. The waveform then attenuates, incurs a phase shift,
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Figure 6-23. Cumulative probabilities of ∆PL - ∆PL for the N-wave simulations at
KSC20. Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.

and undergoes some rounding as we observe locations further into the shadow zone. The

post-boom pressure fluctuations beyond the initial boom are small in amplitude (±1 Pa),

and therefore is not likely to have a significant impact on the loudness of the X-59 boom

beyond the lateral cutoff. The rounding of the waveform is due to the higher frequency

components attenuating faster than the low frequency components of the boom. For the

AFRC3 waveforms, higher convection levels in the ABL lead to higher variability in the

sonic boom overpressure, as was determined from the simulations performed in Chapter 5.
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Figure 6-24. Cumulative probabilities of ∆PL - ∆PL for the N-wave simulations at KSC6.
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.

Beyond the lateral cutoff location, the same attenuation, phase shift, and rounding can be

observed as the high frequency components incur significant attenuation. The post-boom

pressure fluctuations are larger in magnitude (±4 Pa) than the KSC20 results, due to the

increased turbulence intensity, integral length scale, and propagation distance through

turbulence.
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Figure 6-25. Cumulative probabilities of ∆PL - ∆PL for the N-wave simulations at
AFRC3. Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.

6.5.2 Maximum Pressure

Figures 6-27, 6-28, and 6-29 display two realizations of the sonic boom overpressure

of the shaped waveform for KSC20, KSC6, and AFRC3, respectively. A shadow zone

forms beyond the lateral cutoff location for each ABL setpoint. However, there is no

clear distinct boundary between the wave region and shadow zone. This is due to the

turbulence in the ABL scattering the sonic boom waveform. As the turbulence intensity
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Figure 6-26. Waveforms at ground level for three different locations of the X-59
simulations. x̃1 = 0 is the lateral cutoff location (black solid line), x̃1 = 20
(red dashed line), and x̃1 = 40 (blue dotted line). Non-dimensional locations
shown in the legends.

increases, or in this case the convection level, the acoustic energy scattered into the

shadow zone region is increased.

A B

Figure 6-27. Maximum pressure of the sonic boom signal for two realizations of the
turbulent field in an ABL with weak convection levels, KSC20. A) Simulation
1 and B) simulation 2.

The average sonic boom maximum pressure for the X-59 is shown in Fig. 6-30, along

with the standard deviation, for each ABL setpoint. For the two KSC setpoints, we

observe that the maximum pressure of the signal increases, on average, as the convection

level increases. However, for strong convection levels at AFRC, the average maximum
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A B

Figure 6-28. Maximum pressure of the sonic boom signal for two realizations of the
turbulent field in an ABL with moderate convection levels, KSC6. A)
Simulation 1 and B) simulation 2.

A B

Figure 6-29. Maximum pressure of the sonic boom signal for two realizations of the
turbulent field in an ABL with strong convection levels, AFRC3. A)
Simulation 1 and B) simulation 2.

pressure does not follow this trend. For this setpoint, the turbulence integral length scale

is larger than the KSC setpoints, and the fluctuation magnitude of the velocity is greater

than the KSC setpoints as well. These two factors result in additional attenuation for the

X-59 waveform, in contrast to the N-wave results, where the average maximum pressure is

increased relative to the KSC setpoints. Figure 6-30B shows a trend of increasing σ∆p̃ as

the convection level increases. This is consistent with the results obtained for the N-wave

simulations.
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A B

Figure 6-30. Average and standard deviation of the maximum acoustic pressure along the
ground for 3 different ABL setpoints. A) ∆p/∆pnom and B) σ∆p.

The shaped waveform overpessure cumulative probabilities are shown in Figs.

6-31, 6-32, and 6-33 for KSC20, KSC6, and AFRC3, respectively. For the ABL setpoint

with weak convection (KSC20), the maximum acoustic pressure at all four locations

shown follows a Gamma distribution. As the convection level increases, the distributions

of maximum pressure become slightly skewed to the right of a theoretical Gamma

distribution. This skewness is apparent in the results for x̃1 = 45 for the KSC6 setpoint,

and x̃1 = 15, 30, and 45 for AFRC3.

6.5.3 Loudness Metrics

The ∆PL, ∆ISBAP, ∆BSEL, ∆DSEL, and ∆ESEL are shown in Figs. 6-34 through

6-38, along with the standard deviations. The mean loudness levels decrease significantly

for the KSC20 setpoint, relative to the other two ABL setpoints. The ∆PL and ∆ISBAP

attenuate by more than 10 dB at a distance of x̃1 = 25 beyond the lateral cutoff. The

remaining weighted sound exposure levels see attenuation of more than 10 dB for x̃1 ≥ 50.

Standard deviations of the ∆PL and ∆ISBAP are within 1 - 3 dB for all locations beyond

the lateral cutoff considered in this investigation. For the weight SELs, the standard

deviations are generally between 1-2 dB, and appear to increase with increasing convection

level.
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Figure 6-31. Shaped waveform maximum pressure observations at ground level beyond the
lateral cutoff for KSC20 compared to a theoretical Gamma distribution.
Non-dimensional distances of A) x̃1 = 0, B) x̃1 = 15, C) x̃1 = 30, and D)
x̃1 = 45.

The distributions of ∆PL obtained from simulations are shown in Figs. 6-39, 6-40,

and 6-41 for KSC20, KSC6, and AFRC3, respectively. For KSC20, the ∆PL distribution

is normal at the lateral cutoff location, which is expected for this ABL setpoint since the

x1ℓ
−1
f distance to the lateral cutoff is less than 2 (x1ℓ−1

f = 1.05). Along the ground in the

shadow zone region, the distribution remains fairly normal up until x̃1 = 45, where the

probability of observing ∆PL − ∆PL > 2 is larger than the probability associated with

a normal distribution. However, for the majority of cumulative probabilities (5% to 90%)
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Figure 6-32. Shaped waveform maximum pressure observations at ground level beyond the
lateral cutoff for KSC6 compared to a theoretical Gamma distribution.
Non-dimensional distances of A) x̃1 = 0, B) x̃1 = 15, C) x̃1 = 30, and D)
x̃1 = 45.

the assumption that ∆PL is normal is satisfied beyond the lateral cutoff location for weak

convection levels.

In the KSC6 simulations, higher probabilities than that of a normal distribution

associated with observations of ∆PL − ∆PL > 2 occur for smaller x̃1 values. Specifically,

in our results we see this occur at x̃1 = 30, along with a noticeable right-skewness in

the distribution at x̃1 = 45. The distribution at the lateral cutoff location still follows a

normal distribution, similar to the KSC20 results, which is consistent with the results of
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Figure 6-33. Shaped waveform maximum pressure observations at ground level beyond the
lateral cutoff for AFRC3 compared to a theoretical Gamma distribution.
Non-dimensional distances of A) x̃1 = 0, B) x̃1 = 15, C) x̃1 = 30, and D)
x̃1 = 45.

Chapter 5. For the AFRC3 results, we see the opposite trend of what is observed for the

KSC setpoints. At the lateral cutoff, the distribution is skewed right of normal, since the

propagation distance through turbulence is larger than the transition region determined

in Chapter 5. However, beyond the lateral cutoff region, we see that the ∆PL results

are much closer to a theoretical normal distribution than the results at the cutoff region.

This is due to the combination of attenuation of the initial boom waveform in the shadow
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A B

Figure 6-34. Average and standard deviation of ∆PL beyond the lateral cutoff for the
X-59 simulations. A) ∆PL and B) σ∆PL.

A B

Figure 6-35. Average and standard deviation of ∆ISBAP beyond the lateral cutoff for the
X-59 simulations. A) ∆ISBAP and B) σ∆ISBAP.

zone and scattering of the sonic boom into the shadow zone region, which will cause the

post-boom fluctuations to contribute considerably to the loudness levels.

6.6 Summary

Simulations beyond the lateral cutoff region were performed for three different ABL

setpoints corresponding to weak (KSC20), moderate (KSC6), and strong convection.

Two sonic boom waveforms were considered, a standard N-wave and a design iteration

of the NASA X-59 QueSST, obtained by PCBoom at the inversion altitude (zi). The

waveforms were first propagated through the ABL to the lateral cutoff location. Then,
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A B

Figure 6-36. Average and standard deviation of ∆BSEL beyond the lateral cutoff for the
X-59 simulations. A) ∆BSEL and B) σ∆BSEL.

A B

Figure 6-37. Average and standard deviation of ∆DSEL beyond the lateral cutoff for the
X-59 simulations. A) ∆DSEL and B) σ∆DSEL.

using the waveforms obtained at the lateral cutoff, simulations of the decay of the

sonic boom into the shadow zone region were conducted with sbABL. The simulations

performed for the N-wave indicate that turbulent scattering of the sonic boom becomes

increasingly important as the convection level of the ABL increases, and correspondingly

the turbulence integral length scale and fluctuation magnitudes. The average N-wave

maximum pressure beyond the lateral cutoff increases as the convection level increases,

and so does the standard deviation. The maximum pressure follows a Gamma distribution

beyond the lateral cutoff for weak convection levels, and becomes increasingly skewed
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A B

Figure 6-38. Average and standard deviation of ∆ESEL beyond the lateral cutoff for the
X-59 simulations. A) ∆ESEL and B) σ∆ESEL.

to the right of a Gamma distribution as the convection level increases. However, even

for strong convection levels, the Gamma distribution was determined to be a good

approximation of the maximum pressure observations between 10% to 90% cumulative

probability.

On average, the loudness metrics decrease from their value at the lateral cutoff

location as the distance into the shadow zone increases for all ABL setpoints. As the

convection level of the atmosphere increases, the average loudness levels increase for the

same x̃1 locations. The standard deviations of all loudness metrics beyond the lateral

cutoff region are between 1 to 3 dB for the propagation distance considered. In general,

the variation of the loudness is determined to increase when the convection level increases.

The distributions follow a normal distribution for weak to moderate convection levels at

the lateral cutoff, and then become skewed to the right of normal for x̃1 = 15 and 30. For

x̃1 = 45, the skewness of the distributions decreases, likely due to the increasing impact

of turbulence on the waveforms deep in the shadow zone region where the initial boom

has experienced significant attenuation. For AFRC3, we observe that the loudness metrics

are skewed to the right of normal at the lateral cutoff location and become increasingly

normally distributed in the shadow zone region. This is again due to the more significant
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Figure 6-39. Cumulative probabilities of ∆PL - ∆PL for the X-59 simulations at KSC20.
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.

impact of the turbulence on the sonic boom signal in the shadow zone region, especially

for strong convection levels.

For the X-59 waveform, the maximum pressure is Gamma distributed beyond the

lateral cutoff for the ABL setpoint with weak convection. When the convection level is

increased, the maximum pressure distribution is still Gamma distributed at the lateral

cutoff location, but becomes increasingly skewed as the distance beyond the cutoff

increases. Considering the results of Chapter 5, for the ABL setpoints simulated here,
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Figure 6-40. Cumulative probabilities of ∆PL - ∆PL for the X-59 simulations at KSC6.
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.

the X-59 maximum pressure distributions are Gamma distributed at all locations in

the primary carpet region. Additionally, when the convection of the ABL is weak, the

maximum pressure is also Gamma distributed for up to 4 km beyond the lateral cutoff.

The loudness metrics of the X-59 waveform are normally distributed for the weak

convection case beyond the lateral cutoff, except for the observations of ∆PL − ∆PL,

∆BSEL − ∆BSEL, and ∆ESEL − ∆ESEL greater than 2 for x̃1 ≥ 45. For the moderate

convection case, KSC6, the distributions of the loudness metrics become increasingly
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Figure 6-41. Cumulative probabilities of ∆PL - ∆PL for the X-59 simulations at AFRC3.
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.

skewed to the right of normal as the distance from the lateral cutoff is increased.

However, for AFRC3, the observations of each loudness metric beyond the cutoff location

approximately follow a normal distribution. For this setpoint with strong convection, there

is no indication of increasing skewness in the distributions beyond the lateral cutoff region.

Thus, approximating the distributions of the loudness metrics by a normal distribution is

sufficient for weak convection at KSC and strong convection at AFRC, according to the

simulations performed here.
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CHAPTER 7
CONCLUSION

7.1 Summary and Conclusions

Commercial supersonic flight over land is currently banned by the FAA. NASA

and Lockheed Martin are developing the X-59 QueSST aircraft, to demonstrate quiet

supersonic flight and aid in the development of noise standards for supersonic over land

flight. Predictions of the sonic boom noise levels from the X-59, or other aircraft, can

be obtained with a standard ray tracing code in the primary carpet region for a non

turbulent atmosphere. However, it is important to include the effects of turbulence on

the sonic boom waveform as it will lead to variability in the sonic boom loudness levels

(as well as overpressure and rise time). In addition, sonic boom loudness levels in the

shadow zone region may still cause annoyance in affected communities, and thus should

be considered when making predictions of the loudness levels. In this dissertation, the

impacts of turbulence on traditional sonic boom N-waves, as well as shaped booms, were

examined with a one-way propagation code for the acoustic pressure in the primary carpet

region, and beyond the lateral cutoff into the shadow zone.

In Chapter 2, an equation governing the propagation of finite amplitude acoustic

pressure fluctuations in the turbulent atmospheric boundary layer was derived from the

Navier-Stokes-Fourier system of equations, along with an equation of state. Equation 2-56

was then shown to reduce to several well known equations of nonlinear acoustics when

assumptions about the flow and propagation are made. A partially one-way equation was

then formulated to compute forward propagation of the sonic boom waveform through the

ABL. A split-step method was used to integrate Eqn. 2-69 forward in space. Each physical

effect was computed with a numerical method that is well-suited for each sub-problem. A

Fortran code, sbABL (sonic boom propagation in the Atmospheric Boundary Layer), was

developed to solve Eqn. 2-69 numerically. Each subroutine was validated by benchmarking
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the code with acoustics problems that have analytical, or previously determined numerical

solutions.

In Chapter 3, the ABL model for the mean flow and turbulent fluctuations was

presented. The mean velocity and temperature in the atmospheric surface layer was

modeled with Monin-Obukhov similarity theory [71]. Above the surface layer, in the

mixed-layer region of the ABL, mean velocity and temperature are nearly constant during

the daytime [194]. Thus, the functions for the velocity and temperature gradients used

in the MOST model are those proposed by Wilson [72], which are nearly constant in the

mixed-layer and agree with measurements obtained at AFRC [20]. The method of Frehlich

[110] to generate homogeneous isotropic turbulence was then reviewed. The Generalized

Random Phase Method [126] (GRPM) was then presented, and models for the statistics

and energy spectrum of the turbulence in the inhomogeneous ABL were discussed. Lastly,

inhomogeneous kinematic turbulent fields were generated and compared to the prescribed

statistics in the vertical direction used to generate the fields.

In Chapter 4 simulations through homogeneous isotropic turbulence were performed,

in order to examine the effect of varying turbulence intensity σu on the predictions.

Previous non-dimensionalizations of the propagation distance found in the literature

[106, 181] were not able to collapse the PDFs of the caustic locations across the entire

range of turbulence intensities considered. A new length scale, ℓf , was proposed to

account for the effect of the focusing and defocusing of the sonic boom waveform by

the turbulence. This length scale assumes that the focusing mechanism is similar to

that of a spherical lens focusing light. The PDFs of the caustic locations were found to

obtain a maximum around x1ℓ
−1
f = 1, which implies that the most probable location

of finding a large overpressure increase in the N-wave simulations is at x1 = ℓf for all

turbulence intensities considered. In general, large increases in the overpressure will also

lead to increases in the loudness metrics of the waveform. Thus, it is of practical use when

planning flight tests and community response surveys to know that the most probable
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location for a caustic region will be when the propagation distance of the waveform

through turbulence is equal to ℓf .

The standard deviation of each loudness metric considered collapses with respect to

x1ℓ
−1
f , and increases linearly for x1ℓ−1

f < 0.5. The average value of the loudness metrics

were also found to decrease with increasing propagation distance through turbulence. The

simulations performed in Chapter 4 suggest that the average loudness decreases while

the variability of the loudness metrics increases linearly up to a value for the standard

deviation close to 3 dB, and then begins to decrease past this maximum location. The

distributions of the loudness metrics (except for DSEL) were determined to follow a

normal distribution up to a certain non-dimensional propagation distance, where the

distribution then became skewed to the right of a normal distribution. For the N-wave,

this transition location occurred between x1ℓ
−1
f ≈ 2 and x1ℓ

−1
f ≈ 2.5. For the shaped

waveform, this transition location was at x1ℓ−1
f ≈ 1 for BSEL and ESEL, x1ℓ−1

f ≈ 2.5

for PL, and x1ℓ
−1
f ≈ 4.8 for ISBAP. As the turbulence intensity increases, the magnitude

of ℓf decreases. Thus, for the same propagation distance, x1, as the turbulence intensity

increases the distribution of the loudness metrics becomes increasingly skewed right of

a normal distribution. Also, for the same turbulence intensity and integral length scale,

the distribution of the loudness metrics becomes increasingly skewed as the waveform

propagates further through turbulence. Thus, one may expect the PL distribution near

the lateral cutoff is more likely to be skewed to the right of a normal distribution, while

directly undertrack it is more likely to follow a normal distribution.

In Chapter 5, we see that the statistics of the overpressure, rise time, and loudness

metrics are not only impacted by the turbulence intensity, but also the integral length

scale (or von Kármán length scale, in the same manner). In this chapter, simulations

through inhomogeneous turbulence were performed. The inhomogeneous turbulence

was generated according to the model proposed by Wilson [172] and the meteorological

measurements (u∗, Q0, and zi) correspond to measurements taken at KSC and AFRC
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during SonicBAT. The length scale ℓf was formulated using the Wilson model for the

length scales and turbulence intensity in the mixed layer region for a convective ABL.

However, an empirical modification had to be made to ℓf in order to obtain collapse of the

caustic PDFs. With this empirical correction, the standard deviations of the overpressure

and loudness metrics collapsed for both waveforms when x1ℓf ≤ 0.4. The maximum

standard deviations of the overpressure and loudness metrics were found to increase

with increasing ABL height, which corresponds to an increase in the turbulence integral

length scale in the mixed layer. Thus, in climates where zi is rather large, the maximum

variability of the sonic boom overpressure and loudness metrics for both waveforms will

likely be larger than the maximum variability for climates like KSC, where zi is smaller.

For the N-wave simulations, the distribution of the overpressure observations begins

to follow a Gamma distribution after a certain propagation distance through turbulence.

The simulations indicate that the non-dimensional location where this transition occurs

decreases when the ABL height and convection level increase. The X-59 shaped waveform

simulations indicate that the overpressure observations follow a Gamma distribution in

the primary carpet region for all convection levels and ABL heights investigated here.

The loudness metric observations for both waveforms are initially normally distributed

along the propagation direction, but eventually become skewed to the right of a normal

distribution. For all convection levels and ABL heights considered here, the PL and

ISBAP distributions are normal for x1ℓ−1
f ≲ 2, and for weak convection levels the

distributions appear to remain normal up to x1ℓ−1
f ≈ 4. The simulation indicate that

a normal distribution is an appropriate model of the loudness metric observations for

x1ℓ
−1
f ≲ 2, and the standard deviation of each metric increases linearly for all setpoints

when x1ℓ
−1
f ≤ 0.4. Therefore, in Chapter 5 we were able to propose a normal distribution

PDF to approximate the loudness metric distributions, based on the simulation results

for the slope of each standard deviation along x1ℓ−1
f . The range of validity of the PDF is

x1ℓ
−1
f ≤ 0.4, which is appropriate for the region directly undertrack of the flight path in
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an ABL with weak to moderate convection. A key outcome of the simulations performed

in Chapter 5 is that for any convective ABL, knowledge of the normality of the loudness

distributions can be obtained from considering the ray path distance through turbulence

(obtained from a ray tracing code) and the appropriate MOST variables, u∗, w∗, T∗, Lo, zi,

c0, and T0 (obtained from meteorological measurements).

In Chapter 6, simulations of a sonic boom N-wave and shaped boom were performed

beyond the lateral cutoff region in a turbulent ABL for weak, moderate, and strong

convection. The waveforms were first propagated from the top of the ABL to the lateral

cutoff location using PCBoom, and then used as input to simulations from the lateral

cutoff region to a distance of 4 km into the shadow zone region. Results for the N-wave

simulations show the increasing important of turbulent scattering on waveforms in the

shadow zone region as the convection level of the ABL increases. The average maximum

pressure beyond the lateral cutoff is observed to increase as the turbulence integral length

scale and rms velocity increases. Accordingly, so do the average loudness metrics of the

N-wave in the shadow zone region. Moderate and strong convection levels in the ABL

lead to a significant increase of the loudness levels of the sonic boom in the shadow zone

region relative to weak convection. This is an indication of the important influence that

ABL turbulence has on the loudness of sonic booms in the shadow zone region, and the

potential annoyance that sonic booms can have on observers in the shadow zone during

moderate and strong convection conditions in the ABL.

The shaped boom simulations in the shadow zone region indicate that for weak

convection levels the maximum pressure is Gamma distributed. The average values of

the loudness metrics of the shaped boom show the same trend with convection level

as the N-wave. The loudness metrics in the shadow zone are normally distributed

for weak convection levels in the ABL, except for observations of ∆PL, ∆BSEL, and

∆ESEL greater than 2 dB above the mean when x̃1 ≥ 45. For the moderate convection

setpoint, skewness in the distributions with respect to a normal distribution is present.
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However, this skewness is reduced for the strong convection case at AFRC. The shaped

waveform simulations indicate that for weak convection at KSC, and strong convection

at AFRC, the loudness metric distributions may be approximated as normal. Taking into

consideration the results of Chapter 5 for both the N-wave and shaped boom, a normal

distribution is an appropriate approximation of the loudness metric distributions for events

occuring in the cumulative probability range of 10% to 90%. Thus, the most extreme

observations of significant increase or decrease of the loudness metrics with respect to their

nominal value follow a normal distribution directly undertrack of the flight path, but do

not necessarily follow a normal distribution for locations in the primary carpet that are at

large lateral distances away from the flight path.

7.2 Future Work

For the simulations of sonic boom propagation through turbulence performed here,

the turbulent fields generated in the code follow a von Kármán model for the energy

spectrum. The standard deviation and von Kármán length scales of the turbulence vary

with altitude in the surface layer, and then are approximated as constant in the mixed

layer region. This model is adequate for sound propagation simulations in a convective

ABL, as demonstrated by Kamrath et al. [190] and Ostashev et al. [191]. However, in

situations where the ABL is stable, such as during the nighttime, this model is inadequate.

Turbulence is generally driven by shear forces at nighttime from nocturnal jets. Future

investigations may want to consider sonic boom propagation in the nighttime ABL, to

understand how loudness levels are impacted by a stable ABL. Predicting the effects of

turbulence on the sonic boom waveforms for nighttime ABLs will also be important for

the development of commercial supersonic noise standards at night, as opposed to just

examining daytime conditions.

Even during the daytime, this model of the turbulence in the ABL is rudimentary.

Several aspects of turbulence in the ABL, which may be important to consider, are

neglected. These include intermittency, surface blocking of the turbulent eddies, and
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correlated vertical velocity and temperature fluctuations. Intermittency near the top of

the ABL will effect the total propagation distance through turbulence that the sonic boom

experiences, as the boundary between the turbulent and non-turbulent air will not be at

a constant altitude across the entire sonic boom carpet. Whether or not intermittency

is important to consider for the problem of sonic boom propagation in a convective ABL

remains to be investigated. One possible approach to investigate this would be to generate

turbulence using a Quasi-Wavelet method, where intermittency can be introduced in the

packing fraction term (see [126] and [207]).

The ground surface acts as a barrier to the turbulent eddies, and thus reduces

the length scale of the turbulence near the ground. This surface blocking effect can be

incorporated into the velocity spectrum for the bouyancy driven fluctuations in a manner

similar to that of Hunt and Graham [208] and Wilson [209]. With this approach, the

inhomogeneous surface blocked velocity spectrum, Φsb
ij , can be formulated in terms of

the homogeneous velocity spectrum, which may be modeled using a von Kármán energy

spectrum. The surface blocked spectrum, Φsb
ij , could then replace Φij in the GRPM used

here to generate turbulent fields. This approach would then introduce inhomogeneity into

the bouyancy driven fluctuations. It is unlikely that this inhomogeneity would greatly

influence the sonic boom propagation, as the simulation results suggest here that the effect

of the present inhomogeneity on the results is quite small. However, an investigation of

sonic boom propagation in the ABL with surface blocking effects would be required to

confirm this.

Finally, velocity fluctuations driven by local temperature gradients should in fact be

correlated with the temperature fluctuations in the turbulent ABL. It is apparent from

the Boussinesq equations (see Wyngaard [194] for example) that bouyancy, the dominant

physical mechanism driving turbulence in the convective ABL, relates the vertical velocity

fluctuations to the temperature fluctuations. The current method used to generate

turbulent fields in sbABL does not account for any correlation between the vertical

276



velocity component and the temperature fluctuations. A method was proposed in Chapter

3, that is very similar to the GRPM, which generates two correlated random fields. The

main difference between the proposed method and GRPM, is the eigenvalue problem is

now replaced with a singular value decomposition. However, as was mentioned in Chapter

3, the author is not aware of any generally accepted model for the cross covariance

that is specifically calibrated to relate velocity and temperature in the atmospheric

boundary layer. A model was proposed by Panofsky and Mares [175] for the cospectrum

Eu3T (ω). However, in order to generate a kinematic turbulence field in a 2D plane or

in 3D, the vertical correlation would need to be modeled either empirically or with a

von Kármán model. Future investigations into sonic boom propagation in the ABL may

benefit from making enhancements to the turbulence model that includes the effects

of intermittency, surface blocking, and correlation between the vertical velocity and

temperature fluctuations.

In situations where the effective sound speed gradient in the atmospheric surface

layer is large and results in the upward refraction of sound waves, the effect of the

ground impedance on propagation will be small [205]. In the cases examined here, for

a daytime ABL, this assumption is generally satistfied. However, when the effective

sound speed gradient is small, or when it results in downward refraction, the sonic boom

in the lateral cutoff region may propagate along the ground for large distances, and

the cumulative effect of the ground impedance may play a significant role in distorting

the signature near the ground. Since the diffraction of the waveform is computed in

wavenumber space in sbABL, methods used in the fast-field program [210] and Green’s

function methods [211] are not easily adapted to the simulations here. For radio wave

propagation in the troposphere, Kuttler and Dockery [212, 213] developed a transform

approach to incorporate impedance boundary conditions into Fourier split-step simulations

of a parabolic wave equation. This technique, termed the mixed Fourier transform

method (or discrete mixed Fourier transform method), was recently adapted to acoustic
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propagation over a finite impedance plane by Carr et al. [214]. Carr et al. forego the

use of a parabolic approximation on the governing Helmholtz equation by computing

the forward propagation of the wave with acoustic holography. The finite impedance

boundary is incorporated into the holography approach by replacing the Fourier transform

in the direction normal to the impedance plane with the discrete mixed Fourier transform.

Simulation results for the propagation of a point source above a finite impedance plane

at three different frequencies, 10 Hz, 100 Hz, and 1 kHz, agree within 1% of the exact

solution. Thus, the method works well for point sources emitting sound at a single

frequency.

However, Kuttler and Janaswamy [215] point out that for certain frequencies

the inverse discrete mixed Fourier transform approach may be inaccurate due to the

presence of a pole in the integral. They proposed several variations of the discrete mixed

Fourier transform method in order to avoid this issue, but each variation appears to

perform differently for different frequency ranges. Due to the multi-frequency nature

of impulsive sounds, such as a sonic boom, the method needs to be stable for a wide

range of frequencies. In light of this, and the rigid ground assumptions made in previous

investigations [205], the discrete mixed Fourier transform was not used for any of the sonic

boom lateral cutoff simulations performed here. Future investigations may want to focus

on improving the stability of the discrete mixed Fourier transform method across a range

of frequencies commonly encountered in sonic boom signals, in order to investigate the

effects of ground impedance at the lateral cutoff. Alternatively, codes could be developed

using methods similar to that of the fast-field program, or Green’s function methods, to

compute the effects of ground impedance on sonic boom waveforms.
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APPENDIX A
DISCRETIZATION OF HETEROGENEOUS TERMS IN THREE DIMENSIONS
The phase effects terms in 3D are not too different from the 2D expression. The

differential equation governing the phase effects is,
[
iω

(
1 +

ŭ1

c0
− 2c0c

′′ + c′2

c20

)
+

ŭ1

2c0
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ŭ2

2c0

∂ŭ1

∂x2
+

ŭ3

2c0
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2c0ρ̆
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2ρ0

∂ŭ1
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2ρ0

∂ŭ1
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This equation is solved analytically,

p̂ (x1 +∆x1, x2, x3, ω) = p̂ (x1, x2, x3, ω) exp

[∫ x1+∆x1

x1

χ (ξ) dξ

]
, (A-2)

where,
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(

ŭ2
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∂ŭ1

∂x1
+ ŭ2
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The transverse terms are a bit more complicated. The general form of the transformed

governing equation for the transverse flow effects is,

C1
∂p̂

∂x1
+ C2

∂2p̂

∂x1∂x2
+ C3

∂2p̂
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∂2p̂
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, (A-4)

where C1, C2, C3, C4, C5, C6, C7, and C8 are,

C1 = −iω, (A-5)

C2 =
ŭ1ŭ2
c0

, (A-6)

C3 =
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, (A-7)
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∂ŭ1
∂x2

,

(A-10)

279



C7 = iω
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∂ŭ1
∂x3

,

(A-11)

and

C8 =
1

2iωc0

∂ŭ2
∂x3

+
1

2iωc0

∂ŭ3
∂x2

. (A-12)

The two dimensional forms of the coefficients can be obtained by neglecting ŭ3 and partial

derivatives with respect to x3. In order to solve the equation governing the transverse

effects efficiently, an alternating direction implicit (ADI) scheme is employed. This

consists of neglecting the cross-derivative terms and solving two systems of equations.

The first system results from approximating the derivatives with a finite difference scheme

and stepping forward only halfway to the next plane. The x2 derivatives on the first

half-step are implicit, meaning that they are taken on the n + 1/2 plane, while the x3

derivatives are known on the n plane. Then, the solution at n + 1/2 is computed with

a tridiagonal matrix solver, with periodic boundary conditions accounted for with the

Sherman-Morrison-Woodbury equation or zero pressure on the boundaries. The next

step from n + 1/2 to n + 1 consists of taking the x3 derivatives as implicit on the n + 1

plane. The solution is again computed with a tridiagonal matrix solver with appropriate

boundary conditions.
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APPENDIX B
PROBABILITY DISTRIBUTIONS OF ISBAP AND BSEL IN ISOTROPIC

TURBULENCE

This section of the appendix contains plots of the probability distributions of the

ISBAP and BSEL metrics in isotropic turbulent fields. The results presented here were

obtained from the investigation in chapter 4. Figure B-1 shows that ISBAP becomes

skewed to the right of a normal distribution as x1ℓ−1
f increases. This is consistent with the

results of section 4.2.2.

For the BSEL results, Fig. B-2, the normality of the distributions follows the trend

of the ISBAP and PL distributions. That is, the BSEL distribution appears to transition

from normally distributed to right-skewed in the range 2 ≤ x1ℓ
−1
f ≤ 3. In section 4.2.2,

hypothesis tests indicated that the transition locations for PL, ISBAP, and BSEL occur at

very similar x1ℓ−1
f distances. Visual comparison of Figs. B-1 and B-2 with the PL results

in section 4.2.2 provides supporting evidence of this result.

As we examine the shaped waveform results, Figs. B-3 and B-4, we see different

trends than the ISBAP and BSEL trends for the N-wave. Hypothesis tests indicated that

the ISBAP remains normal for longer x1ℓ−1
f distances for the shaped waveform than the

N-wave, and Fig. B-3 appears to be consistent with this result. For the BSEL distribution,

hypothesis tests could not determine a unique transition location along the propagation

direction. In Fig. B-4 the BSEL distribution is skewed to the right at every propagation

location, except perhaps at x1ℓ−1
f = 4, which confirms the hypothesis testing results. Even

with this skewness present, it appears that cumulative probabilities between 10% and 90%

still closely follow a normal distribution.
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Figure B-1. Probability plots of ∆ISBAP with respect to the average for case 9 of the
N-wave simulations. Non-dimensional distances of A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2,

C) x1ℓ−1
f = 4, D) x1ℓ−1

f = 6, E) x1ℓ−1
f = 8, and F) x1ℓ−1

f = 10.

282



-10 -5 0 5 10

0.001

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

0.99

0.997

0.999

A

-8 -6 -4 -2 0 2 4 6 8 10

0.001

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

0.99

0.997

0.999

B

-6 -4 -2 0 2 4 6 8

0.001

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

0.99

0.997

0.999

C

-4 -2 0 2 4 6 8

0.001

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

0.99

0.997

0.999

D

-4 -2 0 2 4 6

0.001

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

0.99

0.997

0.999

E

-4 -3 -2 -1 0 1 2 3 4 5

0.001

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

0.99

0.997

0.999

F

Figure B-2. Probability plots of ∆BSEL with respect to the average for case 9 of the
N-wave simulations. Non-dimensional distances of A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2,

C) x1ℓ−1
f = 4, D) x1ℓ−1

f = 6, E) x1ℓ−1
f = 8, and F) x1ℓ−1

f = 10.
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Figure B-3. Probability plots of ∆ISBAP with respect to the average for case 9 of the
low-boom simulations. Non-dimensional distances of A) x1ℓ−1

f = 1, B)
x1ℓ

−1
f = 2, C) x1ℓ−1

f = 4, D) x1ℓ−1
f = 6, E) x1ℓ−1

f = 8, and F) x1ℓ−1
f = 10.
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Figure B-4. Probability plots of ∆BSEL with respect to the average for case 9 of the
low-boom simulations. Non-dimensional distances of A) x1ℓ−1

f = 1, B)
x1ℓ

−1
f = 2, C) x1ℓ−1

f = 4, D) x1ℓ−1
f = 6, E) x1ℓ−1

f = 8, and F) x1ℓ−1
f = 10.

285



APPENDIX C
PROBABILITY DISTRIBUTIONS OF N-WAVE LOUDNESS METRICS IN

ATMOSPHERIC BOUNDARY LAYER TURBULENCE

In this appendix, distributions of the N-wave weighted sound exposure levels (B, D,

and E-weighting) are presented at four different x1ℓ−1
f locations for each different ABL

setpoint. Figures C-1 through C-3 present the distributions of ∆BSEL compared to a

theoretical normal distribution. Figures C-4 through C-6 present the distributions of

∆DSEL compared to a theoretical normal distribution. Figures C-7 through C-9 present

the distributions of ∆ESEL compared to a theoretical normal distribution.
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Figure C-1. Cumulative probability plots of the ∆BSEL distributions for KSC20 compared
to a Normal distribution. Non-dimensional distances of A) x1ℓ−1

f = 1, B)
x1ℓ

−1
f = 2, C) x1ℓ−1

f = 4, and D) x1ℓ−1
f = 6.
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Figure C-2. Cumulative probability plots of the ∆BSEL distributions for KSC6 compared
to a Normal distribution. Non-dimensional distances of A) x1ℓ−1

f = 1, B)
x1ℓ

−1
f = 2, C) x1ℓ−1

f = 4, and D) x1ℓ−1
f = 6.
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Figure C-3. Cumulative probability plots of the ∆BSEL distributions for AFRC3
compared to a Normal distribution. Non-dimensional distances of A)
x1ℓ

−1
f = 1, B) x1ℓ−1

f = 2, C) x1ℓ−1
f = 4, and D) x1ℓ−1

f = 6.
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Figure C-4. Cumulative probability plots of the ∆DSEL distributions for KSC20
compared to a Normal distribution. Non-dimensional distances of A)
x1ℓ

−1
f = 1, B) x1ℓ−1

f = 2, C) x1ℓ−1
f = 4, and D) x1ℓ−1

f = 6.
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Figure C-5. Cumulative probability plots of the ∆DSEL distributions for KSC6 compared
to a Normal distribution. Non-dimensional distances of A) x1ℓ−1

f = 1, B)
x1ℓ

−1
f = 2, C) x1ℓ−1

f = 4, and D) x1ℓ−1
f = 6.
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Figure C-6. Cumulative probability plots of the ∆DSEL distributions for AFRC3
compared to a Normal distribution. Non-dimensional distances of A)
x1ℓ

−1
f = 1, B) x1ℓ−1

f = 2, C) x1ℓ−1
f = 4, and D) x1ℓ−1

f = 6.
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Figure C-7. Cumulative probability plots of the ∆ESEL distributions for KSC20 compared
to a Normal distribution. Non-dimensional distances of A) x1ℓ−1

f = 1, B)
x1ℓ

−1
f = 2, C) x1ℓ−1

f = 4, and D) x1ℓ−1
f = 6.
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Figure C-8. Cumulative probability plots of the ∆ESEL distributions for KSC6 compared
to a Normal distribution. Non-dimensional distances of A) x1ℓ−1

f = 1, B)
x1ℓ

−1
f = 2, C) x1ℓ−1

f = 4, and D) x1ℓ−1
f = 6.
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Figure C-9. Cumulative probability plots of the ∆ESEL distributions for AFRC3
compared to a Normal distribution. Non-dimensional distances of A)
x1ℓ

−1
f = 1, B) x1ℓ−1

f = 2, C) x1ℓ−1
f = 4, and D) x1ℓ−1

f = 6.
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APPENDIX D
PROBABILITY DISTRIBUTIONS OF X-59 OVERPRESSURE AND LOUDNESS

METRICS IN ATMOSPHERIC BOUNDARY LAYER TURBULENCE

In this appendix, distributions of the X-59 waveform weighted sound exposure levels

(B, D, and E-weighting) are presented at four different x1ℓ−1
f locations for each different

ABL setpoint. In addition, Figures D-1 through D-3 show distributions of the X-59 sonic

boom overpressure for two different elevation angles. Figures D-4 through D-6 present

the distributions of ∆BSEL compared to a theoretical normal distribution. Figures

D-7 through D-9 present the distributions of ∆DSEL compared to a theoretical normal

distribution. Figures D-10 through D-12 present the distributions of ∆ESEL compared to

a theoretical normal distribution.

A B

Figure D-1. Overpressure distributions for KSC20 on the ground at two different elevation
angles. Elevation angles of A) θelv = 5◦, and B) θelv = 35◦.
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A B

Figure D-2. Overpressure distributions for KSC6 on the ground at two different elevation
angles. Elevation angles of A) θelv = 5◦, and B) θelv = 35◦.

A B

Figure D-3. Overpressure distributions for AFRC3 on the ground at two different elevation
angles. Elevation angles of A) θelv = 5◦, and B) θelv = 35◦.
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Figure D-4. Cumulative probability plots of the ∆BSEL distributions for KSC20 compared
to a Normal distribution for the X-59 waveform. Non-dimensional distances of
A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 4, and D) x1ℓ−1
f = 6.
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Figure D-5. Cumulative probability plots of the ∆BSEL distributions for KSC6 compared
to a Normal distribution for the X-59 waveform. Non-dimensional distances of
A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 4, and D) x1ℓ−1
f = 6.
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Figure D-6. Cumulative probability plots of the ∆BSEL distributions for AFRC3
compared to a Normal distribution for the X-59 waveform. Non-dimensional
distances of A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 4, and D) x1ℓ−1
f = 6.
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Figure D-7. Cumulative probability plots of the ∆DSEL distributions for KSC20
compared to a Normal distribution for the X-59 waveform. Non-dimensional
distances of A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 4, and D) x1ℓ−1
f = 6.
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Figure D-8. Cumulative probability plots of the ∆DSEL distributions for KSC6 compared
to a Normal distribution for the X-59 waveform. Non-dimensional distances of
A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 4, and D) x1ℓ−1
f = 6.
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Figure D-9. Cumulative probability plots of the ∆DSEL distributions for AFRC3
compared to a Normal distribution for the X-59 waveform. Non-dimensional
distances of A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 4, and D) x1ℓ−1
f = 6.
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Figure D-10. Cumulative probability plots of the ∆ESEL distributions for KSC20
compared to a Normal distribution for the X-59 waveform. Non-dimensional
distances of A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 4, and D) x1ℓ−1
f = 6.
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Figure D-11. Cumulative probability plots of the ∆ESEL distributions for KSC6 compared
to a Normal distribution for the X-59 waveform. Non-dimensional distances
of A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 4, and D) x1ℓ−1
f = 6.
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Figure D-12. Cumulative probability plots of the ∆ESEL distributions for AFRC3
compared to a Normal distribution for the X-59 waveform. Non-dimensional
distances of A) x1ℓ−1

f = 1, B) x1ℓ−1
f = 2, C) x1ℓ−1

f = 4, and D) x1ℓ−1
f = 6.
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APPENDIX E
PROBABILITY DISTRIBUTIONS OF N-WAVE LOUDNESS METRICS IN THE

SHADOW ZONE

Distributions of ∆ISBAP, ∆BSEL, ∆DSEL, and ∆ESEL for the N-wave are presented

in this appendix for propagation beyond the lateral cutoff. Figures E-1, E-2, and E-3

show the distributions of ∆ISBAP for x̃1 = 0, x̃1 = 15, x̃1 = 30, and x̃1 = 45 at

setpoints KSC20, KSC6, and AFRC3, respectively. The trends observed in the ∆ISBAP

distributions are similar to the ∆PL distributions shown in Chapter 6.
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Figure E-1. Cumulative probabilities of ∆ISBAP - ∆ISBAP for the N-wave results
(KSC20). Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure E-2. Cumulative probabilities of ∆ISBAP - ∆ISBAP for the N-wave results
(KSC6). Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.

Figures E-4, E-5, and E-6 show the distributions of ∆BSEL for x̃1 = 0, x̃1 = 15,

x̃1 = 30, and x̃1 = 45 at setpoints KSC20, KSC6, and AFRC3, respectively. The trends

observed in the ∆BSEL distributions are similar to the ∆PL distributions shown in

Chapter 6.

Figures E-7, E-8, and E-9 show the distributions of ∆DSEL for x̃1 = 0, x̃1 = 15,

x̃1 = 30, and x̃1 = 45 at setpoints KSC20, KSC6, and AFRC3, respectively. The trends
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Figure E-3. Cumulative probabilities of ∆ISBAP - ∆ISBAP for the N-wave results
(AFRC3). Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.

observed in the ∆DSEL distributions are similar to the ∆PL distributions shown in

Chapter 6.

Figures E-10, E-11, and E-12 show the distributions of ∆ESEL for x̃1 = 0, x̃1 = 15,

x̃1 = 30, and x̃1 = 45 at setpoints KSC20, KSC6, and AFRC3, respectively. The trends

observed in the ∆ESEL distributions are similar to the ∆PL distributions shown in

Chapter 6.
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Figure E-4. Cumulative probabilities of ∆BSEL - ∆BSEL for the N-wave results (KSC20).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure E-5. Cumulative probabilities of ∆BSEL - ∆BSEL for the N-wave results (KSC6).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure E-6. Cumulative probabilities of ∆BSEL - ∆BSEL for the N-wave results
(AFRC3). Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure E-7. Cumulative probabilities of ∆DSEL - ∆DSEL for the N-wave results (KSC20).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure E-8. Cumulative probabilities of ∆DSEL - ∆DSEL for the N-wave results (KSC6).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure E-9. Cumulative probabilities of ∆DSEL - ∆DSEL for the N-wave results
(AFRC3). Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure E-10. Cumulative probabilities of ∆ESEL - ∆ESEL for the N-wave results
(KSC20). Simulation results (blue markers) compared to a theoretical
normal distribution (dashed black line). Non-dimensional distances of A)
x̃1 = 0, B) x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure E-11. Cumulative probabilities of ∆ESEL - ∆ESEL for the N-wave results (KSC6).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure E-12. Cumulative probabilities of ∆ESEL - ∆ESEL for the N-wave results
(AFRC3). Simulation results (blue markers) compared to a theoretical
normal distribution (dashed black line). Non-dimensional distances of A)
x̃1 = 0, B) x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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APPENDIX F
PROBABILITY DISTRIBUTIONS OF X-59 OVERPRESSURE AND LOUDNESS

METRICS IN THE SHADOW ZONE

Distributions of ∆ISBAP, ∆BSEL, ∆DSEL, and ∆ESEL for the X-59 waveform are

presented in this appendix for propagation beyond the lateral cutoff. Figures E-1, E-2,

and E-3 show the distributions of ∆ISBAP for x̃1 = 0, x̃1 = 15, x̃1 = 30, and x̃1 = 45 at

setpoints KSC20, KSC6, and AFRC3, respectively. The trends observed in the ∆ISBAP

distributions are similar to the ∆PL distributions for the X-59 waveform shown in Chapter

6.

Figures E-4, E-5, and E-6 show the distributions of ∆BSEL for x̃1 = 0, x̃1 = 15,

x̃1 = 30, and x̃1 = 45 at setpoints KSC20, KSC6, and AFRC3, respectively. The trends

observed in the ∆BSEL distributions are similar to the ∆PL distributions for the X-59

waveform shown in Chapter 6.

Figures E-7, E-8, and E-9 show the distributions of ∆DSEL for x̃1 = 0, x̃1 = 15,

x̃1 = 30, and x̃1 = 45 at setpoints KSC20, KSC6, and AFRC3, respectively. The trends

observed in the ∆DSEL distributions are similar to the ∆PL distributions for the X-59

waveform shown in Chapter 6.

Figures E-10, E-11, and E-12 show the distributions of ∆ESEL for x̃1 = 0, x̃1 = 15,

x̃1 = 30, and x̃1 = 45 at setpoints KSC20, KSC6, and AFRC3, respectively. The trends

observed in the ∆ESEL distributions are similar to the ∆PL distributions for the X-59

waveform shown in Chapter 6.
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Figure F-1. Cumulative probabilities of ∆ISBAP - ∆ISBAP for the X-59 results (KSC20).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure F-2. Cumulative probabilities of ∆ISBAP - ∆ISBAP for the X-59 results (KSC6).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure F-3. Cumulative probabilities of ∆ISBAP - ∆ISBAP for the X-59 results (AFRC3).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure F-4. Cumulative probabilities of ∆BSEL - ∆BSEL for the X-59 results (KSC20).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure F-5. Cumulative probabilities of ∆BSEL - ∆BSEL for the X-59 results (KSC6).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure F-6. Cumulative probabilities of ∆BSEL - ∆BSEL for the X-59 results (AFRC3).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.

324



-3 -2 -1 0 1 2 3

0.005 

      

0.05  

0.1   

0.25  

0.5   

0.75  

0.9   

0.95  

      

0.995 

A

-3 -2 -1 0 1 2 3

0.0005
      

0.005 

      

0.05  

0.1   

0.25  

0.5   

0.75  

0.9   

0.95  

      

0.995 

      
0.9995

B

-3 -2 -1 0 1 2 3

0.0005
      

0.005 
      

0.05  

0.1   

0.25  

0.5   

0.75  

0.9   

0.95  

      
0.995 

      
0.9995

C

-3 -2 -1 0 1 2 3

      

0.005 

      

0.05  

0.1   

0.25  

0.5   

0.75  

0.9   

0.95  

      

0.995 

      

D

Figure F-7. Cumulative probabilities of ∆DSEL - ∆DSEL for the X-59 results (KSC20).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure F-8. Cumulative probabilities of ∆DSEL - ∆DSEL for the X-59 results (KSC6).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure F-9. Cumulative probabilities of ∆DSEL - ∆DSEL for the X-59 results (AFRC3).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure F-10. Cumulative probabilities of ∆ESEL - ∆ESEL for the X-59 results (KSC20).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure F-11. Cumulative probabilities of ∆ESEL - ∆ESEL for the X-59 results (KSC6).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.
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Figure F-12. Cumulative probabilities of ∆ESEL - ∆ESEL for the X-59 results (AFRC3).
Simulation results (blue markers) compared to a theoretical normal
distribution (dashed black line). Non-dimensional distances of A) x̃1 = 0, B)
x̃1 = 15, C) x̃1 = 30, and D) x̃1 = 45.

330



REFERENCES

[1] H. J. Price, Fact sheet - supersonic flight. Federal Aviation Administration.
United States Department of Transportation, Feb 2019. [Online]. Available:
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=22754

[2] J. Chepkemoi, The history of Concorde airplanes. WorldAtlas.com,
Mar 2017. [Online]. Available: https://www.worldatlas.com/articles/
the-history-of-concorde-airplanes.html

[3] Airbus, Concorde: In pictures. National Geographic, Sep 2019. [Online]. Available:
https://www.nationalgeographic.co.uk/photography/2019/08/concorde-pictures?
image=concorde_006_0

[4] “Science and photo library,” https://www.sciencephoto.com/.

[5] S. Dowling, The Soviet Union’s flawed rival to Concorde. BBC, Aug
2020. [Online]. Available: https://www.bbc.com/future/article/
20171018-the-soviet-unions-flawed-rival-to-concorde

[6] “Beyond traffic 2045 trends and choices,” United States Department of Transportation,
Tech. Rep., 2017.

[7] “FAA aerospace forecast, fiscal years 2018-2038,” Federal Aviation Administration,
Tech. Rep., 2018.

[8] L. Gipson, New NASA X-Plane construction begins now. National Aviation
and Space Administration, Apr 2018. [Online]. Available: https:
//www.nasa.gov/lowboom/new-nasa-x-plane-construction-begins-now

[9] E. Adams, “Four companies leading the return of supersonic air travels,” Online;
gearpatrol.com, June 2016.

[10] K. J. Plotkin, “State of the art of sonic boom modeling,” The Journal of the
Acoustical Society of America, vol. 111, no. 1, pp. 530–536, Jan. 2002. [Online].
Available: https://doi.org/10.1121/1.1379075

[11] J. B. Lonzaga, “Recent enhancements to NASA’s PCBoom sonic boom propagation
code,” in AIAA Aviation 2019 Forum. American Institute of Aeronautics and
Astronautics, Jun. 2019. [Online]. Available: https://doi.org/10.2514/6.2019-3386

[12] K. J. Plotkin, M. Downing, and J. Page, “USAF single event sonic boom prediction
model: PCBOOM,” The Journal of the Acoustical Society of America, vol. 95, no. 5,
pp. 2839–2839, May 1994. [Online]. Available: https://doi.org/10.1121/1.409605

[13] S. K. Rallabhandi, “Advanced sonic boom prediction using the augmented burgers
equation,” Journal of Aircraft, vol. 48, no. 4, pp. 1245–1253, Jul. 2011. [Online].
Available: https://doi.org/10.2514/1.c031248

331

https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=22754
https://www.worldatlas.com/articles/the-history-of-concorde-airplanes.html
https://www.worldatlas.com/articles/the-history-of-concorde-airplanes.html
https://www.nationalgeographic.co.uk/photography/2019/08/concorde-pictures?image=concorde_006_0
https://www.nationalgeographic.co.uk/photography/2019/08/concorde-pictures?image=concorde_006_0
https://www.sciencephoto.com/
https://www.bbc.com/future/article/20171018-the-soviet-unions-flawed-rival-to-concorde
https://www.bbc.com/future/article/20171018-the-soviet-unions-flawed-rival-to-concorde
https://www.nasa.gov/lowboom/new-nasa-x-plane-construction-begins-now
https://www.nasa.gov/lowboom/new-nasa-x-plane-construction-begins-now
https://doi.org/10.1121/1.1379075
https://doi.org/10.2514/6.2019-3386
https://doi.org/10.1121/1.409605
https://doi.org/10.2514/1.c031248


[14] D. J. Maglieri, P. J. Bobbitt, K. J. Plotkin, K. P. Shepherd, P. G. Coen, and D. M.
Richwine, “Sonic boom: Six decades of research,” NASA Langley Research Center,
Hampton, Virginia, Tech. Rep. NASA/SP-2014-622, December 2014.

[15] F. Coulouvrat, “New equations for nonlinear acoustics in a low mach number and
weakly heterogeneous atmosphere,” Wave Motion, vol. 49, no. 1, pp. 50–63, Jan.
2012. [Online]. Available: https://doi.org/10.1016/j.wavemoti.2011.07.002

[16] F. Dagrau, M. Rénier, R. Marchiano, and F. Coulouvrat, “Acoustic shock wave
propagation in a heterogeneous medium: A numerical simulation beyond the
parabolic approximation,” The Journal of the Acoustical Society of America, vol. 130,
no. 1, pp. 20–32, Jul. 2011. [Online]. Available: https://doi.org/10.1121/1.3583549

[17] D. Luquet, “3D simulation of acoustical shock waves propagation through a turbulent
atmosphere. Application to sonic boom,” Theses, Université Pierre et Marie Curie -
Paris VI, Jan. 2016. [Online]. Available: https://tel.archives-ouvertes.fr/tel-01360574

[18] T. Stout, “Simulation of n-wave and shaped supersonic signature turbulent variations,”
Ph.D. dissertation, Pennsylvania State University, Dec. 2018.

[19] J. A. Page and A. Loubeau, “Overall vehicle system noise: sonic boom,” CEAS
Aeronautical Journal, vol. 10, no. 1, pp. 335–353, Mar. 2019. [Online]. Available:
https://doi.org/10.1007/s13272-019-00379-0

[20] K. A. Bradley, C. M. Hobbs, C. B. Wilmer, V. W. Sparrow, T. A. Stout, J. M.
Morgenstern, K. H. Underwood, D. J. Maglieri, R. A. Cowart, M. T. Collmar, and
et al., “Sonic booms in atmospheric turbulence (sonicbat): The influence of turbulence
on shaped sonic booms,” NASA Technical Report, 2020.

[21] A. Pierce, Acoustics : an introduction to its physical principles and applications.
Cham, Switzerland: Springer, 2019.

[22] D. K. Wilson, “Three-dimensional correlation and spectral functions for
turbulent velocities in homogeneous and surface-blocked boundary layers.”
Army Research Laboratory, Tech. Rep., Jul. 1997. [Online]. Available:
https://doi.org/10.21236/ada327709

[23] R. Hallion, “On the frontier: flight research at dryden, 1946-1981,” Scientific and
Technical Information Branch, NASA, Washington, D.C., Tech. Rep. TLb21.312.H34,
1984.

[24] R. Bilstein, Orders of magnitude a history of the NACA and NASA, 1915-1990.
Scientific and Technical Information Division, Washington, D.C.: National
Aeronautics and Space Administration, Office of Management, 1989.

[25] R. P. Hallion, Supersonic revolution. HistoryNet.com, Dec 2020. [Online]. Available:
https://www.historynet.com/supersonic-revolution.htm

332

https://doi.org/10.1016/j.wavemoti.2011.07.002
https://doi.org/10.1121/1.3583549
https://tel.archives-ouvertes.fr/tel-01360574
https://doi.org/10.1007/s13272-019-00379-0
https://doi.org/10.21236/ada327709
https://www.historynet.com/supersonic-revolution.htm


[26] NASA, Bell X-1 in flight. NASA. [Online]. Available: https://www.nasa.gov/
centers/langley/multimedia/iotw-bellx1-dfrc.html#.YDAkV3lOmUk

[27] D. Suisman, “The Oklahoma City sonic boom experiment and the politics of
supersonic aviation,” Radical History Review, vol. 2015, no. 121, pp. 169–195, 01
2015. [Online]. Available: https://doi.org/10.1215/01636545-2800022

[28] M. Horwitch, Clipped wings: the American SST conflict. MIT Press, 1982.

[29] Papers of John F. Kennedy, ser. Presidential Papers. National Security Files,
Subjects, Supersonic Transport, 1963.

[30] A. Daverede, “What happened to the American SST?” National Archives and Records
Administration, Jul 2017. [Online]. Available: https://declassification.blogs.archives.
gov/2017/07/28/what-happened-to-the-american-sst/

[31] “The effects of sonic boom and similar impulsive noise on structures,” Environmental
Protection Agency, Report.

[32] C. Johnson, “Council puts off sending anti-boom letter to FAA,” Daily Oklahoman,
Feb 1964.

[33] P. N. Borsky, “Community reactions to sonic booms in the Oklahoma City area,”
National Opinion Research Center New York, Tech. Rep. 196510, 1965.

[34] C. W. Nixon, “Sonic boom: A community study,” in Proceedings of the Conference
Noise as a Public Health Hazard, 1969.

[35] Report on human response to the sonic boom. National Academies Press, Jan. 1968.
[Online]. Available: https://doi.org/10.17226/18775

[36] S. Candel, “Concorde and the future of supersonic transport,” Journal of
Propulsion and Power, vol. 20, no. 1, pp. 59–68, Jan. 2004. [Online]. Available:
https://doi.org/10.2514/1.9180

[37] P. K. Woolley, “A cost-benefit analysis of the concorde project,” Journal of
Transport Economics and Policy, vol. 6, no. 3, pp. 225–239, 1972. [Online]. Available:
http://www.jstor.org/stable/20052287

[38] E. Wong, “For concorde, economics trumped technology,” New York Times, Oct 2003.

[39] L. Landau, “On shock waves at large distances from the place of their origin,” in
Collected Papers of L.D. Landau. Elsevier, 1965, pp. 437–444. [Online]. Available:
https://doi.org/10.1016/b978-0-08-010586-4.50065-1

[40] W. D. Hayes, “Linearized supersonic flow,” Ph.D. dissertation, California Institute
of Technology, 1947. [Online]. Available: https://resolver.caltech.edu/CaltechETD:
etd-04132007-131650

333

https://www.nasa.gov/centers/langley/multimedia/iotw-bellx1-dfrc.html#.YDAkV3lOmUk
https://www.nasa.gov/centers/langley/multimedia/iotw-bellx1-dfrc.html#.YDAkV3lOmUk
https://doi.org/10.1215/01636545-2800022
https://declassification.blogs.archives.gov/2017/07/28/what-happened-to-the-american-sst/
https://declassification.blogs.archives.gov/2017/07/28/what-happened-to-the-american-sst/
https://doi.org/10.17226/18775
https://doi.org/10.2514/1.9180
http://www.jstor.org/stable/20052287
https://doi.org/10.1016/b978-0-08-010586-4.50065-1
https://resolver.caltech.edu/CaltechETD:etd-04132007-131650
https://resolver.caltech.edu/CaltechETD:etd-04132007-131650


[41] R. T. Whitcomb, “A study of the zero-lift drag-rise characteristics of wing-body
combinations near the speed of sound.” National Advisory Committee for Aeronautics,
Langley Field, Va., Tech. Rep. NACA RM L52H08, 1952.

[42] G. B. Whitham, “The behaviour of supersonic flow past a body of revolution, far
from the axis,” Proceedings of the Royal Society of London. Series A. Mathematical
and Physical Sciences, vol. 201, no. 1064, pp. 89–109, Mar. 1950. [Online]. Available:
https://doi.org/10.1098/rspa.1950.0045

[43] ——, “The flow pattern of a supersonic projectile,” Communications on Pure and
Applied Mathematics, vol. 5, no. 3, pp. 301–348, Aug. 1952. [Online]. Available:
https://doi.org/10.1002/cpa.3160050305

[44] ——, “On the propagation of weak shock waves,” Journal of Fluid
Mechanics, vol. 1, no. 3, pp. 290–318, Sep. 1956. [Online]. Available:
https://doi.org/10.1017/s0022112056000172

[45] H. W. Carlson, “An investigation of some aspects of the sonic boom by means
of wind-tunnel measurements of pressures about several bodies at a mach
number of 2.01,” NASA Langley Research Center, Hampton, Virginia, Tech. Rep.
NASA-TN-D-161, December 1959.

[46] H. H. Hubbard, D. J. Maglieri, V. Huckel, and D. A. Hilton, “Ground measurements
of sonic-boom pressures for the altitude range of 10,000 to 75,000 feet,” NASA
Langley Research Center, Hampton, Virginia, Tech. Rep. NASA-TR-R-198, July
1964.

[47] R. Seebass, “Sonic boom theory.” Journal of Aircraft, vol. 6, no. 3, pp. 177–184, May
1969. [Online]. Available: https://doi.org/10.2514/3.44032

[48] C. Darden, “A study of the limitations of linear theory methods as applied
to sonic boom calculations,” in 28th Aerospace Sciences Meeting. American
Institute of Aeronautics and Astronautics, Jan. 1990. [Online]. Available:
https://doi.org/10.2514/6.1990-368

[49] M. Siclari and C. Darden, “CFD prediction of the near-field sonic boom environment
for two low boom HSCT configurations,” in 22nd Fluid Dynamics, Plasma Dynamics
and Lasers Conference. American Institute of Aeronautics and Astronautics, Jun.
1991. [Online]. Available: https://doi.org/10.2514/6.1991-1631

[50] M. J. Siclari and C. M. Darden, “Euler code prediction of near-field to midfield sonic
boom pressure signatures,” Journal of Aircraft, vol. 30, no. 6, pp. 911–917, Nov.
1993. [Online]. Available: https://doi.org/10.2514/3.46434

[51] M. P. Friedman, E. J. Kane, and A. Sigalla, “Effects of atmosphere and sircraft
motion on the location and intensity of a sonic boom,” AIAA Journal, vol. 1, no. 6,
pp. 1327–1335, Jun. 1963. [Online]. Available: https://doi.org/10.2514/3.1788

334

https://doi.org/10.1098/rspa.1950.0045
https://doi.org/10.1002/cpa.3160050305
https://doi.org/10.1017/s0022112056000172
https://doi.org/10.2514/3.44032
https://doi.org/10.2514/6.1990-368
https://doi.org/10.2514/6.1991-1631
https://doi.org/10.2514/3.46434
https://doi.org/10.2514/3.1788


[52] “U.S. standard atmosphere,” U.S. Government Printing Office, Washington, D.C.,
Report, 1976.

[53] W. D. Hayes and H. L. Runyan, “Sonic-boom propagation through a stratified
atmosphere,” The Journal of the Acoustical Society of America, vol. 51, no. 2C, pp.
695–701, Feb. 1972. [Online]. Available: https://doi.org/10.1121/1.1912903

[54] C. L. Thomas, “Extrapolation of sonic boom pressure signatures by the waveform
parameter method,” Ames Research Center, Moffet Field, California, Tech. Rep.
NASA-TN-D-6832, June 1972.

[55] A. D. Taylor, “The traps sonic boom program,” National Oceanic and Atmospheric
Administration, Tech. Rep. ERL ARL-87, Jul. 1980.

[56] L. D. Robinson, “Sonic boom propagation through an inhomogeneous and windy
atmosphere.” Ph.D. dissertation, University of Texas at Austin, 1991.

[57] F. M. Pestorius, “Propagation of Plane Acoustic Noise of Finite Amplitude,” Ph.D.
dissertation, The University of Texas at Austin., Jan. 1973.

[58] J. A. Page, J. B. Lonzaga, M. J. Shumway, S. R. Kaye, R. S. Downs, A. Loubeau,
and W. J. Doebler, “Pcboom version 7.1 user’s guide,” NASA Langley, Structural
Acoustics Branch, Tech. Rep. NASA/TM-20205007703, 10 2020.

[59] R. V. Khokhlov, K. A. Naugol’nykh, and S. I. Soluyan, “Waves of moderate
amplitudes in absorbing media,” Acustica, vol. 14, no. 5, pp. 248–253, 1964.

[60] E. A. Zabolotskaya and R. V. Khokhlov, “Quasi-plane waves in the nonlinear
acoustics of confined beams,” Sov. Phys. Acoust., vol. 15, pp. 35–40, 1969.

[61] V. P. Kuznetsov, “Equations of nonlinear acoustics,” Sov. Phys. Acoust., vol. 16, pp.
467–470, 1971.

[62] P. Blanc-Benon, B. Lipkens, L. Dallois, M. F. Hamilton, and D. T. Blackstock,
“Propagation of finite amplitude sound through turbulence: Modeling with
geometrical acoustics and the parabolic approximation,” The Journal of the
Acoustical Society of America, vol. 111, no. 1, pp. 487–498, Jan. 2002. [Online].
Available: https://doi.org/10.1121/1.1404378

[63] M. V. Aver’yanov, V. A. Khokhlova, O. A. Sapozhnikov, P. Blanc-Benon, and
R. O. Cleveland, “Parabolic equation for nonlinear acoustic wave propagation in
inhomogeneous moving media,” Acoustical Physics, vol. 52, no. 6, pp. 623–632, Dec.
2006. [Online]. Available: https://doi.org/10.1134/s1063771006060017

[64] M. Averiyanov, P. Blanc-Benon, R. O. Cleveland, and V. Khokhlova, “Nonlinear
and diffraction effects in propagation of N-waves in randomly inhomogeneous
moving media,” The Journal of the Acoustical Society of America, vol. 129, no. 4, pp.
1760–1772, Apr. 2011. [Online]. Available: https://doi.org/10.1121/1.3557034

335

https://doi.org/10.1121/1.1912903
https://doi.org/10.1121/1.1404378
https://doi.org/10.1134/s1063771006060017
https://doi.org/10.1121/1.3557034


[65] R. O. Cleveland, M. F. Hamilton, and D. T. Blackstock, “Time-domain
modeling of finite-amplitude sound in relaxing fluids,” The Journal of the Acoustical
Society of America, vol. 99, no. 6, pp. 3312–3318, jun 1996. [Online]. Available:
https://doi.org/10.1121/1.414983

[66] L. Prandtl, “Ueber flussigkeitsbewegung bei sehr kleiner reibung,” Verhandl.
III, Internat. Math.-Kong., Heidelberg, Teubner, Leipzig, 1904, pp. 484–491, 1904.
[Online]. Available: https://ci.nii.ac.jp/naid/20000989592/en/

[67] ——, “Z. ver. dtsch. ing.” Zeitschrift für Flugtechnik und Motorluftschiffarht, no. 77,
pp. 105–114, 1933.

[68] T. von Karman, “Mechanische Ähnlichkeit und turbulenz,” Nachrichten von der
Gesellschaft der Wissenschaften zu Göttingen, Fachgruppe 1 (Mathematik), no. 611,
1931.

[69] F. White, Viscous fluid flow. New York, NY: McGraw-Hill Higher Education, 2006.

[70] D. B. Spalding, “A single formula for the “law of the wall”,” Journal of
Applied Mechanics, vol. 28, no. 3, pp. 455–458, Sep. 1961. [Online]. Available:
https://doi.org/10.1115/1.3641728

[71] A. S. Monin and A. M. Obukhov, “Osnovnye zakonomernosti turbulentnogo
peremeshivanija v prizemnom sloe atmosfery (basic laws of turbulent mixing in the
atmosphere near the ground),” Trudy geofiz. inst. AN SSSR 24(151), vol. 24, no. 151,
p. 163–187, 1954.

[72] D. K. Wilson, “An alternative function for the wind and temperature gradients in
unstable surface layers,” Boundary-Layer Meteorology, vol. 99, no. 1, pp. 151–158,
Apr. 2001. [Online]. Available: https://doi.org/10.1023/a:1018718707419

[73] D. M. Carl, T. C. Tarbell, and H. A. Panofsky, “Profiles of wind and
temperature from towers over homogeneous terrain,” Journal of the Atmospheric
Sciences, vol. 30, no. 5, pp. 788–794, Jul. 1973. [Online]. Available:
https://doi.org/10.1175/1520-0469(1973)030<0788:powatf>2.0.co;2

[74] J. A. Businger, J. C. Wyngaard, Y. Izumi, and E. F. Bradley, “Flux-profile
relationships in the atmospheric surface layer,” Journal of the Atmospheric
Sciences, vol. 28, no. 2, pp. 181–189, Mar. 1971. [Online]. Available:
https://doi.org/10.1175/1520-0469(1971)028<0181:fprita>2.0.co;2

[75] J. Garratt, The Atmospheric Boundary Layer, ser. Cambridge Atmospheric and
Space Science Series. Cambridge University Press, 1994. [Online]. Available:
https://books.google.com/books?id=xeEVtBRApAkC

336

https://doi.org/10.1121/1.414983
https://ci.nii.ac.jp/naid/20000989592/en/
https://doi.org/10.1115/1.3641728
https://doi.org/10.1023/a:1018718707419
https://doi.org/10.1175/1520-0469(1973)030<0788:powatf>2.0.co;2
https://doi.org/10.1175/1520-0469(1971)028<0181:fprita>2.0.co;2
https://books.google.com/books?id=xeEVtBRApAkC


[76] D. Stensrud, M. Coniglio, K. Knopfmeier, and A. Clark, “NUMERICAL
MODELS | model physics parameterization,” in Encyclopedia of Atmospheric
Sciences. Elsevier, 2015, pp. 167–180. [Online]. Available: https:
//doi.org/10.1016/b978-0-12-382225-3.00493-x

[77] R. Stull, An introduction to boundary layer meteorology. Dordrecht Boston: Kluwer
Academic Publishers, 1988.

[78] O. Reynolds, “XXIX. an experimental investigation of the circumstances which
determine whether the motion of water shall be direct or sinuous, and of
the law of resistance in parallel channels,” Philosophical Transactions of the
Royal Society of London, vol. 174, pp. 935–982, Dec. 1883. [Online]. Available:
https://doi.org/10.1098/rstl.1883.0029

[79] G. I. Taylor, “Statistical theory of turbulence,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 151, no. 873, pp. 421–444,
Sep. 1935. [Online]. Available: https://doi.org/10.1098/rspa.1935.0158

[80] H. Tennekes and J. L. Lumley, A first course in turbulence. Cambridge,
Massachusetts: The MIT Press, 1972.

[81] T. de Karman and L. Howarth, “On the statistical theory of isotropic turbulence,”
Proceedings of the Royal Society of London. Series A - Mathematical and Physical
Sciences, vol. 164, no. 917, pp. 192–215, Jan. 1938. [Online]. Available:
https://doi.org/10.1098/rspa.1938.0013

[82] A. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for
very large reynolds’ numbers,” Akademiia Nauk SSSR Doklady, vol. 30, pp. 301–305,
Jan. 1941.

[83] T. Theodorsen, “Mechanisms of turbulence,” Proceedings of the 2nd
Midwestern Conference on Fluid Mechanics, 1952, 1952. [Online]. Available:
https://ci.nii.ac.jp/naid/10016445071/en/

[84] A. Roshko, “Structure of turbulent shear flows: A new look,” AIAA Journal, vol. 14,
no. 10, pp. 1349–1357, Oct. 1976. [Online]. Available: https://doi.org/10.2514/3.61477

[85] A. A. Townsend, The structure of turbulent shear flow. Cambridge England New
York: Cambridge University Press, 1976.

[86] B. J. Cantwell, “Organized motion in turbulent flow,” Annual Review of
Fluid Mechanics, vol. 13, no. 1, pp. 457–515, Jan. 1981. [Online]. Available:
https://doi.org/10.1146/annurev.fl.13.010181.002325

[87] J. L. Lumley, “The structure of inhomogeneous turbulent flows,” Atmospheric
Turbulence and Radio Wave Propagation, 1967.

337

https://doi.org/10.1016/b978-0-12-382225-3.00493-x
https://doi.org/10.1016/b978-0-12-382225-3.00493-x
https://doi.org/10.1098/rstl.1883.0029
https://doi.org/10.1098/rspa.1935.0158
https://doi.org/10.1098/rspa.1938.0013
https://ci.nii.ac.jp/naid/10016445071/en/
https://doi.org/10.2514/3.61477
https://doi.org/10.1146/annurev.fl.13.010181.002325


[88] M. A. LeMone, W. M. Angevine, C. S. Bretherton, F. Chen, J. Dudhia,
E. Fedorovich, K. B. Katsaros, D. H. Lenschow, L. Mahrt, E. G. Patton, J. Sun,
M. Tjernström, and J. Weil, “100 years of progress in boundary layer meteorology,”
Meteorological Monographs, vol. 59, pp. 9.1–9.85, Jan. 2019. [Online]. Available:
https://doi.org/10.1175/amsmonographs-d-18-0013.1

[89] E. E. Fedorovich, D. K. Lilly, R. Rotunno, and B. Stevens, Atmospheric turbulence
and mesoscale meteorology: scientific research inspired by Doug Lilly. Cambridge
University Press, 2010. [Online]. Available: http://site.ebrary.com/id/10561452

[90] M. J. Lighthill, “On sound generated aerodynamically i. general theory,”
Proceedings of the Royal Society of London. Series A. Mathematical and Physical
Sciences, vol. 211, no. 1107, pp. 564–587, Mar. 1952. [Online]. Available:
https://doi.org/10.1098/rspa.1952.0060

[91] A. Obukhov, “Scattering of sound in turbulent flow,” in Dokl. Akad. Nauk SSSR,
vol. 30, 1941, pp. 611–614.

[92] R. H. Kraichnan, “The scattering of sound in a turbulent medium,” The Journal of
the Acoustical Society of America, vol. 25, no. 6, pp. 1096–1104, 1953.

[93] D. Blokhintzev, “The propagation of sound in an inhomogeneous and moving medium
i,” The Journal of the Acoustical Society of America, vol. 18, no. 2, pp. 322–328,
1946.

[94] A. D. Pierce and D. J. Maglieri, “Effects of atmospheric irregularities on sonic-boom
propagation,” The Journal of the Acoustical Society of America, vol. 51, no. 2C, pp.
702–721, Feb. 1972. [Online]. Available: https://doi.org/10.1121/1.1912904

[95] D. Hilton, V. Huckel, and D. Maglieri, “Sonic boom measurements during bomber
training operation in the chicago area,” Tech. Rep. NASA TN-D2655, 1966.

[96] A. D. Pierce, “Spikes on sonic-boom pressure waveforms,” The Journal of the
Acoustical Society of America, vol. 44, no. 4, pp. 1052–1061, Oct. 1968. [Online].
Available: https://doi.org/10.1121/1.1911195

[97] R. L. Bennet and K. S. Pearsons, “Handbook of aircraft noise metrics,” NASA
Langley Research Center, Tech. Rep., 1981.

[98] A. P. G. Peterson and E. E. Gross, Handbook of Noise Measurement, 7th ed. General
Radio Company, 1972.

[99] L. Beranek, Acoustics. McGraw-Hill, 1979.

[100] C. M. Harris, Handbook of Noise Control. McGraw-Hill, 1979.

[101] T. J. Schultz, “Technical background for noise abatement in hud’s operating
programs,” U.S. Department of Housing and Urban Development, Tech. Rep. BBN
Report No. 2005, sep 1970.

338

https://doi.org/10.1175/amsmonographs-d-18-0013.1
http://site.ebrary.com/id/10561452
https://doi.org/10.1098/rspa.1952.0060
https://doi.org/10.1121/1.1912904
https://doi.org/10.1121/1.1911195


[102] “Fundamentals of noise: Measurement, rating schemes, and standards,” Tech. Rep.
NTID300.15, dec 1971.

[103] A. Loubeau, S. R. Wilson, and J. Rathsam, “Updated evaluation of sonic boom
noise metrics,” The Journal of the Acoustical Society of America, vol. 144, no. 3, pp.
1706–1706, Sep. 2018. [Online]. Available: https://doi.org/10.1121/1.5067578

[104] S. S. Stevens, “Perceived level of noise by mark VII and decibels (e),” The Journal of
the Acoustical Society of America, vol. 51, no. 2B, pp. 575–601, Feb. 1972. [Online].
Available: https://doi.org/10.1121/1.1912880

[105] J. Rathsam, A. Loubeau, and J. Klos, “A study in a new test facility on indoor
annoyance caused by sonic booms,” National Aeronautics and Space Administration,
Langley Research Center, Tech. Rep. NASA/TM–2012-217332, 2012.

[106] P. V. Yuldashev, S. Ollivier, M. M. Karzova, V. A. Khokhlova, and P. Blanc-Benon,
“Statistics of peak overpressure and shock steepness for linear and nonlinear
n-wave propagation in a kinematic turbulence,” The Journal of the Acoustical
Society of America, vol. 142, no. 6, pp. 3402–3415, Dec. 2017. [Online]. Available:
https://doi.org/10.1121/1.5015991

[107] L. J. Cliatt, M. A. Hill, and E. Haering, “Mach cutoff analysis and results from nasa’s
farfield investigation of no-boom thresholds,” in 22nd AIAA/CEAS Aeroacoustics
Conference. American Institute of Aeronautics and Astronautics, may 2016.
[Online]. Available: https://doi.org/10.2514/6.2016-3011

[108] L. J. Cliatt, H. J. Edward A, S. R. Arnac, and M. A. Hill, “Lateral cutoff analysis
and results from nasa’s farfield investigation of no-boom thresholds,” Armstrong
Flight Research Center, Edwards, California, Tech. Rep. NASA/TM—2016–218850,
February 2016.

[109] M. J. Lighthill, “On sound generated aerodynamically II. turbulence as a source
of sound,” Proceedings of the Royal Society of London. Series A. Mathematical and
Physical Sciences, vol. 222, no. 1148, pp. 1–32, Feb. 1954. [Online]. Available:
https://doi.org/10.1098/rspa.1954.0049

[110] R. Frehlich, L. Cornman, and R. Sharman, “Simulation of three-dimensional
turbulent velocity fields,” Journal of Applied Meteorology, vol. 40, no. 2, pp. 246–258,
Feb. 2001. [Online]. Available: https://doi.org/10.1175/1520-0450(2001)040<0246:
sotdtv>2.0.co;2

[111] G. Strang, “On the construction and comparison of difference schemes,” SIAM
Journal on Numerical Analysis, vol. 5, no. 3, pp. 506–517, Sep. 1968. [Online].
Available: https://doi.org/10.1137/0705041

[112] J. Goodman, Introduction to Fourier optics. Englewood, Colo: Roberts & Co, 2005.

339

https://doi.org/10.1121/1.5067578
https://doi.org/10.1121/1.1912880
https://doi.org/10.1121/1.5015991
https://doi.org/10.2514/6.2016-3011
https://doi.org/10.1098/rspa.1954.0049
https://doi.org/10.1175/1520-0450(2001)040<0246:sotdtv>2.0.co;2
https://doi.org/10.1175/1520-0450(2001)040<0246:sotdtv>2.0.co;2
https://doi.org/10.1137/0705041


[113] F. Coulouvrat, “A quasi-analytical shock solution for general nonlinear progressive
waves,” Wave Motion, vol. 46, no. 2, pp. 97–107, Mar. 2009. [Online]. Available:
https://doi.org/10.1016/j.wavemoti.2008.09.002

[114] W. D. Hayes, R. C. Haefeli, and H. E. Kulsrud, “Sonic boom propagation in a
stratified atmosphere, with a computer program,” National Aeronautics and Space
Administration, Tech. Rep. NASA CR-1299, 1969.

[115] H. E. Bass, L. C. Sutherland, A. J. Zuckerwar, D. T. Blackstock, and D. M.
Hester, “Atmospheric absorption of sound: Further developments,” The Journal of
the Acoustical Society of America, vol. 97, no. 1, pp. 680–683, Jan. 1995. [Online].
Available: https://doi.org/10.1121/1.412989

[116] G. I. Taylor, “The spectrum of turbulence,” Proceedings of the Royal Society of
London. Series A - Mathematical and Physical Sciences, vol. 164, no. 919, pp.
476–490, Feb. 1938. [Online]. Available: https://doi.org/10.1098/rspa.1938.0032

[117] R. Blumrich, F. Coulouvrat, and D. Heimann, “Meteorologically induced variability
of sonic-boom characteristics of supersonic aircraft in cruising flight,” The Journal of
the Acoustical Society of America, vol. 118, no. 2, pp. 707–722, Aug. 2005. [Online].
Available: https://doi.org/10.1121/1.1953208

[118] ——, “Variability of focused sonic booms from accelerating supersonic aircraft
in consideration of meteorological effects,” The Journal of the Acoustical Society
of America, vol. 118, no. 2, pp. 696–706, Aug. 2005. [Online]. Available:
https://doi.org/10.1121/1.1938547

[119] M. F. Hamilton and D. T. Blackstock, Nonlinear acoustics. Melville, NY: Acoustical
Society of America, 2008.

[120] F. E. Fox and W. A. Wallace, “Absorption of finite amplitude sound waves,” The
Journal of the Acoustical Society of America, vol. 26, no. 6, pp. 994–1006, Nov. 1954.
[Online]. Available: https://doi.org/10.1121/1.1907468

[121] D. Blackstock, Fundamentals of physical acoustics. New York: Wiley, 2000.

[122] M. J. Lighthill, Waves in fluids. Cambridge England New York: Cambridge
University Press, 1978.

[123] P. J. Westervelt, “Parametric acoustic array,” The Journal of the Acoustical
Society of America, vol. 35, no. 4, pp. 535–537, Apr. 1963. [Online]. Available:
https://doi.org/10.1121/1.1918525

[124] Y. Jing, D. Shen, and G. T. Clement, “Verification of the westervelt equation
for focused transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics and
Frequency Control, vol. 58, no. 5, pp. 1097–1101, May 2011. [Online]. Available:
https://doi.org/10.1109/tuffc.2011.1910

340

https://doi.org/10.1016/j.wavemoti.2008.09.002
https://doi.org/10.1121/1.412989
https://doi.org/10.1098/rspa.1938.0032
https://doi.org/10.1121/1.1953208
https://doi.org/10.1121/1.1938547
https://doi.org/10.1121/1.1907468
https://doi.org/10.1121/1.1918525
https://doi.org/10.1109/tuffc.2011.1910


[125] D. T. Blackstock, “Propagation of plane sound waves of finite amplitude in
nondissipative fluids,” The Journal of the Acoustical Society of America, vol. 34,
no. 1, pp. 9–30, Jan. 1962. [Online]. Available: https://doi.org/10.1121/1.1909033

[126] V. E. Ostashev and D. K. Wilson, Acoustics in moving inhomogeneous media. Boca
Raton, FL: CRC Press, Taylor & Francis Group, 2016.

[127] R. I. McLachlan and G. R. W. Quispel, “Splitting methods,” Acta
Numerica, vol. 11, pp. 341–434, Jan. 2002. [Online]. Available: https:
//doi.org/10.1017/s0962492902000053

[128] P. T. Christopher and K. J. Parker, “New approaches to the linear propagation of
acoustic fields,” The Journal of the Acoustical Society of America, vol. 90, no. 1, pp.
507–521, jul 1991. [Online]. Available: https://doi.org/10.1121/1.401277

[129] G. T. Clement and K. Hynynen, “Field characterization of therapeutic ultrasound
phased arrays through forward and backward planar projection,” The Journal of
the Acoustical Society of America, vol. 108, no. 1, pp. 441–446, jul 2000. [Online].
Available: https://doi.org/10.1121/1.429477

[130] X. Zeng and R. J. McGough, “Optimal simulations of ultrasonic fields produced by
large thermal therapy arrays using the angular spectrum approach,” The Journal of
the Acoustical Society of America, vol. 125, no. 5, p. 2967, 2009. [Online]. Available:
https://doi.org/10.1121/1.3097499

[131] P. Lax and B. Wendroff, “Systems of conservation laws,” Communications on Pure
and Applied Mathematics, vol. 13, no. 2, pp. 217–237, May 1960. [Online]. Available:
https://doi.org/10.1002/cpa.3160130205

[132] E. G. Williams, “Chapter 3 - the inverse problem: Planar nearfield
acoustical holography,” in Fourier Acoustics, E. G. Williams, Ed.
London: Academic Press, 1999, pp. 89–114. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780127539607500036

[133] Y. Du, H. Jensen, and J. A. Jensen, “Investigation of an angular spectrum approach
for pulsed ultrasound fields,” Ultrasonics, vol. 53, no. 6, pp. 1185–1191, Aug. 2013.
[Online]. Available: https://doi.org/10.1016/j.ultras.2013.02.011

[134] J. Crank and P. Nicolson, “A practical method for numerical evaluation of solutions of
partial differential equations of the heat-conduction type,” Mathematical Proceedings
of the Cambridge Philosophical Society, vol. 43, no. 1, pp. 50–67, Jan. 1947. [Online].
Available: https://doi.org/10.1017/s0305004100023197

[135] M. Yarrow, “Solving periodic block tridiagonal systems using the
sherman-morrison-woodbury formula,” in 9th Computational Fluid Dynamics
Conference. American Institute of Aeronautics and Astronautics, Jun. 1989.
[Online]. Available: https://doi.org/10.2514/6.1989-1946

341

https://doi.org/10.1121/1.1909033
https://doi.org/10.1017/s0962492902000053
https://doi.org/10.1017/s0962492902000053
https://doi.org/10.1121/1.401277
https://doi.org/10.1121/1.429477
https://doi.org/10.1121/1.3097499
https://doi.org/10.1002/cpa.3160130205
https://www.sciencedirect.com/science/article/pii/B9780127539607500036
https://doi.org/10.1016/j.ultras.2013.02.011
https://doi.org/10.1017/s0305004100023197
https://doi.org/10.2514/6.1989-1946


[136] M. Woodbury, The Stability of Out-Input Matrices, ser. Chicago, III, 1949.

[137] ——, Inverting Modified Matrices, ser. Memorandum Report / Statistical Research
Group, Princeton. Statistical Research Group, 1950. [Online]. Available:
https://books.google.com/books?id=_zAnzgEACAAJ

[138] J. Sherman and W. J. Morrison, “Abstracts of papers,” The Annals of
Mathematical Statistics, vol. 20, no. 4, pp. 620–624, Dec. 1949. [Online]. Available:
https://doi.org/10.1214/aoms/1177729959

[139] ——, “Adjustment of an Inverse Matrix Corresponding to a Change in One Element
of a Given Matrix,” The Annals of Mathematical Statistics, vol. 21, no. 1, pp. 124 –
127, 1950. [Online]. Available: https://doi.org/10.1214/aoms/1177729893

[140] W. W. Hager, “Updating the inverse of a matrix,” SIAM Review, vol. 31, no. 2, pp.
221–239, 1989. [Online]. Available: http://www.jstor.org/stable/2030425

[141] A. S1.26-1995, American national standard method for calculation of the absorption
of sound by the atmosphere. New York: Acoustical Society of America, 1995.

[142] I. 9613-1:1993, Acoustics - attenuation of sound during propagation outdoors - part
1: calculation of the absorption of sound by the atmosphere. Geneva, Switzerland:
International Organization for Standardization, 1993.

[143] “American national standard – programming language fortran extended,” American
National Standards Institute / ISO/IEC, New York, Standard, May 1992.

[144] I. 1539-1:2004, “Information technology - Programming languages - Fortran -Part
1: Base Language,” International Organization for Standardization, Standard, Oct.
2003.

[145] J. Backus, “The history of fortran I, II, and III,” Softwarepreservation.org.

[146] “MPI: A Message-Passing Interface Standard Version 3.1,” University of Tennessee,
Knoxville, Standard, Jun. 2015.

[147] The HDF Group, “Hierarchical data format version 5,” 2000-2010. [Online]. Available:
http://www.hdfgroup.org/HDF5

[148] D. T. Blackstock, “Connection between the fay and fubini solutions for
plane sound waves of finite amplitude,” The Journal of the Acoustical Society
of America, vol. 39, no. 6, pp. 1019–1026, Jun. 1966. [Online]. Available:
https://doi.org/10.1121/1.1909986

[149] E. Fubini-Ghiron, “Anomalie nella propagazione di onde acustiche di grande
ampiezza,” Alta Frequenza, no. 4, pp. 530–581, 1935.

342

https://books.google.com/books?id=_zAnzgEACAAJ
https://doi.org/10.1214/aoms/1177729959
https://doi.org/10.1214/aoms/1177729893
http://www.jstor.org/stable/2030425
http://www.hdfgroup.org/HDF5
https://doi.org/10.1121/1.1909986


[150] R. D. Fay, “Plane sound waves of finite amplitude,” The Journal of the Acoustical
Society of America, vol. 3, no. 2A, pp. 222–241, Oct. 1931. [Online]. Available:
https://doi.org/10.1121/1.1915557

[151] J. S. Mendousse, “Nonlinear dissipative distortion of progressive sound waves at
moderate amplitudes,” The Journal of the Acoustical Society of America, vol. 25,
no. 1, pp. 51–54, Jan. 1953. [Online]. Available: https://doi.org/10.1121/1.1907007

[152] C. Oseen, Über Wirbelbewegung in einer reibenden Flüssigkeit, ser. Arkiv för
matematik, astronomi och fysik. Almqvist & Wiksell, 1911, vol. 7, no. 14. [Online].
Available: https://books.google.com/books?id=wrCJPgAACAAJ

[153] T. Colonius, S. K. Lele, and P. Moin, “The scattering of sound waves by a vortex:
numerical simulations and analytical solutions,” Journal of Fluid Mechanics, vol. 260,
p. 271–298, 1994.

[154] ——, “The free compressible viscous vortex,” Journal of Fluid Mechanics, vol. 230, p.
45–73, 1991.

[155] R. Ford and S. G. Llewellyn Smith, “Scattering of acoustic waves by a vortex,”
Journal of Fluid Mechanics, vol. 386, p. 305–328, 1999.

[156] P. Blanc-Benon, L. Dallois, and D. Juvé, “Long range sound propagation in a
turbulent atmosphere within the parabolic approximation,” Acta Acustica united with
Acustica, vol. 87, pp. 659–669, 11 2001.

[157] A. J. Dyer and B. B. Hicks, “Flux-gradient relationships in the constant flux layer,”
Quarterly Journal of the Royal Meteorological Society, vol. 96, no. 410, pp. 715–721,
Oct. 1970. [Online]. Available: https://doi.org/10.1002/qj.49709641012

[158] B. A. Kader and A. M. Yaglom, “Mean fields and fluctuation moments in unstably
stratified turbulent boundary layers,” Journal of Fluid Mechanics, vol. 212, no. -1, p.
637, Mar. 1990. [Online]. Available: https://doi.org/10.1017/s0022112090002129

[159] Y. Delage and C. Girard, “Stability functions correct at the free convection
limit and consistent for for both the surface and ekman layers,” Boundary-Layer
Meteorology, vol. 58, no. 1-2, pp. 19–31, Jan. 1992. [Online]. Available:
https://doi.org/10.1007/bf00120749

[160] U. Högström, “Non-dimensional wind and temperature profiles in the atmospheric
surface layer: A re-evaluation,” Boundary-Layer Meteorology, vol. 42, no. 1-2, pp.
55–78, Jan. 1988. [Online]. Available: https://doi.org/10.1007/bf00119875

[161] G. K. Batchelor, The theory of homogeneous turbulence. Cambridge New York:
Cambridge University Press, 1982.

[162] H. P. Robertson, “The invariant theory of isotropic turbulence,” Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 36, no. 2, p. 209–223, 1940.

343

https://doi.org/10.1121/1.1915557
https://doi.org/10.1121/1.1907007
https://books.google.com/books?id=wrCJPgAACAAJ
https://doi.org/10.1002/qj.49709641012
https://doi.org/10.1017/s0022112090002129
https://doi.org/10.1007/bf00120749
https://doi.org/10.1007/bf00119875


[163] G. K. Batchelor, “The effect of homogeneous turbulence on material lines and
surfaces,” Proceedings of the Royal Society of London. Series A. Mathematical and
Physical Sciences, vol. 213, no. 1114, pp. 349–366, Jul. 1952. [Online]. Available:
https://doi.org/10.1098/rspa.1952.0130

[164] A. S. Monin and A. M. Yaglom, Statistical fluid mechanics : mechanics of turbulence.
Mineola, New York: Dover Publications, Inc, 2007.

[165] M. Shinozuka, “Simulation of multivariate and multidimensional random processes,”
The Journal of the Acoustical Society of America, vol. 49, no. 1B, pp. 357–368, Jan.
1971. [Online]. Available: https://doi.org/10.1121/1.1912338

[166] A. N. Kolmogorov, “Dissipation of energy in locally isotropic turbulence,” Akademiia
Nauk SSSR Doklady, vol. 32, p. 16, Apr. 1941.

[167] A. N. Kolmogorov, “Equations of turbulent motion in an incompressible fluid,”
Dokl. Akad. Nauk SSSR, vol. 30, no. 4, pp. 299–303, 1941. [Online]. Available:
http://cds.cern.ch/record/739754

[168] G. Comte-Bellot and S. Corrsin, “Simple eulerian time correlation of full-and
narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence,” Journal
of Fluid Mechanics, vol. 48, no. 2, pp. 273–337, jul 1971. [Online]. Available:
https://doi.org/10.1017/s0022112071001599

[169] S. B. Pope, Turbulent Flows. Cambridge University Press, Aug. 2000. [Online].
Available: https://doi.org/10.1017/cbo9780511840531

[170] D. K. Wilson, “Turbulence models and the synthesis of random fields for acoustic
wave propagation calculations.” Army Research Laboratory, Adelphi, MD, Tech. Rep.
ARL-TR-1677, 1998.

[171] V. E. Ostashev and D. K. Wilson, “Relative contributions from temperature and
wind velocity fluctuations to the statistical moments of a sound field in a turbulent
atmosphere,” Acust. Acta Acust., vol. 86, no. 2, pp. 260–268, 2000.

[172] D. K. Wilson, “A turbulence spectral model for sound propagation in the atmosphere
that incorporates shear and buoyancy forcings,” The Journal of the Acoustical
Society of America, vol. 108, no. 5, pp. 2021–2038, Nov. 2000. [Online]. Available:
https://doi.org/10.1121/1.1311779

[173] J. Højstrup, “Velocity spectra in the unstable planetary boundary layer,” Journal
of the Atmospheric Sciences, vol. 39, no. 10, pp. 2239–2248, Oct. 1982. [Online].
Available: https://doi.org/10.1175/1520-0469(1982)039<2239:vsitup>2.0.co;2

[174] A. Navarra and V. Simoncini, A Guide to Empirical Orthogonal Functions
for Climate Data Analysis. Springer Netherlands, 2010. [Online]. Available:
https://books.google.com/books?id=MgVuGKsRIPoC

344

https://doi.org/10.1098/rspa.1952.0130
https://doi.org/10.1121/1.1912338
http://cds.cern.ch/record/739754
https://doi.org/10.1017/s0022112071001599
https://doi.org/10.1017/cbo9780511840531
https://doi.org/10.1121/1.1311779
https://doi.org/10.1175/1520-0469(1982)039<2239:vsitup>2.0.co;2
https://books.google.com/books?id=MgVuGKsRIPoC


[175] H. A. Panofsky and E. Mares, “Recent measurements of cospectra for heat-flux and
stress,” Quarterly Journal of the Royal Meteorological Society, vol. 94, no. 402, pp.
581–585, Oct. 1968. [Online]. Available: https://doi.org/10.1002/qj.49709440213

[176] J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey,
and C. J. Readings, “Turbulence structure in the convective boundary layer,” Journal
of the Atmospheric Sciences, vol. 33, no. 11, pp. 2152–2169, Nov. 1976. [Online].
Available: https://doi.org/10.1175/1520-0469(1976)033<2152:tsitcb>2.0.co;2

[177] W. M. Spurlock, M. J. Aftosmis, and M. Nemec, “Cartesian mesh simulations for
the third AIAA sonic boom prediction workshop,” in AIAA Scitech 2021 Forum.
American Institute of Aeronautics and Astronautics, Jan. 2021. [Online]. Available:
https://doi.org/10.2514/6.2021-0473

[178] C. Lanczos, Applied Analysis, ser. Dover Books on Mathematics. Mineola, NY:
Dover Publications, Mar. 2003.

[179] C. Klipp, “Turbulence anisotropy in the near-surface atmosphere and the evaluation
of multiple outer length scales,” Boundary-Layer Meteorology, vol. 151, no. 1, pp.
57–77, Dec. 2013. [Online]. Available: https://doi.org/10.1007/s10546-013-9884-0

[180] T. A. Stout, V. W. Sparrow, and P. Blanc-Benon, “Evaluation of numerical
predictions of sonic boom level variability due to atmospheric turbulence,” The
Journal of the Acoustical Society of America, vol. 149, no. 5, pp. 3250–3260, May
2021. [Online]. Available: https://doi.org/10.1121/10.0004985

[181] V. A. Kulkarny and B. S. White, “Focusing of waves in turbulent inhomogeneous
media,” Physics of Fluids, vol. 25, no. 10, p. 1770, 1982. [Online]. Available:
https://doi.org/10.1063/1.863654

[182] P. Blanc-Benon, D. Juvè, and G. Comte-Bellot, “Occurrence of caustics for
high-frequency acoustic waves propagating through turbulent fields,” Theoretical and
Computational Fluid Dynamics, vol. 2, no. 5-6, pp. 271–278, Aug. 1991. [Online].
Available: https://doi.org/10.1007/bf00271467

[183] O. Rudenko and B. Enflo, “Nonlinear N-wave propagation through a one-dimensional
phase screen,” Acta Acustica united with Acustica, vol. 86, no. 2, pp. 229–238, Mar.
2000.

[184] B. A. Davy and D. T. Blackstock, “Measurements of the refraction and diffraction
of a short N wave by a gas-filled soap bubble,” The Journal of the Acoustical
Society of America, vol. 49, no. 3B, pp. 732–737, Mar. 1971. [Online]. Available:
https://doi.org/10.1121/1.1912410

[185] G. Jackson and H. Leventhall, “Calculation of the perceived level of noise (PLdB)
using Stevens' method (Mark VII),” Applied Acoustics, vol. 6, no. 1, pp. 23–34, Jan.
1973. [Online]. Available: https://doi.org/10.1016/0003-682x(73)90027-3

345

https://doi.org/10.1002/qj.49709440213
https://doi.org/10.1175/1520-0469(1976)033<2152:tsitcb>2.0.co;2
https://doi.org/10.2514/6.2021-0473
https://doi.org/10.1007/s10546-013-9884-0
https://doi.org/10.1121/10.0004985
https://doi.org/10.1063/1.863654
https://doi.org/10.1007/bf00271467
https://doi.org/10.1121/1.1912410
https://doi.org/10.1016/0003-682x(73)90027-3


[186] T. W. Anderson and D. A. Darling, “A test of goodness of fit,” Journal of the
American Statistical Association, vol. 49, no. 268, pp. 765–769, 1954. [Online].
Available: https://www.tandfonline.com/doi/abs/10.1080/01621459.1954.10501232

[187] A. N. Kolmogorov, “Sulla determinazione empirica di una legge di distribuzione,” G.
Ist. Ital. Attuari, pp. 83–91, 1933.

[188] R. L. Wasserstein and N. A. Lazar, “The ASA statement on p-values: context,
process, and purpose,” The American Statistician, vol. 70, no. 2, pp. 129–133, 2016.
[Online]. Available: https://doi.org/10.1080/00031305.2016.1154108

[189] B. Lipkens and D. T. Blackstock, “Model experiment to study sonic boom propagation
through turbulence. Part I: General results,” The Journal of the Acoustical Society of
America, vol. 103, no. 1, pp. 148–158, 1998.

[190] M. J. Kamrath, V. E. Ostashev, D. K. Wilson, M. J. White, C. R. Hart,
and A. Finn, “Vertical and slanted sound propagation in the near-ground
atmosphere: Amplitude and phase fluctuations,” The Journal of the Acoustical
Society of America, vol. 149, no. 3, pp. 2055–2071, Mar. 2021. [Online]. Available:
https://asa.scitation.org/doi/10.1121/10.0003820

[191] V. E. Ostashev, M. J. Kamrath, D. K. Wilson, M. J. White, C. R. Hart,
and A. Finn, “Vertical and slanted sound propagation in the near-ground
atmosphere: Coherence and distributions,” The Journal of the Acoustical Society
of America, vol. 150, no. 4, pp. 3109–3126, Oct. 2021. [Online]. Available:
https://asa.scitation.org/doi/10.1121/10.0006737

[192] R. Leconte, J.-C. Chassaing, F. Coulouvrat, and R. Marchiano, “Simulation of the
propagation of classical and low booms through turbulent wind fluctuations,” The
Journal of the Acoustical Society of America, vol. 149, no. 4, pp. A73–A73, Apr.
2021. [Online]. Available: https://doi.org/10.1121/10.0004556

[193] J. Kaimal and J. Finnigan, Atmospheric Boundary Layer Flows: Their Structure
and Measurement. Oxford University Press, 1994. [Online]. Available:
https://books.google.com/books?id=ljbSonRztIcC

[194] J. Wyngaard, Turbulence in the Atmosphere. Cambridge University Press, 2010.
[Online]. Available: https://books.google.com/books?id=YLeBN1qYn-0C

[195] D. J. Maglieri and V. E. Sothcott, “Summary of sonic boom rise times observed
during faa community response studies over a 6-month period in the oklahoma city
area,” Langley Research Center, Tech. Rep. NASA Contractor Report 4277, 04 1990.

[196] J. B. Lonzaga, “Distortion and losses of sonic boom through turbulent
fields.” Acoustical Society of America, May 2021. [Online]. Available:
https://doi.org/10.1121/10.0004558

346

https://www.tandfonline.com/doi/abs/10.1080/01621459.1954.10501232
https://doi.org/10.1080/00031305.2016.1154108
https://asa.scitation.org/doi/10.1121/10.0003820
https://asa.scitation.org/doi/10.1121/10.0006737
https://doi.org/10.1121/10.0004556
https://books.google.com/books?id=ljbSonRztIcC
https://books.google.com/books?id=YLeBN1qYn-0C
https://doi.org/10.1121/10.0004558


[197] T. A. Stout and V. W. Sparrow, “Atmospheric turbulence effects on shaped
and unshaped sonic boom signatures,” The Journal of the Acoustical Society
of America, vol. 151, no. 5, pp. 3280–3290, May 2022. [Online]. Available:
https://doi.org/10.1121/10.0011393

[198] D. K. Wilson, “The sound-speed gradient and refraction in the near-ground
atmosphere,” The Journal of the Acoustical Society of America, vol. 113, no. 2, pp.
750–757, Feb. 2003. [Online]. Available: https://doi.org/10.1121/1.1532028

[199] J. A. Page, K. H. Hogdon, R. P. Hunte, D. E. Davis, T. A. Gaugler, R. Downs, R. A.
Cowart, D. J. Maglieri, C. Hobbs, G. Baker, M. Collmar, K. A. Bradley, B. Sonak,
D. Crom, and C. Cutler, “Quiet supersonic flights 2018 (qsf18) test: Galveston, texas
risk reduction for future community testing with a low-boom flight demonstration
vehicle,” National Aeronautics and Space Administration, Langley Research Center,
Tech. Rep. NASA/CR–2020-220589, 2020.

[200] “Standard Atmosphere,” International Organization for Standardization, Geneva,
CH, Standard, May 1975.

[201] C. L. Pekeris, “Theory of propagation of sound in a half‐space of variable sound
velocity under conditions of formation of a shadow zone,” Journal of the Acoustical
Society of America, vol. 18, pp. 295–315, 1946.

[202] A. D. Pierce, “Creeping waves, shadow zones, and acoustic energy conservation,” J.
Acoust. Soc. Am., vol. 65, no. S1, pp. S129–S129, Jun. 1979.

[203] K. E. Gilbert, R. Raspet, and X. Di, “Calculation of turbulence effects in an
upward‐refracting atmosphere,” J. Acoust. Soc. Am., vol. 87, no. 6, pp. 2428–2437,
Jun. 1990.

[204] G. A. Daigle, T. F. W. Embleton, and J. E. Piercy, “Propagation of sound in the
presence of gradients and turbulence near the ground,” J. Acoust. Soc. Am., vol. 79,
no. 3, pp. 613–627, Mar. 1986.

[205] F. Coulouvrat, “Sonic boom in the shadow zone: A geometrical theory of diffraction,”
The Journal of the Acoustical Society of America, vol. 111, no. 1, pp. 499–508, Jan.
2002. [Online]. Available: https://doi.org/10.1121/1.1371973

[206] G. Parmentier, G. Mathieu, M. Schaffar, and C. Johe, “Bang sonique de Concorde:
enregistrement hors trace des variations de pression au sol. Centre d’Essais des
Landes; 13 au 15 juin 1973,” Institut Franco-Allemand de Recherches de Saint-Louis,
Tech. Rep. RT-19/73, 01 1973.

[207] G. H. Goedecke, V. E. Ostashev, D. K. Wilson, and H. J. Auvermann,
“Quasi-wavelet model of von kármán spectrum of turbulent velocity fluctuations,”
Boundary-Layer Meteorology, vol. 112, no. 1, pp. 33–56, Jul. 2004. [Online]. Available:
https://doi.org/10.1023/b:boun.0000020158.10053.ab

347

https://doi.org/10.1121/10.0011393
https://doi.org/10.1121/1.1532028
https://doi.org/10.1121/1.1371973
https://doi.org/10.1023/b:boun.0000020158.10053.ab


[208] J. C. R. Hunt and J. M. R. Graham, “Free-stream turbulence near plane boundaries,”
Journal of Fluid Mechanics, vol. 84, no. 2, p. 209–235, 1978.

[209] D. K. Wilson, “A three-dimensional correlation/spectral model for turbulent velocities
in a convective boundary layer,” Boundary-Layer Meteorology, vol. 85, no. 1, pp.
35–52, Oct. 1997. [Online]. Available: https://doi.org/10.1023/a:1000418709945

[210] M. West, R. A. Sack, and F. W. Walkden, “The fast field program (ffp). a second
tutorial: Application to long range sound propagation in the atmosphere,” Applied
Acoustics, vol. 33, pp. 199–228, 1991.

[211] K. E. Gilbert and X. Di, “A fast green’s function method for one-way
sound propagation in the atmosphere,” The Journal of the Acoustical Society
of America, vol. 94, no. 4, pp. 2343–2352, Oct. 1993. [Online]. Available:
https://doi.org/10.1121/1.407454

[212] J. R. Kuttler and G. D. Dockery, “Theoretical description of the parabolic
approximation/fourier split-step method of representing electromagnetic propagation
in the troposphere,” Radio Science, vol. 26, no. 02, pp. 381–393, 1991.

[213] D. Dockery and J. Kuttler, “An improved impedance-boundary algorithm for
fourier split-step solutions of the parabolic wave equation,” IEEE Transactions on
Antennas and Propagation, vol. 44, no. 12, pp. 1592–1599, 1996. [Online]. Available:
https://doi.org/10.1109/8.546245

[214] A. N. Carr, J. B. Lonzaga, and S. A. E. Miller, “A mixed fourier transform for
impedance boundary conditions of acoustic waves at grazing incidence,” The Journal
of the Acoustical Society of America, vol. 150, no. 4, pp. A132–A132, oct 2021.
[Online]. Available: https://doi.org/10.1121/10.0007875

[215] J. R. Kuttler and R. Janaswamy, “Improved fourier transform methods for solving
the parabolic wave equation,” Radio Science, vol. 37, no. 2, pp. 5–1–5–11, Mar. 2002.
[Online]. Available: https://doi.org/10.1029/2001rs002488

348

https://doi.org/10.1023/a:1000418709945
https://doi.org/10.1121/1.407454
https://doi.org/10.1109/8.546245
https://doi.org/10.1121/10.0007875
https://doi.org/10.1029/2001rs002488


BIOGRAPHICAL SKETCH

Alexander Nicholas Carr was born and raised in Olean, New York. He received his

high school diploma at Portville Central School in 2013, and attended the University at

Buffalo later that year. He graduated from the University at Buffalo in 2017 with a double

major in aerospace engineering and mechanical engineering. That August, he joined the

Theoretical Fluid Dynamics and Turbulence Group at the University of Florida to begin

his Ph.D. studies. He spent two years conducting research on jet-structure interaction,

and received his Master of Science degree in aerospace engineering in December 2019.

His Ph.D. research was focused on sonic boom propagation in the turbulent atmospheric

boundary layer, and he was awarded the degree in August 2022.

349


	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Background and Motivation
	1.2 Scope and Objectives
	1.3 Contributions of the Present Work
	1.4 A History of Supersonic Flight
	1.5 Sonic Boom Theory and Application
	1.5.1 Theoretical Developments
	1.5.2 Computational Approaches to the Prediction of Sonic Boom

	1.6 Sound Propagation in a Turbulent Flow
	1.6.1 Mean Flow
	1.6.2 Turbulence Characteristics
	1.6.3 Sound Propagation in Turbulence

	1.7 Sonic Boom Annoyance and Loudness
	1.7.1 Noise Metrics
	1.7.2 Metric Variability in Turbulence
	1.7.3 Sonic Boom Beyond the Cutoff

	1.8 Summary of Previous Work
	1.9 Organization of the Dissertation

	2 GOVERNING EQUATION AND COMPUTATIONAL APPROACH
	2.1 Governing Equation
	2.1.1 Properties of the Atmospheric Boundary Layer
	2.1.2 Navier-Stokes Equations and Decomposition
	2.1.3 Nonlinear Equation for the Acoustic Pressure
	2.1.4 Limiting Forms
	2.1.5 Partially One-Way Equation

	2.2 Numerical Method
	2.2.1 Split-Step Approach
	2.2.2 Diffraction Effects
	2.2.3 Heterogenous Effects of the Moving Medium
	2.2.3.1 Phase Effects
	2.2.3.2 Transverse Effects

	2.2.4 Nonlinear Propagation
	2.2.5 Atmospheric Absorption
	2.2.6 Boundary Conditions

	2.3 Numerical Implementation and Algorithms
	2.3.1 The Process of sbABL
	2.3.2 Initial Conditions
	2.3.3 Transposition

	2.4 Benchmarks
	2.4.1 Acoustic Piston
	2.4.2 Blackstock Bridging Function
	2.4.3 Absorption
	2.4.4 Scattering by a Vortex
	2.4.5 Sonic Boom Propagation in a Standard Atmosphere


	3 MODELING ATMOSPHERIC BOUNDARY LAYER TURBULENCE
	3.1 Mean Flow and Similarity
	3.2 Isotropic Homogeneous Turbulence
	3.3 Kinematic Fields of Isotropic Homogeneous Turbulence
	3.3.1 Model Spectrum
	3.3.2 Comparison to Experiment
	3.3.3 Temperature Fluctuations

	3.4 Inhomogeneous Turbulence
	3.4.1 Generalized Random Phase Method
	3.4.2 Von Kármán Model of the 2D Cross-Spectra
	3.4.3 Inhomogeneous Correlated Random Fields

	3.5 Realizations of Atmospheric Boundary Layer Turbulence with GRPM

	4 SONIC BOOM PROPAGATION THROUGH ISOTROPIC TURBULENCE
	4.1 Simulation Parameters and Velocity Fields
	4.2 Results and Discussion
	4.2.1 Length Scale
	4.2.2  Loudness
	4.2.3  Probability Distributions of Loudness Metrics for the N-wave
	4.2.4  Probability Distributions of Loudness Metrics for the Shaped Boom
	4.2.5  First and Second Moments of the Loudness Metrics

	4.3  Summary and Conclusions

	5 SONIC BOOM PROPAGATION IN THE ATMOSPHERIC BOUNDARY LAYER
	5.1 Atmospheric Boundary Layer Model
	5.2 Flight Conditions
	5.3 Low Amplitude N-wave Results
	5.3.1 Length Scale
	5.3.2 Waveforms
	5.3.3 Sonic Boom Overpressure
	5.3.4 Rise Time
	5.3.5 Noise Metrics

	5.4 Shaped Waveform Results
	5.4.1 Waveforms
	5.4.2 Sonic Boom Overpressure
	5.4.3 Loudness Metrics

	5.5 Summary

	6 SONIC BOOM PROPAGATION BEYOND THE LATERAL CUTOFF
	6.1 Previous Approaches to Sonic Boom Prediction in the Shadow Zone
	6.2 Flight Conditions
	6.3 Atmospheric Boundary Layer Flow at the Lateral Cutoff
	6.4 N-wave Results
	6.4.1 Waveforms
	6.4.2 Maximum Pressure
	6.4.3 Loudness Metrics

	6.5 Shaped Waveform Results
	6.5.1 Waveforms
	6.5.2 Maximum Pressure
	6.5.3 Loudness Metrics

	6.6 Summary

	7 CONCLUSION
	7.1 Summary and Conclusions
	7.2 Future Work

	A DISCRETIZATION OF HETEROGENEOUS TERMS IN THREE DIMENSIONS
	B PROBABILITY DISTRIBUTIONS OF ISBAP AND BSEL IN ISOTROPIC TURBULENCE
	C PROBABILITY DISTRIBUTIONS OF N-WAVE LOUDNESS METRICS IN ATMOSPHERIC BOUNDARY LAYER TURBULENCE
	D PROBABILITY DISTRIBUTIONS OF X-59 OVERPRESSURE AND LOUDNESS METRICS IN ATMOSPHERIC BOUNDARY LAYER TURBULENCE
	E PROBABILITY DISTRIBUTIONS OF N-WAVE LOUDNESS METRICS IN THE SHADOW ZONE
	F PROBABILITY DISTRIBUTIONS OF X-59 OVERPRESSURE AND LOUDNESS METRICS IN THE SHADOW ZONE
	REFERENCES
	BIOGRAPHICAL SKETCH

