Split-Step Simulations of Sonic Boom Propagation through Turbulence

Alexander N. Carr and Steven A. E. Miller

University of Florida
Department of Mechanical and Aerospace Engineering
Theoretical Fluid Dynamics and Turbulence Group

May 2022
alexander.carr@nasa.gov
Acknowledgements

This material is based upon work supported by the Commercial Supersonic Technology Project of the National Aeronautics and Space Administration under Grant No. 80NSSC19K1685 issued through the NASA Fellowship Activity.
Background

- Shock waves propagate through atmosphere to ground
- Community annoyance from sonic booms prevents over land supersonic flight [1,2]
- Atmospheric turbulence leads to random distortions of the waveform
- Ray tracing codes do not account for turbulence [3,4,5,6]
- Recent push to incorporate atmospheric turbulence in predictions [7,8]

Fig 1. Illustration of sonic boom ray paths from the aircraft to the ground.

Fig 2. Measured sonic boom waveforms in low turbulence and high turbulence conditions. Adapted from [9].
Objectives

- **Overall objectives of work:**
 - Develop prediction tool for sonic boom propagation in atmospheric boundary layer (ABL)
 - Investigate turbulence effects on the waveform and loudness metrics
 - Predictions of sonic boom beyond the lateral cutoff in a turbulent atmosphere
- **In this presentation:**
 - Simulations of traditional N-wave and X-59 boom in homogeneous turbulence
 - Length scale for non-dimensionalization of results
 - Predictions of the caustic locations
 - Sonic boom overpressure predictions

Fig 3. Artist’s rendition of the NASA X-59 QueSST aircraft. Adapted from [1].
Method

- One-way propagation of acoustic pressure [8,10]:

\[
\frac{\partial^2 p}{\partial x_1 \partial \tau} = \mathcal{D}(p) + \mathcal{H}(p) + \mathcal{N}(p) + \mathcal{A}(p)
\]

(1)

- \(\mathcal{D}\) (diffraction), \(\mathcal{H}\) (heterogeneities), \(\mathcal{N}\) (nonlinearities), \(\mathcal{A}\) (absorption)

- Split-step method [11]: compute each effect separately
 - Diffraction: angular spectrum method [12]
 - Heterogeneities: Crank-Nicolson scheme
 - Nonlinearities: Burgers solver [13]
 - Absorption: Absorption coefficient with relaxation [14]

- \(x_1\) is the propagation direction
- \(\Delta x_{1,2,3} = 2\) m

Fig 4. Computational domain.
Turbulence

- Energy spectrum: von Kármán model
- Frelich [15] method used to generate turbulent fields (Fourier synthesis technique)
- RMS velocity: $0.2 \leq u_{rms} \leq 3.0$ (m/s)
- Integral length scale: $L_f = 100$ m
- 25 fields per case, waveforms computed at 2500 microphone locations per case

Table 1. Simulation setpoints.

<table>
<thead>
<tr>
<th>Case</th>
<th>u_{rms} (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No turbulence</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>1.4</td>
</tr>
<tr>
<td>6</td>
<td>1.8</td>
</tr>
<tr>
<td>7</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>2.6</td>
</tr>
<tr>
<td>9</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Fig 5. Longitudinal velocity in the $x_3 = 0$ plane

Fig 6. Computed longitudinal and lateral correlations of the kinematic velocity fields compared to the von Kármán model

alexander.carr@nasa.gov
Wavefront Folding

- Normalize propagation direction \((x_1) \) by:

\[
\ell_f = \frac{C_1 L_f c_0 + u_{\text{rms}}}{2 u_{\text{rms}}} \quad (2)
\]

- Focal distance behind spherical lens of index:

\[
n = 1 + \frac{c_0}{u_{\text{rms}}} \quad (3)
\]

- Pierce and Maglieri [16] suggest radius of curvature of ripple caused by velocity perturbation

\[
R = \pi^2 L \frac{c_0}{\Delta u} \quad (4)
\]

- \(\ell_f \propto \frac{c_0}{u_{\text{rms}}} \) and \(R \propto \frac{c_0}{\Delta u} \)

- \(u_{\text{rms}} \) is the square root of the variance of fluctuations \(\sqrt{\mathbb{E}(\Delta u^2)} \)
Waveforms

- 12 kHz sampling frequency
- Initial waveforms shown alongside predictions at various $x_1 \ell_f^{-1}$ locations
- Spiking and rounding present in N-wave

Fig 8. Initial N-wave shown with sample results at various locations along the propagation direction.

Fig 9. Initial X-S9 waveform shown with sample results at various locations along the propagation direction.
Caustic Locations

- Probability density function of the location of caustic locations (x_{caust})
- Previous scaling (Kulkarny and White [17]) shown in Fig. 11
- Not collapsed for small u_{rms}
- Fig. 12 shows ℓ_f parameter collapses PDF for all u_{rms}

Fig. 10. N-wave overpressure for a single turbulence realization of case 9

Fig. 11. Probability density function of the location of the first caustic for 6 different N-wave cases scaled by the Kulkarny-White factor, compared to previous analytical result [17].

Fig. 12. Probability density function of the location of the first caustic for 6 different N-wave cases.

alexander.carr@nasa.gov
Overpressure Statistics

- Average value of sonic boom overpressure (Δp) for both waveforms collapses when x_1 is scaled by ℓ_f
- Linear decrease for X-59 waveform
- Maximum standard deviation of Δp for N-wave double the maximum for X-59
- Approximately linear increase of $\sigma_{\Delta p}$ for $x_1 \ell_f^{-1} < 1$

Fig 13. Average value of sonic boom overpressure for N-wave and X-59 waveform.

Fig 14. Standard deviation of sonic boom overpressure for N-wave and X-59 waveform.
Summary and Conclusion

- Prediction tool has been developed to simulate nonlinear acoustic propagation in a turbulent medium
- Length scale proposed, based on analogy to focusing of light by spherical lens
- Most probable location of caustic formation for N-wave: \(x_1 \ell_f^{-1} = 1 \)
- Statistics of overpressure collapse along \(x_1 \ell_f^{-1} \)
- Indicates potential to parameterize \(\Delta p \) by \(u_{\text{rms}} \) and \(L_f \)
- Future work:
 - Simulations in inhomogeneous turbulence, representative of ABL
 - Simulations beyond the lateral cutoff into the shadow zone region
Thank you.

Questions?
References

