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Introduction: Background

Problem
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Problem:
▶ Sonic boom near lateral cutoff

impacted by ground impedance

▶ Incorporate ground impedance in
prediction

Goals:
▶ Adapt a transform method to incorporate ground impedance

▶ Implement in a one-way solver with angular spectrum method

▶ Discuss future implementation in acoustic propagation codes, specifically
sonic boom propagation near lateral cutoff

▶ Big picture: advanced prediction capabilities for flight test planning

Figure 1: Illustration of lateral cutoff region



Introduction: Background

Previous Approaches

alexander.carr@nasa.gov November 30, 2021 4 / 13

Start with simple problem of monopole above impedance plane

Current methods:
▶ Geometrical acoustics [1]

▶ Fast-field program [2, 3]

▶ Parabolic equation (and wide-angle parabolic eqn.) [4]

Drawbacks:
▶ Caustics

▶ Fourier transform both source and
image plane

▶ Paraxial approximation [5]

Figure 2: Diagram of sound propagation by a point
source over a finite impedance plane



Introduction: Approach

Approach
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Start with initial solution at
initial plane r0

Take transform in z

Adapt mixed Fourier transform method to
account for ground boundary condition

Compute solution of ODE on new plane
(r0 +∆r)

Take inverse transform and repeat

Can be incorporated into split-step marching
codes (with flow effects, nonlinear distortion,
etc.)



Method:

Method Outline

Present the angular spectrum method for free space

Discuss transforms for presence of infinite plane

Present mixed Fourier transform approach

Incorporate into angular spectrum method
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Method: Angular Spectrum Method

Helical Wave Spectrum
Start with Helmholtz equation, assume axisymmetry

Take Fourier transform in z

r2
d2P̃

dr2
+ r

dP̃

dr
+ (rkr)

2P̃ = 0 (1)

k2r = k2 − k2z (2)

Spectrum at r0 is known, compute at r0 +∆r

Outgoing wave solution [6] (verified by asymptotic form of H1
0 (rkr))

P̃ (r0 +∆r) = P̃ (r0)
H1

0 ((r0 +∆r)kr)

H1
0 (r0kr)

(3)

How do we incorporate boundary condition? ηg = normalized ground
admittance [

∂P

∂z
+ ikηgP

]
z=0

= 0 (4)
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Method: Mixed Fourier Transform

Mixed Fourier Transform

Dirchelet BC: sine transform

Neumann BC: cosine transform

Assume a transform that is a combination of sine and cosine

P̃ (r, kz) = N (P ) =

ˆ ∞

0

P (r, z) (a cos(kzz) + b sin(kzz)) dz (5)

Integrate by parts, apply boundary condition: a = −kz and b = α

α = ikηg

Inverse transform given by Kuttler and Dockery [7]

P (r, z) = Ke−αz +
2

π

ˆ −∞

0

P̃ (r, kz)
α sin(kzz)− kz cos(kzz)

α2 + k2z
dkz, (6)

When Re(α) approaches zero, denominator could approach a pole
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Method: Mixed Fourier Transform

Discrete Mixed Fourier Transform

Instead, compute the discrete mixed Fourier transform (DMFT) [8]

Consider the auxillary function

w(z) =
∂P

∂z
+ ikηgP, (7)

Take sine transform of w(z)

Propagate forward with Eqn. 3, substitute w̃ for P̃

Take inverse sine transform of w̃

Numerically compute particular solution ψ of Eqn. 7

P is the sum of particular and homogeneous (ϕ) solutions

P = ψ + ϕ (8)

Details on procedure: [8, 9, 10]
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Method: Mixed Fourier Transform

Accuracy of Computing DMFT
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Numerical issues arise in MFT when Re(ηg) < max(kz)/k

To test accuracy of DMFT vs MFT, take a test function, say sin(2πz/h)

Set Im(ηg) = 0 and vary Re(ηg)

Perform forward (Eqns. 5 and
11-13) and inverse (Eqns. 6 and
15-16)

Compare error to original function

Test functions: sine, cosine,
exponential, and hyperbolic cosine
all used

Figure 3: L2 norm error between the original function (sine
wave) and the function after applying the forward and inverse
transforms of the MFT and DMFT. Note the greatly reduced
error of the DMFT compared to the MFT for
kRe(ηg) < max(kz)



Results: Validation

Benchmark Case
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Verify method with outdoor sound propagation benchmark cases [1]

Case 1: Propagation over porous sand in medium with no refraction effects

Ground impedance: four parameter model of Attenborough [11, 12]

Initial condition: exact solution at r = 1 m

Table 1: Problem parameters for sound propagation of
monopole source above a homogeneous isotropic layer of porous
sand [1]

Parameter Value

Source height (zs) 5 m

Receiver height (zr ) 1 m

Sound speed (c0) 343 m s−1

Air Density (ρ0) 1.2 kg m−3

Flow resistivity (σ) 366000.0 Pa s m−2

Porosity (Ω) 0.27

Pore shape factor (sp) 0.5

Grain shape factor (np) 0.5

Figure 4: Initial conditions at r0 = 1 m for each of the three
source frequencies considered.



Results: Validation

Transmission Loss
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Table 2: Source frequencies and associated L2 norm error of
predictions when compared to exact solution

Frequency Percent Error

1 Hz 0.48 %

10 Hz 0.45 %

100 Hz 0.26 %

1000 Hz 1.06 %

Figure 5: Transmission loss at 10 Hz.

Figure 6: Transmission loss at 100 Hz. Figure 7: Transmission loss at 1000 Hz.



Summary:

Summary and Conclusions

Current progress in adapting DMFT to acoustic propagation

Incorporated into angular spectrum method, no paraxial approximation

Results compared to benchmark cases

Largest error at 1000 Hz

Future Work:
▶ Ongoing work in adapting DMFT method to computational acoustics

▶ Extend to 3D non-axisymmetric problems

▶ Integrate with sonic boom prediction code near lateral cutoff region
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Summary:

Thank you

alexander.carr@nasa.gov November 30, 2021 14 / 13



Appendix:

References I

[1] K. Attenborough, S. Taherzadeh, H. E. Bass, X. Di, R. Raspet, G. R. Becker, A. Güdesen, A. Chrestman, G. A. Daigle, A. L’Espérance, Y. Gabillet,
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Extra Slides:

Poles of Inverse MFT

Take Im(Zg) = 0, then

Im

(
α

α2 + k2z

)
=

k
Re(Zg)

k2z −
(

k
Re(Zg)

)2
and Re

(
kz

α2 + k2z

)
=

kz

k2z −
(

k
Re(Zg)

)2
(9)

Figure 8: Poles that arise in the inverse transform
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Extra Slides:

Discrete Mixed Fourier Transform

Instead, compute the discrete mixed Fourier transform (DMFT) [8]

Consider the auxillary function

w(z) =
∂P

∂z
+ ikηgP, (10)

P̃ on the interior points is just the sine transform of w(z)

Forward transform:

w̃1 = D

N∑
n=1

λn−1Pn (11)

w̃j = Fs(Pn), n, j = 2, . . . , N − 1 (12)

w̃N = D
N∑

n=1

(−λ)N−nPn (13)

D =
2(1− λ2)

(1 + λ2)(1− λ2N )
(14)
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Extra Slides:

Discrete Mixed Fourier Transform

Inverse transform, particular solution:
ψj+1 − ψj−1

2∆z
+ αψj = Fs(w̃n), n, j = 2, . . . , N − 1 (15)

Homogeneous solution:

ϕj = B1λ
j +B2(−λ)N−j , j = 1, . . . , N (16)

λ2 + 2αdzλ− 1 = 0 (17)

B1 = w̃1 −D
N∑

n=1

ψnλ
n (18)

B2 = w̃N −D
N∑

n=1

ψn(−λ)N−n (19)

More info on DMFT in [8, 10], inverse transform is

Pj = ψj + ϕj , j = 1, . . . , N (20)
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Extra Slides:

Transmission Loss
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Figure 9: Exact transmission loss at 1 Hz. Figure 10: Predicted transmission loss at 1 Hz.

Figure 11: Exact transmission loss at 10 Hz. Figure 12: Predicted transmission loss at 10 Hz.



Extra Slides:

Transmission Loss
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Figure 13: Exact transmission loss at 100 Hz. Figure 14: Predicted transmission loss at 100 Hz.

Figure 15: Exact transmission loss at 1000 Hz. Figure 16: Predicted transmission loss at 1000 Hz.



Extra Slides:

Grid Resolution

Simulations for higher source frequencies had less points per wavelength

Table 3: Points per wavelength in the transverse direction rounded down to nearest integer

Frequency Points per wavelength
10 Hz 94
100 Hz 29
1000 Hz 15
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