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The intense noise generated by large-scale turbulent structures is the main component of

acoustic radiation from jets, especially in the downstream direction, which is harmful to human

health. Furthermore, the high-frequency waves created by boundary layer turbulence can cause

intense vibrations on vehicle surface structures during rocket launch. It can be simplified as a

cone flow. As instability waves are closely connected with the formation of large-scale turbulent

structures, instability wave theory is applied to compute the radiated noise in the far-field for free

jets and the pressure fluctuations on the cone surface. A phenomenological plasma actuator model

is applied to alter the flow-fields and stability properties of the cone flows.

We compute the radiated noise from instability waves within two off-design supersonic jet

flows. The directivity and azimuthal properties of jet noise from large-scale turbulent structures in

the downstream direction are captured. The spectral density of noise in the downstream directions

agree well with the experimental measurements, whereas they are lower at the upstream direction.

The auto-correlation shows similar behavior both in the downstream and upstream directions. The

cross-correlation and coherence shows higher values than the prediction from the Kirchhoff

surface method and experimental measurements. The results show that the noise from instability

wave models in the upstream and downstream direction are highly correlated. The results could

be used for future flow control on noise reduction from large-scale turbulent structures.
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We examine the effect of plasma actuation on the pressure fluctuations from the instability

waves on the cone surface via theory with flow-fields predicted by computational fluid dynamics.

We present predictions for a seven-degree half-angle cone at free-stream Mach 2, 3.5, and 5 with

varying nose radii. Nose radii range from 0.038 to 38.1 mm and represent both sharp and large

leading edge bluntness. For non-actuated flows, we observe that very small radii leading edges do

not alter the maximum growth rates. Large radii cones have lower growth rates due to a thicker

boundary layer. Spatial coherence of the instability waves decreases with increasing frequency.

The growth rates are smaller at higher freestream Mach number. The effect of the simulated

plasma actuator adds local heating to the flow-field. We find that plasma actuation stabilizes the

flow-field and spatial coherence becomes smaller. The results are beneficial for future flow

control to reduce the vibration from large-scale turbulent structures.
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CHAPTER 1
INTRODUCTION

1.1 Motivation and Background

Turbulent motions are located everywhere, such as winds and currents in the atmosphere

and ocean [1]. Turbulence is found in almost all industrial flows and remains a predominant

problem within the aerospace industry. Turbulence can be found in all speed regimes - subsonic,

transonic, supersonic, and hypersonic. It has been shown that turbulence can be problematic. For

example, the jet noise problems found within jet engines and the vibration and cabin noise of

high-speed flight vehicles caused by the aerodynamic loading from turbulence. Previous

investigations illustrated that specific turbulent structures play important roles for noise radiation,

such as fine- and large-scale turbulent structures. Therefore, one fundamental goal is to predict

the noise from the turbulent structures and control them. Lower order models, such as theoretical

modeling (instability waves method [2, 3]) and decomposition methods [2, 4, 3], can be cost less

than direct computation to achieve these goals and illustrate the physical mechanisms. In this

dissertation, we apply these methods to predict the noise and loading and show the possibility to

control the large-scale turbulent structures.

Firstly, the study of noise from jet engines became an active area of research since the

1950s [5] and is still a major concern in military and commercial aviation due to the increasing

demand in both military and commercial sectors. Jet noise causes health problems [6]. For

example, long time exposure to jet noise causes cardiovascular related disease due to increasing

hypertension and blood pressure [6]. For military applications, the intensity of jet noise on an

aircraft carrier deck ranges from 120 to 150 dB at peak frequencies [7]. The noise is detrimental

to the health and hearing of the military personnel working in close proximity to the aircraft on an

aircraft carrier [7].

There is a long history of noise regulation since the first Federal Aviation Administration

(FAA) regulation in 1969 [5]. Figure 1-1 shows aircraft noise reduction trends, where the noise

level for high-performance military aircraft is compared to commercial aircraft [5]. The latest

standards are called stage 4 and were established in 2005. The FAA stage 5 became effective in

2017 and 2020, respectively. It can been seen that Stage 5 (Chapter 14) requires newly certified
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aircraft to reduce 7 effective perceived noise (EPN) dB relative to Stage 4. This requirement

exerts more challenges to aircraft manufacturing and jet engine design. Recent major efforts

included projects WP-1583 [8] and WP-1584 [9], which reduced noise by approximately 2 dB

through fluid injection and chevron technology, respectively. The project, WP19-1014 [10], aims

at reducing noise by studying and destroying the large-scale turbulent structures, which is the

focus of this dissertation.

Figure 1-1. Aircraft noise reduction trends.

Lighthill published two now famous papers [11, 12] explaining how sound is generated

from a turbulent flow, and a new era of aeroacoustics began. A number of researchers

[13, 14, 15, 16, 17, 18] focused on explaining the noise generation mechanism, determining the

noise source, propagation, and predicting the sound pressure level (SPL) numerically and

theoretically. Tam [19] argued that there are three basic components of supersonic jet noise.

These are turbulent mixing noise, broadband shock-associated noise (BBSAN), and screech

tones. Tam et al. [20] argued that turbulent mixing noise is associated with two turbulent

structures within jet flows, namely, fine- and large-scale turbulent structures. Large-scale coherent

structures [21] radiate and dominate in the downstream direction relative to the nozzle exit. Noise
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from large-scale turbulent structures also radiates in the upstream direction, however, it is

dominated by the noise from fine-scale turbulent mixing noise and BBSAN [22]. On the other

hand, formation of the turbulent structures has largely been considered a phenomenon of

flow-instability due to the similarities between transitional and turbulent structures. Consequently,

coherent structures may be viewed as instability modes of the basic flow. It has been shown that

some of the theoretically predicted results agree well with experimental data [23, 24, 18, 16, 17].

Methods to control noise via different approaches [25, 26, 27] were also investigated. For

example, an overall sound pressure level (OASPL) reduced roughly 6 dB in the peak jet noise

reduction with water pressure over 2000 kPa and injection at lower pressure (roughly 1034 kPa)

has resulted in a 1.6 EPN dB reduction [26]. However, reduction of noise from large-scale

turbulent structures remains one of the most difficult challenges in practical jet engine

development. The present research seek methods to ultimately lower the noise from this dominant

noise source.

Our aim is to examine the statistical relation between downstream and upstream radiating

noise from large-scale turbulent structures within jets. By understanding the statistics of

large-scale radiation, we hope to create the possibility of one-day designing a feedback control

system for the noise from large-scale turbulent structures within free jets. This approach will rely

on the ability to extract the upstream propagating noise from the large-scale structures from

within a signal that is dominated by fine-scale mixing noise. Such sensors might be mounted on

the aircraft wing. Wing mounted microphones for jet noise measurement were pioneered in World

War II by the Germans on the Messerschmitt Me 262 [28]. The control signal after extraction

would be used to feed an actuator within the nozzle system of the aircraft.

Secondly, leading edge geometries of flight-vehicles experience intense aerodynamic

loading at high-speeds. Instability waves, that lead to transition to turbulence, create large

pressure fluctuations on the surface of vehicles. The action of the stochastic pressure distribution

associated with instability waves and turbulence provides the driving force that excites the

underlying structure [29, 30]. This excitation in turn generates intense vibrations on the payload,
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personnel, or other critical flight-vehicle systems [31, 32] during rocket launching [29].

Reduction of these vibrations will increase flight-vehicle safety [33], reduce vibration induced

failure of satellites [33], and reduce noise for astronauts [33, 34]. Therefore, accurate external

wall-pressure predictions are necessary for leading geometries at supersonic and hypersonic

speeds. This will allow designers to possess improved prediction tools so that they may lower

weight of vehicles and reduce harmful vibrations.

Previous investigations [35, 36, 37, 38] have explored the effect of different semi-empirical

models fitted to experimental data to describe the wall pressure fluctuations on a rigid plane wall

due to a turbulent boundary layer (TBL). High-speed boundary layers are unstable and instability

waves form. The existence of large-scale coherent motions within high-speed flows has been

identified [39, 40] and defined via statistical means [41], instantaneous flow patterns [42],

stability theory [43], and techniques from dynamical systems theory [3]. Stability theory has been

applied to study the transition of the boundary layer and the effect of heat exchange on the vehicle

surface (see for example Malik [44], Malik and Spall [45], Knisely and Zhong [46], Laible et al.

[47]). Various parameters, including body configurations, the Mach number, wall temperature,

entropy layer, and roughness, would affect the stability and transition within boundary layer flows

[39]. However, there are some discrepancies between the results of experimental and numerical

studies about the transition locations. Additionally, the general law of the effects of wall

temperature is not obtained or unknown to our community.

Therefore, we propose to apply stability theory to compute pressure fluctuations from the

instability waves on cones by changing leading edge radii and free-stream Mach numbers. These

geometries are selected because they are similar to the leading edges of supersonic and

hypersonic flight-vehicles and represent prototypical geometry for investigating boundary layer

stability and transition [48]. In addition, we also propose to investigate the variations of stability

properties by adding a plasma actuator.
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1.2 Objective and Scope of Proposed Work

There are two research focuses in this dissertation, and both of them are related to the effects

of large-scale turbulent structures. The main objectives and the methods to achieve them are:

• Increase understanding of physics of the dominant noise produced from turbulent structures
within high-speed jet flows: To achieve this, theoretical and numerical methods will be used
to compute the noise in the upstream and downstream directions for two off-design
supersonic jets. The prediction approach is instability wave theory, which has been used to
predict the radiated noise [16, 17]. The numerical methods is the Kirchhoff surface method
[49] in conjuction with CFD.

• Provide a theoretical foundation for a control mechanism that aims to reduce the noise in
the downstream direction via measuring and controlling the upstream noise: The statistics
of pressure perturbations will be analyzed. The correlation and coherence analysis are
applied. The foundation of this analysis is that the results of auto-correlation of different
noise sources show different behavior [50, 51].

• Create a database and present a prediction methodology of excitation for vibration analysis
and noise of boundary layer flows: Different cone flow conditions are investigated. The
spatial coherence is an important terms of the formula of excitation within
structure-acoustic problems [34] and properties of coherent structures [52].

• Provide the possibility to control the intensity exerted on the rocket surface: The
phenomenological plasma actuator model is added within boundary layer flows to achieve
this goal. The variation of flow-fields and stability properties affect the spatial coherence of
pressure fluctuations. These results show that plasma actuation is a promising flow control
methodology.

Noise and vibration are the by-products of the turbulent flow-fields, therefore, it is

necessary to understand the associated flow structures and fluid dynamics. The basic descriptions

and development of the flow-fields for free jets and TBLs are discussed in Section 1.2.

Supersonic jet noise, including the characteristics, classification, and prediction methods are

reviewed in Section 1.3. The stability modes within boundary layer flows and the parameters that

can alter the stability properties will be reviewed in Section 1.4. The application, mechanism, and

computation of plasma actuation for flow control are reviewed in Section 1.5. The organization of

the rest of the dissertation is presented in Section 1.6.

1.3 Flow Structures

In this section, the flow development of free jets and turbulent boundary layer will be

reviewed, which provides the foundation for understanding flow structures presented in this
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dissertation. Additionally, a description and definition of coherent structures are presented. A

general form of instability waves is shown.

1.3.1 Free Jets

A free jet is a fluid mass that discharges into an infinitely large environment of ambient fluid

[53]. The structure and development of a free jet is shown in Fig. 1-2 (modified from [53]). It can

be seen that there are distinct zones, which are related to the centreline velocity decay. The first

important region is called the potential core of the jet, where the centreline velocity is equal to the

nozzle outlet velocity. Specifically, as the fluid leaves the nozzle, the diffusion of momentum

between the expelled fluid and the quiescent medium gradually decelerates the high-velocity flow

through air entrainment by its surroundings [53]. The mixing layer or shear layer is generated

between the moving and quiescent fluids, which spreads as the jet develops downstream. The

mixing process in the shear layer near the nozzle creates Kelvin-Helmholtz instabilities that grow

as they are advected by the mean flow [54]. During this process, large-eddies or large-scale

turbulent structures are formed due to the large velocity difference at the surface between the jet

fluid and ambient, which cause intense lateral mixing. These large-eddies will become weaker

downstream from their location of formation and breakdown into fine-scale turbulent structures,

and finally become fully turbulent [53]. Noise is radiated in all directions during this process [13].

Characteristics of the radiated noise will be discussed in the section on jet noise.

Figure 1-2. Free jet flow structure.
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In order to generate a large amount of thrust, a nozzle is used in a jet engine to accelerate

the fluid flow exiting the engine. The design Mach number, 𝑀𝑑 , of the nozzle is related to the

ratio of the area of the exit and throat of the nozzle, as

𝐴𝑒

𝐴∗
=

1
𝑀𝑑

[
2

𝛾 +1

(
1+ 𝛾−1

2
𝑀2
𝑑

)] 𝛾+1
2(𝛾−1)

, (1-1)

where 𝐴𝑒 is the aera of the exit, 𝐴∗ is the area of throat, and 𝛾 is the specific heat. The operating

condition of a nozzle depends on the nozzle pressure ratio (NPR) and the total temperature ratio

(TTR). The NPR is defined as the ratio of the stagnation pressure to the ambient pressure.

Similarly, the TTR is defined as the ratio of the stagnation temperature to the ambient

temperature. The fully-expanded jet Mach number, 𝑀 𝑗 , is defined as

𝑀 𝑗 =

[
2

𝛾−1

(
NPR

𝛾−1
𝛾 −1

)]1/2
. (1-2)

If 𝑀𝑑 = 𝑀 𝑗 , the jet is said to be operating at the on-design condition. If 𝑀𝑑 ≠ 𝑀 𝑗 , the jet is

said to be operating at an off-design condition. For the off-design condition, the pressure at the

nozzle exit, 𝑝𝑒, is not equal to the atmospheric pressure, 𝑝∞. A Shock-cell structure in the jet

exhaust is formed when the jet operates off-design (see the potential core of Fig. 1-2). If pressure

at the exit is lower than the atmospheric pressure, the flow is said to be over-expanded.

Conversely, if the pressure at the exit is higher than the atmospheric pressure, the flow is said to

be under-expanded. These pressure miss-matches creates an initial expansion wave or shock

wave, respectively, that creates the semi-periodic shock-cells in the plume.

1.3.2 Boundary Layer Flows

A boundary layer is typically a thin region of fluid immediately adjacent to a solid structure,

along which a fluid is moving [55]. The region outside the boundary layer is often relatively

undisturbed compared to the region very near the wall. Any interactions between the fluid and the

surface of the solid takes place through that layer of fluid. Boundary layers can be laminar,

transitional, or turbulent, depending on the velocity, density, viscosity of the fluid, and the

characteristic length of the solid surface. A TBL is characterized by high Reynolds number
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(Re𝑥 = 𝜌𝑢𝑥/𝜈, where 𝜌 is the density, 𝑢 is the velocity, and 𝜈 is the viscosity), which is the ratio of

inertial force to viscous force. For flow over a flat plate, the transition from laminar to turbulent

flow occurs at a Re𝑥 of approximately 105 to 106.

Figure 1-3 shows the development of the flow for the simplest TBL over a flat-plate [56].

Three regions are formed along the streamwise direction. The flow development for a cone

configuration is similar with this figure, but with a more complex flow-field. An oblique shock for

a sharp cone or bow shock for a blunt cone will appear at the front of the cone. As for a flat plate,

a thin boundary layer develops resulting from the skin friction between the flow and the surface.

Figure 1-3. Turbulent boundary layer flow structure.

Experimental and numerical studies of wall-bounded flows reveal the different shapes and

types of flow structures [39, 40], such as hairpin vortex, typical eddies, and pocket packet, etc.

(see Fig. 1-4). Numerous efforts have been devoted to examining the characteristics of the

structures and identifying their functions in the onset and production of turbulence [39]. In a

compressible boundary layer, typical flow structures have been observed, such as

three-dimensional wave packets [39]. The first and second mode instability waves play important

roles in the transition process. Mach number, roughness, wall temperature, and other factors will

affect the development of the flow structures.

1.3.3 Coherent Motions

The existence of coherent vortical structures in turbulent flows has been known for many

decades, but the exact definition of coherent structure remains controversial, beyond the

requirement that coherent motions have significant correlation in space and time [57]. Two main
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Figure 1-4. A temporal phase of the evolution of typical eddies, where the pocket and primary
hairpin vortex are formed.

views are proposed to define the coherent structures summarized by Sharma and McKeon [58].

One is derived from statistical measures of the velocity field and scaling arguments based on

dimensional analysis in physical and spectral space [58]. A second view focuses on the dynamics

and spatial organization of coherent structure [58]. For example, Robinson [40] defined coherent

motion as a three-dimensional region of the flow over which at least one fundamental flow

variable, such as velocity component, density, temperature, etc., exhibits significant correlation

with itself or with another variable over a range of space and/or time that is significantly larger

than the smallest local scales of the flow. This definition has been used as the criteria to determine

the jet noise at the downstream direction is from large-scale turbulent structures based on the

correlation analysis of far-field noise of experimental measurements [50, 59].

In the second view point, coherent structures are loosely defined as regions of concentrated

vorticity, which has recurrence, appreciable lifetime, and scales (see Fiedler [52]). It is also

shown that the coherent turbulent structures in a turbulent flow are regions or motions of apparent

order as observed from flow visualization that show considerable similarity to the instability

waves observed in the range of laminar-turbulent transition [58]. This observation provides the

possibility to apply instability wave theory to investigate the effects of coherent structures. In

addition, coherent structures can be reduced to (combination of) a small number of elements,

namely line vortex, ring vortex, hairpin vortex, and helical vortex [52].
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One of the existing theoretical models of coherent structures are linearised Navier-Stokes

equations, which may be classified as physically derived models. The spatially growing

instability wave within the flow-fields are used to describe the flow-fields or fluctuation

flow-fields governed by the linearised Navier-Stokes equations. It can be used to predict the

transition of boundary layer flow or acoustic radiation. The LST is based on the normal mode

analysis under a local parallel-flow assumption. Specifically, the linear fluctuations of flow

variables are decomposed into the following normal mode form as

𝑞′(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞(𝑦) exp(𝑖(𝛼𝑥 + 𝛽𝑧−𝜔𝑡)), (1-3)

where 𝑞′ stands for any of the independent flow variables 𝑢, 𝑣, 𝑤, 𝑝, 𝜌 (or 𝑇), 𝑞 is the complex

amplitude of the disturbances or shape function, 𝛼 and 𝛽 are the wavenumber, and 𝜔 is the radial

frequency. Equation (1-3) will be modified for jet flows and boundary flows attached to cone. The

specific form of the instability waves will be given for different flow type in the later Chapters.

1.4 Supersonic Jet Noise

1.4.1 Characteristics of Jet Noise

Figure 1-5 shows the typical noise spectra of a high-speed off-design supersonic jet at

various radiation angles (Ψ) [60]. The 𝑦-axis is SPL and the 𝑥-axis is non-dimensional frequency,

St = 𝑓 𝐷/𝑢 𝑗 , where 𝐷 is the diameter of the nozzle, 𝑓 is frequency, and 𝑢 𝑗 is the jet velocity. The

mixing noise, BBSAN, and screech of jet noise are labeled with arrows and different colors. It

can be seen that turbulent mixing noise is broadband in nature and is the most dominant noise in

the downstream direction. Screech tones and BBSAN are most dominant in the upstream and

sideline directions. Furthermore, mixing noise is dominant at mid- to low-frequencies. The

BBSAN generation is associated with the interaction between the large turbulent structures and

the quasi-periodically oscillating shock-cell structures.

1.4.1.1 Turbulent Mixing Noise

Tam et al. [20] argued that turbulent mixing noise is associated with fine- and large-scale

turbulent structures from high-speed jets. The noise from large-scale turbulent structures
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(c)

Figure 1-5. Three components of an under-expanded supersonic jet noise at various radiation
angles, 𝑀𝑑 = 1, 𝑀 𝑗 = 1.5, and TTR=1.00, data from NASA Glenn Research Center
courtesy of Miller.

dominates in the downstream direction, while the fine-scale turbulent noise is less directional and

dominates in the sideline and upstream directions [4].

Figure 1-6 is the SPL for two heated jets at St = 0.25 at azimuthal mode 𝑚 = 0 [54]. It can

be seen that the dominant noise is at the angular sector between 30 to 60 degrees measured

relative to the jet downstream direction, which is the turbulent mixing noise. In the upstream

direction, the noise intensity is low and nearly uniform with respect to frequency [13]. This noise

is believed to be generated by the fine-scale turbulence of the jet flows. In addition, the intensity,

the directivity, and spectral characteristics of the turbulent mixing noise of supersonic jets depend

on the velocity of jet exhausts [13]. It can be seen that the difference between the maximum and

minimum power is approximately 25 dB for high-speed jets, 𝑀∞ = 1.5, whereas it is

approximately 13 dB for low-speed jets, 𝑀∞ = 0.5 [4]. Furthermore, the higher jet temperature

can broaden the dominant noise lobe in the downstream direction and increase the the overall

noise radiation [19].
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Figure 1-6. Acoustic power measurements for two heated jets at 𝑀 𝑗 = 0.5 and 1.5, TTR=2.7,
azimuthal mode 𝑚 = 0, and frequency St = 0.25.

An early attempt to represent sound sources (large-scale turbulent structures) as instability

waves was from Liu [61]. He found that some of these instability waves travel supersonically

with their peak amplitude inside the shear layer and decay in the radial direction away from the

jet. The wavy wall analogy can be used to explain the sound generation mechanism from

instability waves. The large-scale turbulent structures and instability waves of the jet are

statistically equivalent [13]. Near the nozzle exit, the large velocity gradient across the shear layer

causes the instability wave to have a very large growth rate. As the instability wave propagates

downstream the shear layer thickness increases, which leads to a reduction of growth rate.

Eventually the wave becomes damped (growth rate less than zero) as they propagate further

downstream. The growth and decay of the instability wave amplitude leads to a broadband

wavenumber spectrum. The large-scale turbulent structures of the jet flow may not be the most

important noise generators for low speed subsonic jets.

1.4.1.2 Screech Tones

Screech is a form of aeroacoustic resonance observed in shock-containing supersonic jets

[62]. The mechanism and prediction of the screech tone frequencies are examined, see Powell

[63, 64], Norum [65], and Tam and Tanna [66], as examples It is found that the fundamental
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screech tone radiates primarily in the upstream direction. The appearance of a screech tone is

usually accompanied by its harmonics.

The screech tone generation process involves a feedback loop rendering the flow periodic

with accompanying emission of a sharp tone [22]. Specifically, acoustic disturbances impinging

on the jet mixing layer near the nozzle lip excite the intrinsic instability waves of the jet flow. The

instability wave propagates downstream, extracts energy from the mean flow and grows rapidly in

amplitude. The instability wave having acquired a large enough amplitude interacts with the

quasi-periodic shock cells in the jet plume after propagating four to five shock cells distance. The

unsteady interaction generates acoustic radiation in the upstream direction. Upon reaching the

nozzle lip region, the acoustic disturbances excite the shear layer of the jet, which leads to the

generation of new instability waves. In this way, the feedback loop is closed.

The dominant screech tone exhibits a mode-switching phenomenon as the jet Mach number

increases [22]. At low Mach number, the screech tones are associated with the toroidal mode

(axisymmetric mode, azimuthal mode 𝑚 = 0). As Mach number increases, there is a switch over

to the flapping/helical mode (𝑚 = ±1). Furthermore, the intensity of screech tones generally

decreases with an increase in jet temperature. This is because the instability wave is the energy

source of the feedback phenomenon.

1.4.2 Prediction of Jet Noise with Acoustic Analogy

There are many review articles on the aeroacoustics of jets and the methodologies to

compute jet noise [67, 68, 69]. One very prominent method is called the acoustic analogy, which

in theory can be used to predict noise from both large- and fine-scale turbulent motions. However,

this requires complete knowledge of the source terms which in practice are not available,

particularly for the fine-scale turbulent structures. It also implies that the complete solution of the

Navier-Stokes equations is already known, and therefore the acoustic analogy would not be

needed to predict the radiated field.

The acoustic analogy is a method to predict noise based on the equations of motion and to

relate radiated noise to equivalent analogous sources. Lighthill [11] rearranged the Navier-Stokes
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equations into a wave operator and equivalent source shown as

𝜕2𝜌

𝜕𝑡2
− 𝑐2

∞∇2𝜌 =
𝜕2𝑇𝑖 𝑗

𝜕𝑥𝑖𝜕𝑥 𝑗
, (1-4)

where 𝑇𝑖 𝑗 = 𝜌𝑢𝑖𝑢 𝑗 + (𝑝𝑖 𝑗 − 𝑐2
∞𝜌𝛿𝑖 𝑗 ) is the Lighthill’s stress tensor, 𝑐∞ is the sound speed, 𝜌 is the

density, 𝑝𝑖 𝑗 is the compressive tensor, 𝛿𝑖 𝑗 is Kronecker delta function, and 𝑢𝑖 and 𝑢 𝑗 are the

velocity components.

Equation (1-4) describes the sound generated by turbulence. This equation was solved with

the method of the Green’s function convolved with the right hand side of Eqn. (1-4). Dimensional

analysis shows the far-field acoustic intensity is proportional to the predicted eighth power of the

jet velocity, 𝑢8
𝑗
. The jet noise directivity is validated theoretically [12]. The angle of maximum

noise radiation is sec−1𝑀𝑐, where 𝑀𝑐 is the convective Mach number. The noise produced by

large-scale turbulent structures can be evaluated by separating the flow fluctuations are

decomposed into coherent and random components [70]. Freund and Colonius [71] proposed that

the reconstructed flow-fields with selected proper orthogonal decomposition (POD) modes may

be a valuable component of a reduced model for predicting the sound radiated by the large-scale

turbulent structures if the reconstructed structures are well-correlated with the radiating portion of

the Lighthill source [71].

Ffowcs Williams [72] investigated the effects of convection of turbulent structures within

jets and showed that the radiation dependence is proportional to 𝑢3
𝑗

at supersonic convection

speeds. Ffowcs Williams and Hawkings [14] derived the FWH equation

(
𝜕2

𝜕𝑡2
− 𝑐2

∞
𝜕2

𝜕𝑥2
𝑖

)
(𝜌− 𝜌∞) =

𝜕2𝑇𝑖 𝑗

𝜕𝑥𝑖𝜕𝑥 𝑗
+ 𝜕

𝜕𝑡

(
𝜌∞𝑢𝑖𝛿( 𝑓 )

𝜕 𝑓

𝜕𝑥𝑖

)
− 𝜕

𝜕𝑥𝑖

(
𝑝𝑖 𝑗𝛿( 𝑓 )

𝜕 𝑓

𝜕𝑥𝑖

)
, (1-5)

where 𝑓 is the generalized function defined the surface introduced, which is negative inside the

surface, positive outside, and exactly zero on the surface. The first term is the quadrapole source

distributed everywhere outside the enclosing surface, and the strength density is 𝑇𝑖 𝑗 , consistent

with the Lighthill’s stress tensor. The second and third term are known as monopole and dipole
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sources, respectively. The wave equation with the second or third source term is called the

thickness noise equation or loading noise equation [73].

Ffowcs Williams also proposed to use a penetrable (porous or permeable) data surface to

account for nonlinearities in the vicinity of a moving surface. The FWH equation for penetrable

(permeable, porous) data surface is

(
𝜕2

𝜕𝑡2
− 𝑐2

∞∇2
)
[(𝜌− 𝜌∞)𝐻 ( 𝑓 )] = 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗
[𝑇𝑖 𝑗𝐻 ( 𝑓 )] + 𝜕

𝜕𝑡
[𝑄𝛿( 𝑓 )] − 𝜕

𝜕𝑥𝑖
[𝐹𝑖𝛿( 𝑓 )], (1-6)

where 𝐹𝑖 = −[𝑝𝛿𝑖 𝑗 + 𝜌𝑢𝑖 (𝑢𝑛− 𝑣𝑛)] 𝜕 𝑓𝜕𝑥 𝑗 , 𝑄 = [𝜌∞𝑣𝑛 + 𝜌(𝑢𝑛− 𝑣𝑛)] 𝜕 𝑓𝜕𝑥𝑖 , 𝑢𝑛 is the fluid velocity in the

direction normal to the surface 𝑓 = 0, 𝑣𝑛 is the surface velocity in the direction normal to the

surface, and 𝐻 ( 𝑓 ) is the Heaviside function, which is unity in the entire region and zero outside

the region.

Di Francescantonio [74] derived the FWH equation (Eqn. (1-5)) and the Kirchhoff

governing equation

□2𝑝′ = −
(
𝜕𝑝′

𝜕𝑡

𝑀𝑛

𝑐∞
+ 𝜕𝑝

′

𝜕𝑛

)
𝛿( 𝑓 ) − 𝜕

𝜕𝑡

[
𝑝′
𝑀𝑛

𝑐∞
𝛿( 𝑓 )

]
− 𝜕

𝜕𝑥𝑖

[
𝑝′
𝜕 𝑓

𝜕𝑥𝑖
𝛿( 𝑓 )

]
, (1-7)

where □ is the wave operator and 𝑀𝑛 = 𝑣𝑛/𝑐∞.

Farassat [73] solved Eqn. (1-5) with the free-space Green’s function in the time-domain

without considering the quadrapoles, which is more suitable for computation. It is also more

efficient if one uses the porous approach, as they are automatically accounted for if a surface

encloses the sources. The porous surface approach means that a surface integral is performed in

the flow-field about the sources. Brentner and Farassat [75] compared the source terms and the

acoustic results of Eqns. (1-5) and (1-7) based on the two methods of Ffowcs Williams and

Hawkings [14]. They pointed out that the FWH equation is based on the conservation laws of

fluid mechanics, while the Kirchhoff formulation is based on the wave equation [75]. The FWH

equation is equivalent to the Kirchhoff governing equation when the integration is located in the

linear flow region.
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Another important modification based on the Lighthill’s acoustic analogy is from Lilley

[76], which took into account the refraction of the mean flow and was called the modified

acoustic analogy. Goldstein [77] achieved the same result as Lilley by linearizing the equation

with the known mean flow. Goldstein [78] later proposed the generalized acoustic analogy, which

decomposed the flow-field into the base- and perturbation- flow. The linearized Navier-Stokes

equation (LNS) are solved with the vector Green’s function. The solution of homogeneous LNS

equations for the steady non-parallel base flow can be assumed as the valid instability waves,

which is usually associated with the large-scale coherent structures. The acoustic analogies are

also applied to the prediction of BBSAN and two-phase flow. For example, Miller [60] proposed

a comprehensive model using an acoustic analogy that has been used to compute the BBSAN.

Balachandar et al. [79] pointed out the mechanism of sound generation mechanism in the

particle-laden jets.

1.4.3 Instability Wave Models within Jet Flows

There are strong similarities between transitional and turbulent structures. Therefore,

formation of the turbulent structures has largely been considered a phenomenon of

flow-instability. Consequently, coherent structures may be viewed as instability modes of the

basic flow, where classes of coherent structure can be described with representative mode

superpositions [58]. Instability waves have been used to predict the far-field noise directly or

indirectly. It has been shown that some of the theoretically predicted results agree well with

experimental data [23, 24, 18, 16, 17]. The near-field results of instability wave models combined

with the acoustic analogy [70, 80, 81] or KS integral method [2, 49, 82] are applied to compute

the far-field noise, which is the indirect way. Also, wavepacket methods, that are empirical in

nature, can predict the far-field noise if tuned to instability waves.

Liu [70, 83] attempted to model and validate the sound sources as instability waves based

on shadowgraphic evidence and near-field acoustic measurements. He separated the flow

quantities in the compressible equations of fluid motions into mean, large-scale, and fine-scale

components to develop integral equations representing energy transfer between these
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components. A single azimuthal-frequency component of the large-scale turbulent structure with

the wavelike pattern as the instability wave model was proposed as

𝑝(𝑥,𝑟, 𝜃, 𝑡) = 𝐴(𝑥)𝑝(𝑥,𝑟)exp
(
𝑖

ˆ 𝑥

0
𝛼𝑟 (𝜉)𝑑𝜉

)
exp(𝑖𝑚𝜃 − 𝑖𝜔𝑡) + 𝑐.𝑐., (1-8)

where 𝐴(𝑥) is an amplitude function that varies along the jet, 𝛼𝑟 is the wavenumber

corresponding to the real frequency 𝜔, and 𝑐.𝑐. denotes complex conjugate of the first term.

The global amplitude of the instability wave within Eqn. (1-8) along with the streamwise

direction was found through the energy integral. The amplitude of the instability wave obtains a

peak within the shear layer and decays with distance perpendicular to the shear layer. The

near-field fluctuations resulting from instability wave analysis were used in the Lighthill integral

to represent the source terms for far-field noise calculations.

The experiment was conducted at a low Re conditions [84, 42] and later extended to

measurements at moderate Re [85] to establish the link between large-scale coherent structures

and the noise radiation from supersonic shock free jets. The results show that the rapid growth of

instability waves and their decay near the end of the potential core contributed to the major

portion the sound radiated (see the work from Mclaughlin et al. [84]). Initial instability wave

growth rates and phase velocities agreed with linear stability theory. Additionally, the peak St

numbers of the measured jet noise spectra appropriately agreed with that of predicted from

instability wave source [84].

Oertel [86] observed three families of instability waves in their supersonic jet experiments

as shown in Fig. 1-7: the Kelvin-Helmholtz, the supersonic, and the subsonic instability wave

[43]. Tam and Hu [43] showed the properties of instability waves in the near-field and the

corresponding effects on the radiated noise. The results showed that the Kelvin-Helmholtz

instability waves (labeled w′ in Fig. 1-7) are responsible for the formation of large-scale turbulent

structures and showed parallel pattern. The supersonic instability waves (labeled w in Fig. 1-7)

also radiated noise to the far-field only at a very high Mach number. The subsonic instability

waves (labeled w ′′ in Fig. 1-7) decay in a small region and do not radiate the sounds in the
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far-field. In this dissertation, the jet Mach number did not reach the region where the supersonic

instability waves appear. Therefore, we focus on the Kelvin-Helmholtz instability waves in the

following sections.

Figure 1-7. Wave patterns of three sets of instability waves, Kelvin-Helmholtz, supersonic, and
subsonic instability waves from top to bottom.

Other researchers, however, have found discrepancies between the measurements and

theoretical analysis for the dominant St [87]. Crighton and Gaster [87] suggested that growth rates

and wave lengths depend significantly on the radial, as well as the axial location at which they are

measured. Another cause of discrepancies lies in the fact that nonlinear effects are actually

significant. Quasi-parallel flow theory is unable to predict variation of a mode characteristics with

radial position nor with axial position. Crighton and Gaster [87] believed that an obvious step to

take to overcome these difficulties is to incorporate the effect of axial variation of the mean flow

into the analysis. These treatments involve a WKB (Wentzel–Kramers–Brillouin) or slowly

varying type of approximation which is readily formalized by a multiple-scales as

𝑝(𝑥,𝑟, 𝜃, 𝑡) =
∞∑︁
𝑛=0

𝜖𝑛𝑝𝑛 (𝑠,𝑟)exp
(
𝑖

ˆ 𝑥

𝛼(𝜖𝜉′)𝑑𝜉′
)

exp(𝑖𝑚𝜃 − 𝑖𝜔𝑡), (1-9)

where 𝑠 = 𝜖𝑥 denotes the slow variable, 𝜖 is a small constant, 𝑛 is the order, and 𝛼 = 𝛼𝑟 + 𝑖𝛼𝑖. The

growth rate is −𝛼𝑖, and the phase speed is 𝑢𝑝 = 𝜔/𝛼𝑟 .

Equation (1-9) models a wave that propagates through a slightly inhomogeneous medium

formed by the turbulent mean flow. Such a wave is represented analytically in the form of an
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asymptotic expansion with 𝜖 , the rate of spread of the mixing layer. The growth rate and phase

speed are two important factors that determine the sound radiation and intensity. The phase speed

of instability waves is responsible for the efficiency and directionality of the radiated noise [22].

When the phase speed of the instability wave is supersonic relative to the ambient speed of sound,

the jet flow has an intensive Mach wave radiation and the direction is normal to the Mach wave

front [22]. When the propagation velocity of the instability wave is subsonic, the amplification

and dampening of the wave will also radiate noise to far-field [22]. The reduction of the growth

rate and phase speed of disturbances in the Kelvin-Helmholtz instability has the potential to

reduce the sound radiated from wavepackets in the jet [88]. The noise-reduction devices cause

changes in the turbulent mean flow of a jet, which reduce the growth rates of modes predicted

according to a linear stability analysis [25].

Mohseni [89] compared the near-field pressure perturbations from DNS, LNS, and

instability wave solutions to verify the instability wave models. The amplitude of the instability

wave was scaled with the simulation results. Kopiev et al. [23] computed the near-field pressure

fluctuations via the instability wave models and compared with the experiment at a lower

frequency range. The comparison showed that eliminating the amplitude function of the

instability wave will cause the peak of radiation to move upstream.

The parabolized stability equations (PSE), initially developed by Herbert and Bertolotti

[90, 91], takes into account the non-parallelism of the flow compared with LST. The derivation

process includes separating the perturbation quantities into a function varying in the streamwise

direction at a similar rate with the mean flow and a rapidly wave-like part as

𝑝(𝑥,𝑟, 𝜃, 𝑡) = 𝑝(𝑥,𝑟)exp
(
𝑖

ˆ 𝑥

𝛼(𝜉)𝑑𝜉
)

exp(𝑖𝑚𝜃 − 𝑖𝜔𝑡). (1-10)

PSE have been used to analyze the streamwise growth and decay of linear and nonlinear

disturbances in slowly varying shear flows such as boundary layers, jets, and far wakes. Malik

and Chang [92] computed the growth rate of instability wave evolution in the streamwise

direction with PSE for a supersonic jet. Piot et al. [93] and Cheung et al. [80] applied the PSE
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methods to subsonic and supersonic jets. The comparison of spatial growth rate of the

disturbances among the PSE prediction, DNS, and large-eddy simulation (LES) shows good

agreement. The maximum pressure disturbance amplitude is reached near the end of the jet

potential core. The PSE stability approach is very efficient for predicting the spatial development

of jet large-scale instabilities in both subsonic and supersonic case.

Furthermore, the complex amplitude of the instability wave must be determined to complete

the expression of instability waves and investigate their contribution in the near- and far-field

regions. The matching process are always used to determined the amplitude by calibrated with the

database of DNS, LES, or experimental measurement.

One method is an adjoint formulation, which is used to solve the receptivity problem in

boundary layer and shear flows. Ryu et al. [2, 49, 94] applied the method to estimate amplitudes

for the instability waves based on bi-orthogonality between the solution of the adjoint linearized

Euler equations (LEE) and eigenfunctions of adjoint PSE. The amplitudes are computed with two

projection of DNS results for a subsonic jet (𝑀 𝑗 = 0.9) and LES results for supersonic jets (𝑀 𝑗 =

1.95). The contribution of instability waves in the noise generation are well evaluated with this

method. However, this method shows limited success for turbulent flow.

Two alternative methods uses least square. One is kinetic energy matching [2, 94], and the

other is modulus and phase matching [95, 49, 82]. For both approaches, the cost function needs to

be determined between the simulation/experiment and the LST/PSE results. The absolute value of

amplitude can be obtained by minimizing the cost function of kinetic energy. During this process,

the assumption that the kinetic energy in a turbulent jet is dominant by large-scale turbulent

structures, which can be well represented by instability waves are valid. Therefore, the amplitudes

of instability waves can be calibrated with kinetic energy matching.

An appropriate flow region needs to determine the modulus and phase of the amplitudes of

instability wave. The flow region in the radial direction can be divided into linear and non-linear

regimes [95] as shown in the Fig. 1-8. The amplitude of eigenfunction of 𝑚 = 0 along the radial

direction is shown, where the different regimes are labeled. It can be seen that the
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linear-hydrodynamic regime is dominated by the instability wave. Suzuki and Colonius [95]

placed a conical array in this region and effectively extracted the instability waves. They showed

that a phased-microphone array placed in this region is capable of detecting instability waves

based on the beam-forming theory. Ryu et al. [94, 2, 49] applied this method by using the results

from PSE and the results of LES orr DNS for both subsonic and supersonic jets and good

agreement was achieved when substituting the results to compute the far-field noise.

Figure 1-8. The flow regions of a round jet in the radial direction. The solid line depicts the
time-averaged pressure fluctuation of 𝑚 = 0 at 𝑥/𝐷 = 4 from DNS, and the dotted line
denotes the corresponding eigenfunction calculated from a LST.

The results of least-square matching method can be improved by extracting the large-scale

turbulent structures from a numerical simulation or experimental result. The POD, dynamical

mode decomposition (DMD), resolvent analysis, momentum potential thoery (MPT) [96] and

wavelet transforms [97] are usually used to extract the most energetic part to represent the

large-scale turbulent structures. Gudmundsson and Colonius [4] used PSE to compute pressure

fluctuations associated with large-scale structures and filtered out the uncorrelated fluctuation via

POD. A better agreement between theory and experimental data are achieved. Sinha [98] applied

the POD to LES results and extracted the most energetic coherent component and matched with

the PSE to compute the amplitudes. It shows that the acoustic field is well predicted via the

Kirchhoff method [98], where the data on the Kirchhoff surface is the results of PSE.

34



Even though the instability wave models are generally regarded as a local model, they can

be extended to a global solution and compute the far-field noise. Tam and Morris [24] explained

the boundness of the instability wave solution obtained from multiple-scales analysis and

computed the noise radiated from the large-scale turbulent structures in a plane turbulent shear

layer. Tam and Burton [17, 16] extended this method by separating the flow-field into the inner

and outer region, applied the matched asymptotic expansion to combine the inner and outer

solutions, and constructed the far-field noise by using the stationary phase approximation method

to the outer solution. The far-field pressure was predicted and validated for a round jet at 𝑀 𝑗 = 2.

Dahl [99] adopted this method for supersonic coaxial jets, and the directivity pattern agreed well

with the measurements. The effect of jet heating was taken into account through a modification of

an amplitude function of the instability wave. Dahl’s results [99] were validated for the single

frequency and azimuthl modes of instability wave. However, the far-field sound from large-scale

turbulent structures is a broadband spectrum, which means the effects of all instability waves

must be included. Tam and Chen [18] solved this problems and quantified the effects of the whole

instability wave by applying a stochastic turbulence theory [100]. This dissertation provides a

review of the solution in Chapter 2 with an accompanying numerical implementation.

1.4.4 Wave-Packet Method

The wave-packet method is a semi-empirical approach [69] inspired by the instability wave

theory, which can be used to connect the turbulent structures and radiated noise. One approach is

to use a wave-packet ansatz of Papamoschou [101, 102] in a fixed surface at the flow region, as

𝑝𝑤 (𝑟0, 𝑥, 𝜃, 𝑡;𝜔,𝑚) = 𝑝0(𝑥)exp(𝑖𝑚𝜃 − 𝑖𝜔𝑡), (1-11)

where 𝑝0 = 𝐴(𝑥)exp(𝑖𝛼𝑥) is the shape function with 𝐴(𝑥) an amplification-decay envelope

containing several unknown parameters that represents the axial coherence length scale, and 𝛼 is

the instability wavenumber.

The radiated far-field pressure can then be computed via the wave equation with the

superposition of a self-similar wave-packet at spectrum of frequencies as the sound sources. The
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parameters of the wave-packet ansatz are found via calibration with measurement data.

Wavepacket results show that the broadening of the spectrum with increasing polar angle can be

explained on the basis of a single noise source (wave-packet). On the other hand, the filtered

far-field results are also used to determine the parameters of wave packets. Knig et al. [103]

applied wavelet transform to the far-field acoustic data and obtained the noise from large-scale

turbulent structures and then obtain the parameters of wave packets.

Another way is to express the near-field pressure statistics by a wave-packet model from

Reba [104, 105], as

𝑅𝑚 (𝑥, 𝑥′,𝜔) ≡
ˆ ∞

−∞
< 𝑝∗𝑚 (𝑟1, 𝑡)𝑝𝑚 (𝑟2, 𝑡 + 𝜏) > exp(𝑖𝜔𝜏)𝑑𝜏

= 𝐴(𝑥/𝐿1)exp[−(Δ𝑥/𝐿2)2]exp(𝑖𝑘 (𝑥)Δ𝑥), (1-12)

where 𝑥 = (𝑥 + 𝑥′)/2 is the mean microphone location, Δ𝑥 = (𝑥− 𝑥′)/2 is the microphone

half-separation, length scale 𝐿1 characterizes the streamwise extent of the source region, and 𝐿2

characterizes the streamwise correlation scale. The far-field pressure distribution is computed via

a Green’s function of the wave equation. The unknown parameters are obtained by comparing

with the statistics of near-field measurements.

1.5 Stability Analysis of Boundary Layer Flows

There are different stable and unstable modes with corresponding effects within boundary

layer flows [106, 107, 108]. The properties and applications of the typical stability modes and the

effects of nose bluntness and wall temperature on the stability and transition are reviewed.

1.5.1 Stability Modes

Mack modes, that include the first and the second mode, are most discussed among the

unstable and stable modes within boundary layer flows. The first mode (Mack’s first mode),

which is an extension of the Tollmien-Schlichting (TS) instability wave present in incompressible

flows [45]. This wave is most amplified when it is an oblique wave at supersonic Mach numbers

and represents viscous instability at low Mach numbers [45]. Additionally, there exist an infinite
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number of modes when the wave speed is supersonic within boundary layer flows (Mode I, Mode

II, etc. [107]), and the second mode (Mack’s second mode) forms. The second mode is significant

at boundary layer edge Mach numbers (𝑀𝑒) approximately above 4, has growth rates much higher

than the first mode, and is most amplified when the wave angle is zero or is a two-dimensional

wave. In fact, studies also showed that the Mack modes are slightly unstable in different regions

of frequencies [107, 39]. Figure 1-9 shows the distribution of growth rates and phase speeds with

non-dimensional frequency at 𝑀∞ = 7.99 (adopted from Zhong and Ma [107]). It can be seen that

the first- and second modes are continuous with frequency but within different regions. The first

mode are slightly unstable in the range of lower frequencies 0.0485 < 𝜔 < 0.126 or

33.1 < 𝑓 ∗ < 86.1 kHz, and the second mode are unstable in the range of 0.171 < 𝜔 < 0.243 or

116.7 < 𝑓 ∗ < 165.9 kHz. The first mode is responsible for transition when the wall is adiabatic

for freestream Mach number (𝑀∞) up to approximately 7 [109].

(a) Growth rates (b) Phase speeds

Figure 1-9. The distribution of growth rates and phase speeds of different stability modes with
frequency at 𝑀∞ = 7.99.

The stability analysis of the compressible boundary layer has been applied to study the

transition of the boundary layer and the effect of heat exchange on the vehicle surface

[44, 45, 46, 47]. It is believed that the mechanism of transition from laminar to turbulent flow is

consequence of instability of laminar boundary layer [110]. The first and second mode instability

waves play important roles in the transition process [39, 110]. In this dissertation, the effects of

nose bluntness [111, 112, 113, 110, 114, 108] and wall temperature [115, 116, 117, 118, 119] are
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reviewed due to the importance of these two factors in altering the stability properties and the

transition process.

Nose bluntness has been used to mitigate the heat transfer rates and stabilizes hypersonic

boundary layers. For the mean flow-field of the blunt-nosed body, a detached shock (bow shock)

is formed at the leading edge. A strong entropy layer forms across the bow shock. The entropy

layer persists for a long distance before it merges with the developing boundary layer along the

wall in the downstream direction [120].

It is found that the transition Reynolds number is very sensitive to the bluntness ratio of the

body [110]. The instability properties of the axisymmetric flow along sharp and blunt cones of

different nose radii at Mach 8 are studied [113]. This numerical analysis computes first and

second-mode boundary-layer disturbances and covers the regions of small and large bluntness. A

monotonic downstream shift of second-mode critical Reynolds number is found in both regions.

A sudden upstream shift of first-mode critical Reynolds number in the region of large bluntness

could be identified [113].

Transition has been studied experimentally and numerically relative to nose bluntness.

However, the boundary layer transition mechanisms in such geometries are not yet well

understood. There are discrepancies for transition locations (𝑥𝑇 ) between experimental

measurement and numerically prediction. In the experimental measurement, cones with nose radii

ranging from 0.7937 to 38.1 mm, were tested, and transition locations were measured [121].

Several experiments have noted a delay in the onset of transition with increasing nose bluntness.

However, the transition reversal phenomenon was reported, which means the transition point

moves upstream after certain critical values of nose radii [121, 122]. LST studies combined with

an empirical method (𝑒𝑁 ) is used to predict the transition position for such geometries. According

to the results, no reversal phenomenon of transition position based on the prediction from the

second-mode instability waves [111]. In addition, disagreements are found between the transition

locations of LST-predicted and these of experimentally observed. For example, the predicted

transition position from LST is much larger than the experimental measurements at Mach 5.43 for
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nose radii 12.7 mm and 38.1 mm [111]. The value of 𝑥𝑇 is larger than 3.2 m (maximum length for

numerical simulation) from numerical calculations, whereas the transition position is 0.24 m from

experimental measurement with nose radius 38.1 mm [111]. The hypothesis caused the

disagreement between the experimental measurement and numerically prediction are the

experiments were conducted in a noisy tunnel environment, there is a likelihood that the reversal

is caused by some uncontrollable noises with the amplitude large enough that the growths of

disturbances bypass the linear region and force the transition to occur earlier [111].

On the other hand, flight test data about transition positions at different conditions are

summarized [112]. Figure 1-10 shows the value of 𝑥𝑇 at different edge Mach number (𝑀𝑒) with

different nose radii and cone angle based on the results of flight test [112], where the nose

bluntness are different. Therefore, there is no obvious trend from this result. However, it can be

seen that the value of 𝑥𝑇 are less than 0.7 m.

1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 1-10. The transition positions at different 𝑀𝑒 based on the results of flight test.

It is also well known that the linear stability within compressible boundary layer flows is

very sensitive to the wall temperature [116, 119]. The influence of wall temperature on receptivity

and transition depends on several factors, such as the competition between the first- and second-

modes, the position of cooling or heating, and the method of heating or cooling way (local or

global). However, there is no general law governing the effect of wall temperature on the
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transition process [39]. The physical and dynamical processes that affect aerodynamic heating are

yet to be explored. The relevant experimental studies are of great significance for engineering

guidance.

The known effects of uniform temperature of surface can be found from Masad et al. [115],

where the surface cooling can stabilize the first-mode disturbances and destabilizes second-mode

disturbances. It explains that the surface cooling generates the generalized inflection point near

the wall which results in the boundary layer becomes stable with inviscid perturbations. The local

heating/cooling surface shows different effects compared with the uniform heating/cooling.

Polivanov et al. [118] studied the effects of cooling/heating elements with different lengths,

temperature, and positions on the stability of a hypersonic boundary layer via LST and direct

numerical simulation. They found that heating elements increase the growth rate of the first and

second mode around the heating source region and downstream region. The transition positions

are also altered, which moves upstream with heating and delayed with cooling. The results show

that the position of the cooling source should not be too far downstream so that the cooling

elements can be effective on the stability and transition positions. Sidorenko et al. [117] studied

hypersonic boundary layer stability and transition experimentally and numerically for a 7 degree

half-angle cone (𝑀∞ = 6) equipped with a part of wall heating or cooling elements. The results

showed that heating of the surface section accelerates the transition and cooling of the surface

element delays the transition. These results are similar with Polivanov et al. [118]. The results of

numerical simulation also agree with the experimental results.

Additionally, Masad et al. [115] investigated the effects of heat transfer on the spatial

stability of compressible boundary layer. It is found that heat transfer is more effective in

stabilizing or destabilizing flows at low freestream Mach numbers than high freestream Mach

numbers. A sequence of simulations was conducted to study the effects of a cool wall on the

flow-fields with thermal non-equilibrium at different frozen Mach number (𝑀𝑎, flow with

chemical reaction during small amount of time) at freestream conditions [119]. Bitter and

Shepherd [119] fixed the wall temperature at 300 K and raised the free-stream temperature from
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70 K to 2000 K. It is assumed that raising the freestream temperature is nearly equivalent to

cooling the wall. The results are presented in Fig. 1-11 in terms of 𝑇∗
𝑤/𝑇∗

𝑒 and showed a

monotonic increase in growth rate of the second mode as 𝑇∗
𝑤/𝑇∗

𝑒 become smaller. For the first

mode, the growth rate decrease as 𝑇∗
𝑤/𝑇∗

𝑒 decrease except when 𝑇∗
𝑤/𝑇∗

𝑒 is less than 1, there is no

instability.

Figure 1-11. Effect of wall cooling on the maximum spatial growth rates of the first (dashed lines)
and second (solid lines) modes along 𝑀𝑎 for Re = 1500, 𝑇∗

𝑤 = 300 K, 𝑇∗
𝑒 = 70−2000

K, 𝑝∗𝑒 = 10 kPa.

1.5.2 Cross-Power Spectral Density of Pressure Fluctuations

A turbulent boundary layer (TBL) is characterized by the development of large-scale

structures from instabilities and turbulent eddies ranging through the entire cascade. High-speed

boundary layers are unstable and instability waves form. The wall pressure fluctuations induced

by instability waves and turbulent flow are broadband in nature. Thus, the wall pressure statistics

are difficult to calculate, predict, or measure [34] as they are an imprint of instability waves or

turbulence at the wall. The fluctuating pressures at the wall are usually described via statistics as

the turbulent flow is random in nature. A large number of empirical and theoretical models

[35, 36, 37, 38] have been developed to describe these random wall-pressure fluctuations, and the

parameters of these models are fitted with experimental measurement.
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One of the models for power spectral density (PSD) of the TBL wall pressure fluctuations

was introduced by Corcos [37]. Corcos [37] developed a statistical empirical model that fit a large

number of measurements of the pressure field from an attached flow, and provided the

cross-power spectral density (CSD) of the wall pressure fluctuations. The expression of CSD is in

a in a separable form along the spanwise and streamwise directions as

𝑆(𝜉𝑥 , 𝜉𝑦,𝜔) = 𝑆ref(𝜔) 𝑓1
(
𝜔|𝜉𝑥 |
𝑈𝑐

)
𝑓2

(
𝜔 |𝜉𝑦 |
𝑈𝑐

)
𝑒

−𝑖𝜔 |𝜉𝑥 |
𝑈𝑐 , (1-13)

where 𝑆ref(𝜔) is the reference auto-power spectrum, 𝜉𝑥 and 𝜉𝑦 are the spatial separations in the

streamwise and spanwise directions of the plate, respectively,𝑈𝑐 is the convective speed of

turbulence within the TBL, and functions 𝑓1 and 𝑓2 represents the particular form of the

cross-spectral density 𝑆(𝜉𝑥 ,0,𝜔) and 𝑆(0, 𝜉𝑦,𝜔).

In practice, functions 𝑓1 and 𝑓2 are frequently approximated by exponential decay

functions, such as,

𝑆(𝜉𝑥 , 𝜉𝑦,𝜔) = 𝑆ref(𝜔)𝑒
−𝛼𝑥 𝜔 |𝜉𝑥 |

𝑈𝑐 𝑒
−𝛼𝑦𝜔 |𝜉𝑦 |

𝑈𝑐 𝑒
−𝑖𝜔 |𝜉𝑥 |

𝑈𝑐 , (1-14)

where 𝛼𝑥 and 𝛼𝑦 are empirical parameters that denote the loss of coherence in the longitudinal and

transverse direction, and are chosen to yield the best agreement with the experiment or flight-test.

The Corcos [37] model is well suited to describe the statistics of wall-pressure fluctuations

induced by high-speed subsonic flows. Palumbo [123] has also applied the Corcos [37] model and

others to high-speed supersonic flows using flight-test data, where it was shown that wind-tunnel

measurements and calibrated coefficients did not match flight-test data. Graham [124]

summarized different forms of empirical models for surface correlations, such as the Efimtsov

model [38], the Ffowcs Williams model [36], or the Chase models [35]. These empirical models

and corresponding experiments indicate a need for more first-principle based prediction

approaches, as often the empirical models must be re-calibrated for particular flight-vehicles.
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1.6 Flow Control via Plasma Actuators

The history of flow control over the 20th century has been well summarized by el Hak

[125]. Flow control involves passive or active devices to change boundary layer or free-shear

layer flows. The objectives of flow control are to delay or advance transition, to suppress or

enhance turbulence, and to prevent or provoke separation. The final results achieved include drag

reduction, lift enhancement, mixing augmentation, and flow-induced noise suppression, etc.

[125].

It is well known that mixing and combustion, heat transfer, noise production and emission

(pressure fluctuations), and wall-shear (frictional drag) are essentially determined by coherent

(large-scale) turbulent structures [52]. Therefore, it is helpful to manipulate these process via

altering the coherence of large-scale turbulent structures. Multiple methods to achieve this

include but are not limited to fluid injection [57], filament or particulate injection [126], speakers,

or plasma actuation. For example, Prasad and Morris [27] found the use of a single fluid injector

helps break up the large-scale structures of the flows and hence reduce the jet noise based on the

direct cross-correlations of the near-field data with the far-field microphone signals.

Additionally, the use of plasma-based devices has gained popularity in recent years, and

attracted more and more attention [127]. The advantages of plasma actuators include fast time

response, high frequency bandwidth, low mass, the absence of complicated mechanical or

pneumatic systems, and adaption to different applications [127, 128]. Several reviews about

plasma based flow control are available and in detail [127, 129, 130, 131].

The mechanism of plasma flow control [127, 132, 133] includes three main aspects. The

first one is rapid gas heating of the flow achieved by volumetric heating (dilatation effect), as

shown in Fig. 1-12(a). The contours of Joule heating distribution are shown. It can be seen that

the high heat intensity is close to the electrodes and sustained to a distance over 1 cm above the

plate. The second one is electro-hydrodynamic (EHD) forcing by imparting directed momentum

to the bulk flow using electrostatic force generated by interaction of charge particles with an

external electric field. The third one is magneto-hydrodynamic (MHD) forcing relying on the
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Lorentz force on the bulk flow owing to the interaction of electrical currents with externally

imposed magnetic field. Several experiments have been used to explained the mechanism and

effects of plasma-based control on the flow-field [134, 135, 136, 137, 138, 139, 140]. For

example, the shock angle in front of the body and the temperature distribution along the body

surface can both be changed [129]. Figure 1-12(b) shows the image of the flow-field over

flat-plate at 𝑀∞ = 2 modified by the plasma actuator (V𝐻𝑉 = −1.57 kV and I𝐻𝑉 = 74 mA) [129],

where the solid line represents the shock wave shape of the base flow-field. It can be seen that the

shock angle increases with the electrodes in the leading edge of flat-plate.

(a) Volumetric heating (b) Flow-field with actuation

Figure 1-12. The contours of Joule heating distribution of flat-plate flow with a DBD plasma
actuator and effects of plasma actuators on a flat-plate flow.

Furthermore, numerical methods are also applied to investigate the effects of plasma

actuator. The effects of electromagnetic force on the aerospace vehicles introduced by the plasma

actuator forms an interdisciplinary phenomenon. Therefore, in order to simulate this problem, the

NS, energy, and Maxwell equations in the time domain must be integrated on a common frame of

reference [141]. Additionally, a high-fidelity three-dimensional viscous methodology is required

because the flow-fields of interest are typically characterized by transition and turbulence. This

high-fidelity flow simulation technique is computationally intensive [128]. On the other hand, the

magnetic Reynolds number is much less than unity in most aerospace applications [141].

Therefore, the fully coupled NS, energy, and Maxwell equations can be separated into two

coupled groups under this conditions, the aerodynamic and electrodynamic formulation, by

representing the Lorentz force and/or Joule heating as source terms. This is loosely coupled
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first-principles approach, which can reduce computational complexity. Furthermore, the

plasma-induced body force or heating source can be represented using a phenomenological model

[134, 135, 142, 137, 138] as a right hand side source in the equations of motions, and are

implemented in CFD solvers. This method is much simpler without solving Maxwell equations.

For examples, Eqns. (1-15) and (1-16) are examples of the phenomenological models of plasma

actuator to represent the body force with exponential distribution.

𝑓𝑥 =
𝐹𝑥,0√︃

𝐹2
𝑥,0 +𝐹

2
𝑦,0

exp

(
−

(
(𝑥− 𝑥0) − (𝑦− 𝑦0)

𝑦− 𝑦0 + 𝑦𝑏

)2
− 𝛽𝑥 (𝑦− 𝑦0)2

)
, (1-15)

and

𝑓𝑦 =
𝐹𝑦,0√︃

𝐹2
𝑥,0 +𝐹

2
𝑦,0

exp

(
−

(
(𝑥− 𝑥0)
𝑦− 𝑦0 + 𝑦𝑏

)2
− 𝛽𝑦 (𝑦− 𝑦0)2

)
, (1-16)

where 𝐹𝑥,0, 𝐹𝑦,0, 𝛽𝑥 , 𝛽𝑦 and 𝑦𝑏 are constants, and 𝑥0 and 𝑦0 are the edge location of the electrodes.

This simplified method provides the primary control mechanism introduced by the actuator

which consists of momentum or/and heating effects. Recent computations, comparing the

phenomenological model with a first-principles approach, demonstrates that the same qualitative

flow control behavior is captured with both methodologies.

The placement of the plasma actuator on the surface has a significant effect on the control

of the flow-field [143, 139, 144]. For example, Updike et al. [144] demonstrated that a relatively

large-scale MHD device applied at the corner could eliminate separation completely if a

sufficiently strong accelerating force were applied. The dielectric barrier discharge (DBD) plasma

actuator is most effective when applied at bifurcation points of the flow-field and successful

applications are noted at the point of flow separation on the airfoil or near the dynamic stall of

wings [132]. In addition, a phase array plasma actuators is used to alter the instability modes of

jet, flat plate, and cone experimentally [139, 136, 145]. The design of plasma actuators based on

the linear stability calculations to identify the range of unstable frequencies and wave angles, as

well as the location of the lower neutral growth branch [136] so that the input power is lower.
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1.7 Structure of the Dissertation

1.7.1 Chapter 2: Methodology

This chapter describes the instability wave methods used for noise predictions of free jets

and pressure perturbation computations of boundary layer flows and other methods for analysis,

such as POD and KS methods. For jet flows, the instability wave equations are derived from the

compressible and inviscid equations of motions. The solutions in the inner and outer region are

solved and combined with the matched asymptotic expansion method. The POD method is

reviewed to refine the calibration process of amplitudes of instability wave solutions. The

calibration method is based on the least-square principle. The KS method used to compute

far-field noise is reviewed. For boundary layer flows, the governing equations of instability waves

are derived from the viscous NS and energy equations. The pressure fluctuations from instability

waves are constructed. The phenomenological plasma actuator model for flow control is shown.

1.7.2 Chapter 3: Jet Noise Prediction and Discussion

This chapter shows predictions from two separate jet flows: 1) a round convergent nozzle

operating at under-expanded conditions, and 2) a bi-conic nozzle operating at over-expanded

conditions. The flow-field, stability analysis, and correlation/coherence are discussed for each

case. In particular, for case 1), the comparisons of shape functions in the near-field between the

LES results and instability wave solutions are presented. The far-field SPL at different St for each

azimuthal modes are compared among instability wave models prediction and FWH. For case 2),

the far-field noise via the KS method is computed and validated. The SPL at near- and far-field

noise from instability wave models are shown, where the amplitudes of instability waves are

calibrated with the KS results.

1.7.3 Chapter 4: Cone Flow and Stability Calculations of Boundary Layers

This chapter shows the results that we obtained for flows over cone configurations. The

flow-field via SU2 and stability properties of cone flow are computed and validated via CFD and

the linear instability prediction code. The spatial coherence of pressure fluctuations from

instability waves are shown. The parametric study is considered, where the different freestream
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Mach numbers and nose radii are selected based on the base conditions. The flow structures with

phenomenonlogical plasma actuator model are shown and validated for a test case (ramp flow).

Finally, the effects of the plasma actuator on the flow-field, stability properties, and spatial

coherence are shown and compared.

1.7.4 Chapter 5: Summary and Conclusion

The final chapter presents a summary of the research effort. Major conclusions and

outcomes are shown. Future research is proposed.
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CHAPTER 2
METHODOLOGY

This chapter presents the analysis techniques for jet and boundary layer flows. The common

method is the instability wave theory, which is used to predict the jet noise and the excitation to

induce vibration within boundary layer flows. The similarity includes linearity the governing

equations and expressing the perturbation fields with instability wave formula under different

coordinate systems. However, the instability modes within jet flows is inviscid, whereas the

viscous stability modes are investigated due to the high speed of boundary layer flows.

2.1 Methodology for Jet Flows

2.1.1 Instability Wave Theory

2.1.1.1 Governing Equations

The small perturbation equations that govern the instability waves for jet flows are derived

from the linearized compressible, inviscid equations of motion in dimensionless form. The

length, velocity, time, density, and pressure scales are the radius of the nozzle 𝑅 𝑗 , 𝑢 𝑗 (jet

velocity), 𝑅 𝑗/𝑢 𝑗 , the jet fully-expanded density at the nozzle exit 𝜌 𝑗 , and 𝜌 𝑗𝑢2
𝑗
, respectively. The

governing equations are

𝜕𝜌′

𝜕𝑡
+𝑽 · ∇𝜌′+𝑽′ · ∇𝜌̄ + 𝜌̄∇ ·𝑽′+ 𝜌′∇ ·𝑽 = 0, (2-1)

𝜕𝑽′

𝜕𝑡
+𝑽 · ∇𝑽′+𝑽′ · ∇𝑽 + 𝜌

′

𝜌̄
(𝑉̄∇ ·𝑽) = −1

𝜌̄
∇𝑝′, (2-2)

and
𝜕𝑝′

𝜕𝑡
+𝑽 · ∇𝑝′+𝛾𝑝∇ ·𝑽′+𝛾𝑝′∇ ·𝑽 = 0, (2-3)

where the prime denotes the perturbation or a small-amplitude instability wave, 𝑽 = (𝑢̄, 𝑣̄, 𝑤̄) is

the mean velocity vector, and 𝑽′ = (𝑢′, 𝑣′,𝑤′) is the velocity perturbation vector. Equation (2-1) is

the linearized dimensionless continuity equation, Eqn. (2-2) is the linearized dimensionless

momentum equation, and Eqn. (2-3) is the linearized dimensionless equation in terms of pressure

combined the state and energy equations, and including the thermodynamic relation ℎ = 𝑐𝑝𝑇 ,

where 𝑐𝑝 is the specific heat, ℎ is the enthalpy, and 𝑇 is temperature.
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The cylindrical coordinate system, (𝑥,𝑟, 𝜃), with its origin at the center of the nozzle exit is

used. The term exp(𝑖𝑚𝜃 − 𝑖𝜔𝑡) is separated from the solution because of the symmetry of the

mean flow (azimuthal harmonics within round jets), and the assumption that the instability waves

are generated by an external harmonic in time [23]. Therefore, all the physical variables are

represented in a form such as 𝑝′(𝑥,𝑟, 𝜃, 𝑡) = Re[𝑝(𝑥,𝑟)exp(𝑖𝑚𝜃 − 𝑖𝜔𝑡)], where Re represents the

real part. Equations (2-1) through (2-3) are now

−𝑖𝜔𝜌 + 𝑣̄ 𝜕𝜌
𝜕𝑟

+ 𝑢̄ 𝜕𝜌
𝜕𝑥

+ 𝑣 𝜕𝜌̄
𝜕𝑟

+𝑢 𝜕𝜌̄
𝜕𝑥

+ 𝜌̄
(
1
𝑟

𝜕𝑣𝑟

𝜕𝑟
+ 𝑖𝑚
𝑟
𝑤 + 𝜕𝑢

𝜕𝑥

)
+ 𝜌

(
1
𝑟

𝜕𝑣̄𝑟

𝜕𝑟
+ 𝜕𝑢̄
𝜕𝑥

)
= 0, (2-4)

−𝑖𝜔𝑢 + 𝑣̄ 𝜕𝑢
𝜕𝑟

+ 𝑢̄ 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢̄
𝜕𝑟

+𝑢 𝜕𝑢̄
𝜕𝑥

= −1
𝜌̄

𝜕𝑝

𝜕𝑥
, (2-5)

−𝑖𝜔𝑣 + 𝑣̄ 𝜕𝑣
𝜕𝑟

+ 𝑢̄ 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣̄
𝜕𝑟

+𝑢 𝜕𝑣̄
𝜕𝑥

= −1
𝜌̄

𝜕𝑝

𝜕𝑟
, (2-6)

−𝑖𝜔𝑤 + 𝑣̄ 𝜕𝑤
𝜕𝑟

+ 𝑢̄ 𝜕𝑤
𝜕𝑥

+2
𝑣̄𝑤

𝑟
= − 1

𝑟2
𝑖𝑚

𝜌̄
𝑝, (2-7)

and

−𝑖𝜔𝑝 + 𝑣̄ 𝜕𝑝
𝜕𝑟

+ 𝑢̄ 𝜕𝑝
𝜕𝑧

+𝛾𝑝
(
1
𝑟

𝜕𝑣𝑟

𝜕𝑟
+ 𝑖𝑚
𝑟
𝑤 + 𝜕𝑢

𝜕𝑥

)
+𝛾𝑝

(
1
𝑟

𝜕𝑣̄𝑟

𝜕𝑟
+ 𝜕𝑢̄
𝜕𝑥

)
= 0. (2-8)

2.1.1.2 Instability Wave Solution

Inner Solution

Traditionally, Eqns. (2-4) to (2-8) are solved via multiple scales analysis. Tam and Morris

[100] showed that the multiple scales analysis is not valid when the observer computational

region is far from the shear layer. Tam and Burton [16, 17] separated the jet flow into an inner and

outer region to solve Eqns. (2-4) to (2-8). The jet flow region is shown in Fig. 2-1.

The corresponding mean flow is represented as

𝑽 = (𝑢̄(𝑥,𝑟), 𝜖 𝑣̄(𝑠,𝑟),0), 𝑟 < 𝑟𝑚 (2-9)
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Figure 2-1. Jet flow region.

and

𝑽 = (0, 𝜖 𝑣̄∞/𝑟,0), 𝑟 ⩾ 𝑟𝑚, (2-10)

where 𝑟𝑚 is the boundary between the inner and outer region and 𝜖 is the rate of spreading of the

mixing layer, which is a small parameter.

The solution of Eqns. (2-4) to (2-8) can be expressed as an asymptotic series of waves

traveling through a non-uniform medium, such as

𝑝(𝑠,𝑟) =
∞∑︁
𝑛=0

𝛿𝑛 (𝜖)𝑝𝑛 (𝑠,𝑟)exp(𝜙(𝑠)), (2-11)

where 𝛿𝑛 (𝜖) is the gauge function of the asymptotic expansion, the subscript 𝑛 is the order of the

flow properties, 𝑝𝑛 (𝑠,𝑟) is the shape function, and 𝜙(𝑠) = 𝑖
´ 𝑠

0 𝛼(𝑠)𝑑𝑠, where 𝛼 is the local

wavenumber.

The multiple scales analysis is applied in the inner region, and a slow variable 𝑠 = 𝜖𝑥 is

introduced. Eqns. (2-4) through (2-8) can be simplified into an ordinary differential equation

(ODE) by using 𝜌,𝑢, 𝑣,𝑤, and 𝑝 in the form of Eqn. (2-11), combining the mean flow in the inner

region (Eqn. (2-9)), transforming the coordinate system (𝑠,𝑟), eliminating the term of exp(𝜙(𝑠)),

rearranging equations according to the order 𝑛, and eliminating other dependent variables. The

final ODE in terms of 𝑝𝑛 is

𝜕2𝑝𝑛

𝜕𝑟2 +
[
1
𝑟
+ 2
𝜔̄

𝜕𝑢̄

𝜕𝑟
− 1
𝜌̄

𝜕 𝜌̄

𝜕𝑟

]
𝜕𝑝𝑛

𝜕𝑟
+

[
𝜌̄𝑀2

𝑗 𝜔̄
2 − 𝑚

2

𝑟2 −𝛼2
]
𝑝𝑛 = 𝐺𝑛 (𝑟, 𝑠), (2-12)
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where 𝜔̄ = 𝜔−𝛼𝑢̄. The term 𝐺𝑛 at the right side is only related to the lower order terms. When 𝑛

= 0, the term 𝐺𝑛 at the right side equals zero, namely, the equation becomes homogeneous and is

called the Rayleigh equation, which is a simple differential equation in terms of the pressure

perturbation.

Two types of stability analysis, temporal stability and spatial stability, can be formed by

setting 𝛼 as a real number or 𝜔 as a real number [54]. We focus on the spatial stability analysis.

In this analysis, 𝜔 is a real number and fixed, the eigenvalue is 𝛼 = 𝛼𝑟 + 𝑖𝛼𝑖, and the corresponding

eigenfunction is 𝑝. The real part of the complex wave number, 𝛼𝑟 , represents the number of axial

oscillations per unit of space (axial wave number), and the phase speed is obtained from

𝑢𝑝=𝜔𝛼−1
𝑟 =𝜋𝑆𝑡𝛼−1

𝑟 [25]. The phase speed provides a measure of the convection speed of the

instability wave. The growth rate is given by the negative imaginary part of the complex

wavenumber ,-𝛼𝑖. If the growth rate is positive, then the instability wave is amplified, whereas,

the instability wave becomes damped if the growth rate is negative. In general, the growth rate of

the instability wave will decrease as the jet shear layer becomes thicker, and further downstream,

it becomes damped.

The solution of the Rayleigh equation can be expressed via the sum of two independent

linear solutions, 𝜁 𝑝1 (𝑠,𝑟) and 𝜁 𝑝2 (𝑠,𝑟), as

𝑝0(𝑠,𝑟) = 𝐴0(𝑠)𝜁 𝑝1 (𝑠,𝑟) +𝐵0(𝑠)𝜁 𝑝2 (𝑠,𝑟), (2-13)

where 𝐴0(𝑠) and 𝐵0(𝑠) are the amplitude functions varying in the streamwise direction. When 𝑟

is close to 𝑟𝑚, the mean velocity is approximately zero. Thus, it requires 𝜁 𝑝1 (𝑠,𝑟) → 𝐻
(1)
𝑚 (𝑖𝜆𝑟).

Here, 𝐻 (1)
𝑚 (𝑖𝜆𝑟) is the 𝑚th order of the first kind of the Hankel function and

𝜆(𝛼) = (𝛼2 − 𝜌̄∞𝑀2
𝑗
𝜔2)1/2. The boundary condition for the jet centerline requires the solution to

be finite as 𝑟 → 0. The amplitude functions will be determined later via the method of matched

asymptotic expansions after finding the outer solution.
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Outer Solution

In the outer region, multiple scales analysis is not valid because the perturbations have the

same scale in each direction due to the assumption of zero mean velocity. An outer variable,

𝑟 = 𝜖𝑟, is selected to ensure the same scale is obtained with the variable, 𝑠. We repeat the

procedure for solving the inner solution except combine the mean flow in the outer region (Eqn.

(2-10)), and perform the Fourier transform on the variable 𝑠. The final equation is

[
1− 𝜖4 𝜌̄∞𝑀

2
𝑗

𝑣̄2
∞
𝑟2

]
𝜕2𝑢̃

𝜕𝑟2 +
[
1
𝑟
+ 𝑖𝜖2𝜌̄∞𝑀2

𝑗 𝜔̄𝑘
𝑣̄∞
𝑟

+ 𝜖4 𝜌̄∞𝑀
2
𝑗

𝑣̄2
∞
𝑟3

]
𝜕𝑢̃

𝜕𝑟

+
[
𝜌̄∞𝑀

2
𝑗

𝜔̄2
∞
𝜖2 − 𝑚

2

𝑟2 − 𝑘2
]
𝑢̃ = 0, (2-14)

where 𝑢̃ is the Fourier transform of 𝑢. Based on the relations between the dependent variables and

inverse Fourier transform [18], the solution in terms of pressure at the outer region is

𝑝(𝑟, 𝑠) =
∞̂

−∞

𝑔(𝑘, 𝜖)
[
1+ 𝑖 𝜖

3

𝜔̄𝑘

𝑣̄∞
𝑟

𝜕

𝜕𝑟

] { (
𝑟2 − 𝜖4 𝜌̄2

∞𝑀
2𝜔2𝑣̄2

∞

)−1/2𝑖𝜖2 𝜌̄∞𝑀2
𝑗
𝜔̄𝑘 𝑣̄∞

×𝐻1
𝑞

(
1
𝑖𝜖
(𝜖2𝑘2 − 𝜌̄∞𝑀2

𝑗 𝜔̄
2
𝑘 )

1/2
) (
𝑟2 − 𝜖4 𝜌̄2

∞𝑀
2
𝑗 𝑣̄

2
∞

) }
𝑒𝑖𝑘𝑠𝑑𝑘, (2-15)

where 𝑔(𝑘, 𝜖) = 1
2𝜋

∞́

−∞
𝐴̃(𝑠)𝑒

´ 𝑥
0 𝜙(𝑥)𝑑𝑥−𝑖𝑘𝑠𝑑𝑘 and 𝐴̃(𝑠) is the amplitude function.

Matched Asymptotic Expansion

Based on the above analysis, there are three unknown amplitude functions in the inner and

outer solutions. The method of matched asymptotic expansions is applied [99, 17] to find the

relation between the amplitude functions. Van Dyke’s principle [99] to match asymptotic

expansions is used. Firstly, there is an overlapping region where the inner and outer solution are

both valid. We can introduce an intermediate variables 𝑟 = 𝑟𝜖1/𝑁 (𝑁 is a large positive number) in

the overlapping region. Based on Van Dyke’s principle, the limit of expansion of the inner

solution and outer solution in terms of the intermediate variables should be equal [99].
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The intermediate limit of the outer solution is obtained by letting 𝜂 = 𝜖 𝑘 , transforming Eqn.

(2-15) from the (𝑠,𝑟) to the (𝑠,𝑟) coordinates and asymptotically evaluating the transforming

equation. The expression is

𝑝𝑜 (𝑠,𝑟) ∼ 𝑒𝑖𝜙(𝑠)𝜖
{
𝐴̃0(𝑠) (1− 𝜖 ln𝜖 𝜌̄∞𝑀2

𝑗 𝜔̄∞𝑣̄∞)𝐻 (1)
𝑚 (𝑖𝜆(𝛼)𝜖−1/𝑁𝑟)

+ 𝜖
[
1
2
𝜋𝛿𝑛0 𝜌̄∞𝑀

2
𝑗 𝜔̄∞𝑣̄∞ 𝐴̃0 + 𝐴̃1 +𝐸 (𝜖−1/𝑁𝑟)

+𝐷 (𝜖−1/𝑁𝑟) 𝜕

𝜕 (𝜖−1/𝑁𝑟)
𝐻

(1)
𝑚 (𝑖𝜆(𝛼)𝜖−1/𝑁𝑟)

]}
+O(𝜖2ln𝜖), (2-16)

where 𝐴̃0(𝑠) is the first term of the asymptotic expansion of 𝐴̃(𝑠) in the outer solution, and 𝐸 and

𝐷 are functions in terms of intermediate variables (see [99]).

Similarly, the intermediate limit of the inner solution is obtained by transforming Eqn.

(2-18) to an intermediate coordinate. With the relation 𝑟 fixed and 𝜖 closing to zero, the relation

𝜁
𝑝

1 (𝑠,𝑟𝜖
−1/𝑁 ) → 𝐻

(1)
𝑚 (𝑖𝜆𝑟𝜖−1/𝑁 ) and 𝜁 𝑝2 (𝑟𝜖

−1/𝑁 , 𝑠) → 𝐻
(2)
𝑚 (𝑖𝜆𝑟𝜖−1/𝑁 ) can be obtained.

Therefore, the intermediate limit of inner solution (Eqn. (2-18)) is expressed as

𝑝𝑖0(𝑠,𝑟) ∼ 𝑒
𝑖𝜙(𝑠)/𝜖

[
𝐴0(𝑠)𝐻 (1)

𝑛 (𝑖𝜆(𝛼)𝜖−1/𝑁𝑟) +𝐵0(𝑠)𝐻 (2)
𝑛 (𝑖𝜆(𝛼)𝜖−1/𝑁𝑟)

]
+O(𝜖𝑙𝑛(𝜖)), (2-17)

Hence, by comparing the intermediate limit of the inner and outer solution, we can see that

𝐴̃0(𝑠) = 𝐴0(𝑠) and 𝐵0(𝑠) = 0.

Therefore, only one unknown parameter is retained. Furthermore, if higher order are

matched, 𝐴0(𝑠) = 𝐴̂0 exp [−𝛽(𝑠)] can be obtained, where 𝛽(𝑠) =
𝑠́

0
𝐼2/𝐼1𝑑𝑠 is the non-parallel flow

correction factor, 𝐼1 and 𝐼2 are two complex integral terms, and 𝐴̂0 is the amplitude of the

instability wave at the nozzle exit plane.

To summarize, the inner solution and outer solution of zeroth order, in terms of pressure 𝑝,

at the given radial frequency and azimuthal mode number are
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𝑝inner
0 (𝑥,𝑟, 𝜃, 𝑡;𝜔,𝑚) = 𝐴0(𝑥;𝜔,𝑚)𝜁 𝑝1 (𝑟, 𝑥;𝜔,𝑚) exp

[
𝑖

ˆ 𝑥

0
𝛼(𝑥;𝜔,𝑚)𝑑𝑥 +𝑚𝜃 −𝜔𝑡 + (𝜋/2)

]
,

(2-18)

𝑝outer
0 (𝑥,𝑟, 𝜃, 𝑡;𝜔,𝑚) =

∞̂

−∞

𝐴̂0(𝜔,𝑚)𝑔̂(𝜂;𝜔,𝑚)𝐻 (1)
𝑚 [𝑖𝜆(𝜂)𝑟] exp {𝑖[𝜂𝑥 +𝑚𝜃 −𝜔𝑡 + (𝜋/2)]}𝑑𝜂,

(2-19)

and

𝑔̂(𝜂;𝜔,𝑚) = 1
2𝜋

∞̂

−∞

exp
{[
𝑖

ˆ 𝑥

0
𝛼(𝑥;𝜔,𝑚)𝑑𝑥−𝜂𝑥

]
− 𝛽(𝑥;𝜔,𝑚)

}
𝑑𝑥, (2-20)

where 𝑔̂(𝜂;𝜔,𝑚) is the wavenumber spectrum.

Formation of the Stochastic Instability Wave

In a high Reynolds number fully turbulent supersonic jet, there is a wide spectrum of

instability waves. To be able to predict the supersonic jet noise, the entire instability wave

spectrum must be considered [18]. Therefore, the stochastic theory is applied to instability wave

theory to model the effect of all instability waves. The model contains an unknown initial wave

amplitude 𝐴̂0(𝜔,𝑚) from the previous section. It is set as a stochastic random function to

represent the random character of large-scale turbulent structures. The normalized amplitude

𝑎(𝜔,𝑚) of 𝐴̂0(𝜔,𝑚) is defined as

𝐴̂0(𝜔,𝑚) =
𝑎(𝜔,𝑚)

|𝜁 𝑝1 (0, 𝑟1/2, ;𝜔,𝑚) |
, (2-21)

where |𝜁 𝑝1 (0, 𝑟1/2;𝜔,𝑚) | is the amplitude of the pressure eigenfunction at the half-velocity of the

nozzle exit plane.

The auto-correlation function |𝜁 𝑝1 (0, 𝑟1/2;𝜔,𝑚) | has the form of a product of the Dirac delta

function because we assume that the instability wave spectrum is initiated by the white noise due

to the lack of intrinsic length and time scales near the nozzle exit of a high Reynolds number
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supersonic jet [18]. That is, the total pressure associated with instability waves can be represented

by the form of the product of the delta function. The total inner pressure perturbations 𝑝(𝑥,𝑟, 𝜃, 𝑡)

are obtained by summing all the instability waves at each radial frequency and azimuthal mode.

The ensemble average is [18]

〈
𝑝(0, 𝑟1/2, 𝜃, 𝑡), 𝑝(0, 𝑟1/2, 𝜃 +Θ, 𝑡 + 𝜏)

〉
=

∞∑︁
𝑛=−∞

∞∑︁
𝑛=−∞

ˆ ∞̂

−∞

⟨𝑎(𝜔,𝑚), 𝑎(𝜔′,𝑚′)⟩ 𝜁 𝑝1 (0, 𝑟1/2;𝜔,𝑚)𝜁 𝑝1 (0, 𝑟1/2;𝜔′,𝑚′)
|𝜁 𝑝1 (0, 𝑟1/2;𝜔,𝑚) | |𝜁 𝑝1 (0, 𝑟1/2, ;𝜔′,𝑚′) |

exp{𝑖 [(𝑚 +𝑚′) 𝜙− (𝜔+𝜔′) 𝑡 +𝑚𝜃 −𝜔𝜏 + 𝜋]}𝑑𝜔𝑑𝜔′ = 2𝜋2𝐷̃𝛿(Θ)𝛿(𝜏), (2-22)

where ⟨⟩ denotes ensemble average, Θ is phase lag, 𝜏 is retarded time, and 𝐷̃ is the area of the

auto-correlation function, which is the only unknown parameter.

The ensemble average of the normalized amplitude function is

⟨𝑎(𝜔,𝑚), 𝑎(𝜔′,𝑚′)⟩ = (𝐷̃/2)𝛿(𝜔+𝜔′)𝛿𝑚,−𝑚′, (2-23)

where 𝛿𝑚,−𝑚′ is Kronecker delta function and defined as

𝛿𝑚,−𝑚′ =


1 for 𝑚 +𝑚′ = 0

0 for 𝑚 +𝑚′ ≠ 0.
(2-24)

Similarly, the total pressure perturbation outside the jet is obtained by summing Eqn. (2-19)

at each radial frequency and azimuthal mode. The power spectra density 𝑆(𝑥,𝑟, 𝜃,𝜔) of the

acoustic pressure is the Fourier transform of the autocorrelation of the total outer pressure

perturbation. The result is [18]

𝑆(𝑥,𝑟, 𝜃,𝜔) = 1
2𝜋

∞̂

−∞

⟨𝑝(𝑥,𝑟, 𝜃, 𝑡), 𝑝(𝑥,𝑟, 𝜃, 𝑡 + 𝜏)⟩ exp(−𝑖𝜔𝜏)𝑑𝜏 = (𝐷̃/2)
∞∑︁

𝑚=−∞

|𝐺 (𝑥,𝑟;𝜔,𝑚) |2

|𝜁 𝑝1 (0, 𝑟1/2;𝜔,𝑚) |2
,

(2-25)

and
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𝐺 (𝑥,𝑟;𝜔,𝑚) =
∞̂

−∞

𝑔̂(𝜂;𝜔,𝑚)𝐻 (1)
𝑚 [𝑖𝜆(𝜂)𝑟]exp(−𝑖𝜂𝑥)𝑑𝜂. (2-26)

By transforming the cylindrical coordinate system to a spherical coordinate system

(𝑅,𝜓, 𝜃), 𝑥 = 𝑅 cos𝜓 and 𝑟 = 𝑅 sin𝜓, and applying the stationary phase approximation method to

evaluate 𝐺 at large 𝑅 [18], Eqn. (2-25) is simplified to

𝑆(𝑅,𝜓, 𝜃, 𝑓 ) = 10log10

[
𝜌2
𝑗
𝑢3
𝑗
𝑅3
𝑗

𝑝2
ref𝑅

2

∞∑︁
𝑚=−∞

8𝜋𝐷̃ |𝑔̂(𝜂;𝜔,𝑚) |2

|𝜁 𝑝1 (0, 𝑟1/2;𝜔,𝑚) |

]
, (2-27)

and

𝜂 =
𝜌̄0.5
∞ 𝑀 𝑗𝜔𝜓

(1−𝑀2
∞) (1−𝑀2

∞sin2𝜓)0.5
−
𝜌̄∞𝑀2

𝑗
𝑢̄∞𝜔

1−𝑀2
∞

,

where 𝑆 is the noise power spectrum in decibels, 𝑓 (𝜔 = 2𝜋 𝑓 ) is frequency, 𝑝ref = 2 ×10−5 Pa is

the reference pressure, 𝜂 = 𝜂(𝜓) is the stationary phase where limiting 0◦ ≤ 𝜓 ≤ 180◦ denotes the

direction from the upstream nozzle centerline axis, and 𝑀∞ = 𝜌̄∞𝑀2
𝑗
𝑢̄2
∞.

Numerical Implementation

To compute the broadband spectrum of jet noise (Eqn. (2-27)) from instability waves, three

unknowns, 𝛼, 𝜁 𝑝1 (0, 𝑟1/2;𝜔,𝑚) |, and 𝑔̂, should be determined firstly. Equation (2-12) can be used

to obtain the wavenumber 𝛼 and 𝜁 𝑝1 (0, 𝑟1/2;𝜔,𝑚) |. The term 𝑔̂ (Eqn. (2-20)) is computed via the

fast Fourier transform (FFT) method if the term 𝛽 is neglected.

Firstly, we solve Eqn. (2-12) numerically due to the finite thickness of the shear layer [146].

We rewrite Eqn. (2-12) and change the eigenvalue from 𝛼 to a new variable 𝑐 = 𝑐𝑟 + 𝑖𝑐𝑖 = 𝜔/𝛼 to

confine the range of eigenvalue in the complex 𝑐 plane

𝜕2𝑝0

𝜕𝑟2 +
[
1
𝑟
+ 2
𝑐

𝜕𝑢̄

𝜕𝑟
− 1
𝜌̄

𝜕 𝜌̄

𝜕𝑟

]
𝜕𝑝0
𝜕𝑟

+
[
𝜌̄𝑀2

𝑗

(𝜔
𝛼

)2
𝑐2 − 𝑚

2

𝑟2 −
(𝜔
𝛼

)2
]
𝑝0 = 0, (2-28)

where 𝑐 = 𝜔/𝛼, 𝑐 = 𝑐𝑟 + 𝑖𝑐𝑖, and 𝑐 = 𝑐− 𝑢̄. Given any real 𝜔, the real part, 𝑐𝑟 is within or nears the

bounds set by the real mean velocity 𝑢̄, which makes 𝑐 is easily obtained due to its boundedness.

In this study, the global method via central finite difference method to discretize the Eqn. (2-12)
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by Dahl [99] is adopted. The discrete equation can be rearranged in a tridiagonal form as

[
1− 1

2
𝑍1𝑘Δ𝑟

]
𝑝𝑘−1 +

[
𝑍0𝑘Δ𝑟

2 −2
]
𝑝𝑘 +

[
1+ 1

2
𝑍1𝑘Δ𝑟

]
𝑝𝑘+1 = 0, (2-29)

where

𝑍1𝑘 =

[
1
𝑟
+ 2
𝑐− 𝑢̄

𝜕𝑢̄

𝜕𝑟
− 1
𝜌̄

𝜕 𝜌̄

𝜕𝑟

]
𝑘

, (2-30)

and

𝑍0𝑘 =

[
𝜌̄𝑀2

𝑗

(𝜔
𝑐

)2
(𝑐− 𝑢̄)2 − 𝑛

2

𝑟2 −
(𝜔
𝑐

)2
]
𝑘

, (2-31)

where the subscript 𝑘 is the grid point of the flow-field.

The inner boundary condition is expressed in axisymmetric or non-axisymmetric form, as

𝜕𝑝

𝜕𝑟
= 0 for 𝑚 = 0

𝑝 = 0 for 𝑚 ≠ 0.
(2-32)

The outer boundary condition is

𝑝𝑁+1 =
𝐻

(1)
𝑚 (𝑖𝜆𝑟𝑁+1)
𝐻

(1)
𝑚 (𝑖𝜆𝑟𝑁 )

𝑝𝑁 . (2-33)

The above Eqns. (2-28), (2-32), and (2-33) create a tridiagonal system of equations that can

be written in the form

𝐴(𝑐)𝑝 = 0. (2-34)

The non-trivial solution only exists when the determinant of 𝐴 is not equal to zero. The

eigenvalue must be found at each axial location for a given frequency 𝜔. The grid searching

method is used to find the eigenvalue. Specifically, the value of det(𝐴) can be expressed in a

matrix form by setting up the grid matrix with the range of real and imaginary part of 𝑐. Contours

of det(𝐴) defining the zeros of imaginary and real part of det(𝐴) cross at the position of the
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eigenvalue. We chose the maximum growth rate if there are too many cross positions because the

instability wave mode (Kelvin-Helmholtz mode) is most unstable and dominant [99]. The

procedure to solve the corresponding solution implies that the solution is actually located in the

amplifying region, where the imaginary part of eigenvalue, 𝑐𝑖 > 0. However, the critical effect,

critical layer or point (𝑟𝑐), must be taken into account for the damped region where the imaginary

part of eigenvalue is negative, 𝑐𝑖 < 0.

The critical point is defined where 𝑐(𝑟𝑐) = 0. The contour deformation method is applied to

solve the problem. Body [147] demonstrates a number of complex mapping techniques to solve

the hydrodynamic problems with small or zero decay rates. In this proposal, a simple box path

around 𝑟𝑐, as shown in Fig. 2-2, is used [99]. The parameters 𝑢̄ and 𝜌̄ in Eqn. (2-28) can be

determined easier along the path for using simulation results directly.

Figure 2-2. Box path of the contour mapping.

The direction of the contour into the complex 𝑟−plane is determined by the derivative of the

mean velocity profile. For 𝜕𝑢̄/𝜕𝑟 ≥ 0, the critical point of the damping mode lies in the upper half

plane, therefore, the contour for damped waves must go into the upper half plane and around the

critical point to prevent the solution going to infinity [99, 147] and vice verse. The matrix form of

det(𝐴) is reconstructed via the rule from Dahl [99]. Then the eigenvalue that implies the damped

wave is obtained with the grid searching method. After obtaining the eigenvalue, the

eigenfunction of Eqn. (2-12) is computed via the Runge-Kutta method.
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Next, the term 𝑔̂ will be computed. We neglect the non-parallel effect when calculating the

sound spectrum of Eqn. (2-27). Then the wavenumber spectrum is

𝑔̂(𝜂;𝜔,𝑚) = 1
2𝜋

∞̂

−∞

exp
{[
𝑖

ˆ 𝑥

0
𝛼(𝑥;𝜔,𝑚)𝑑𝑥−𝜂𝑥

]}
𝑑𝑥, (2-35)

which can be regarded as the Fourier transform of instability waves. The FFT is used to calculate

the Eqn. (2-35). The trapezoidal rule is applied to compute the term 𝜙(𝑥) =
´ 𝑥

0 𝛼(𝑥;𝜔,𝑚)𝑑𝑥

𝜙 𝑗 = 𝜙 𝑗−1 +
1
2
(𝛼 𝑗 +𝛼 𝑗+1) (𝑥 𝑗+1 − 𝑥 𝑗 ), (2-36)

where 𝜙0 = 0 and the subscript 𝑗 is the node number in the streamwise direction.

The wavenumber spectrum of the instability wave is given by

𝑔̂(𝜂𝑛;𝜔,𝑚) =
𝑁−1∑︁
𝑗=0

exp(𝑖𝜙 𝑗 )𝑒−𝑖2𝜋𝑛 𝑗/𝑁 =
Δ𝑥

2𝜋
FFT{exp(𝑖𝜙 𝑗 )}, (2-37)

where

𝜂𝑛 =


𝑛Δ𝜂 for 0 ≤ 𝑛 ≤ 𝑁/2−1

(𝑛−𝑁)Δ𝜂 for 𝑁/2 ≤ 𝑛 ≤ 𝑁 −1
(2-38)

and

Δ𝜂 =
Δ𝑥

2𝜋
. (2-39)

2.1.2 Detection of Instability Waves

2.1.2.1 Least-Square Matching

In the previous analysis of instability wave theory, the rate of growth or decay and phase

dynamics of instability waves for a slowly varying mean flow-field have been predicted, however,

the complex amplitude 𝐴̂0(𝑚,𝜔) is still unknown. The value of 𝐴̂0 should be properly determined

due to its importance on analyzing the actual contributions of the instability wave modes to the

real jet noise intensity.
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Suzuki and Colonius [82] detected the instability waves via a modified beam forming

method to match the results of linear stability analysis with the measurements of a conic array of

microphones, where the modified beam forming method is applied to find the amplitudes of

instability waves. Ryu [2] showed the kinetic energy matching method to find the amplitude of

PSE predictions at two different probes. Sinha [98] showed that the amplitude of PSE predictions

can be estimated by comparing with the first mode of POD results. We will apply the method

from Sinha [98] to find 𝐴̂0 by matching the instability wave solution with the results from LES

and the reconstructed flow-field with POD modes.

Firstly, we have to decompose the results from LES. The flow-field variables,

𝒒 = [𝜌,𝑢, 𝑣,𝑤, 𝑝], from the simulation results can be decomposed as

𝒒(𝑥,𝑟, 𝜃, 𝑡) = 𝒒̄(𝑥,𝑟) + 𝒒′(𝑥,𝑟, 𝜃, 𝑡), (2-40)

where 𝒒̄(𝑥,𝑟) is the mean value defined as an average over the azimuthal direction and time, and

𝒒′ is the flow variables perturbations.

We introduce the Fourier decomposition of flow perturbation variables to obtain the

modulus and phase at each at each frequency 𝜔𝑛 and azimuthal mode number 𝑚, as

𝒒′(𝑥,𝑟, 𝜃, 𝑡) =
𝑁𝑡/2−1∑︁
𝑛=−𝑁𝑡/2

𝑁𝜃/2−1∑︁
𝑚=−𝑁𝜃/2

𝒒̂𝑚𝑛 (𝑥,𝑟)exp(𝑖(𝑚𝜃 −𝜔𝑛𝑡)), (2-41)

where 𝑁𝑡 is the total number of frequencies, 𝑁𝜃 is the total number of azimuthal modes, and

𝒒̂𝑚𝑛 (𝑥,𝑟) is the Fourier coefficients.

As previous stated, a probe needs to be selected for the matching process. We can express

the decomposed pressure from LES (Π𝐿
𝑙

) and instability waves (Π𝑃
𝑙

) at the probe location as

Π𝐿
𝑙 = 𝑝𝑚𝑛 (𝑥𝑙 , 𝑟𝑙), (2-42)

and
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Π𝑃
𝑙 = 𝜁

𝑝

1 (𝑥𝑙 , 𝑟𝑙)𝑒
𝑖
´ 𝑥′=𝑥𝑙
𝑥′=𝑥𝑜

𝛼𝑚𝑛 (𝑥 ′)𝑑𝑥 ′, (2-43)

where the subscript is the 𝑙𝑡ℎ point in the probe location.

We consider the square norm of the difference between Π𝑃
𝑙

and Π𝐿
𝑙

and define the following

cost function,

𝐽 ( 𝐴̂0) =
𝑁∑︁
𝑙=1

| 𝐴̂0Π
𝑃
𝑙 −Π𝐿

𝑙 |
2, (2-44)

where 𝑁 is the number of points of the probe where LES data collected.

With the LES data at the probe locations as the target solution and eigenfunction from the

instability wave theory as a reference solution, the phase matched complex amplitude for the

instability wave models can be computed. Optimal complex amplitude coefficients 𝐴̂0, which

minimizes 𝐽 satisfies 𝜕𝐽

𝜕 𝐴̂0
= 0 and expressed as

𝐴̂0 =

∑𝑁
𝑙=1Π

𝑃
𝑙

∗
Π𝐿
𝑙∑𝑁

𝑙=1Π
𝑃
𝑙

∗
Π𝑃
𝑙

, (2-45)

where the asterisk represents the complex conjugate.

2.1.2.2 Proper Orthogonal Decomposition

The POD method uses data to generate a set of basis functions that optimally represent the

flow’s energy based on a user-selected norm. The POD is a promising and widely applied method

used to identify coherent structures and characterize flow structures in turbulence. The selected

POD modes can be used in modeling by either providing for phenomenological models or

generating a reduced-order model via projection onto the governing equations [71].

This procedure is equivalent to solve the following eigenvalue problem

ˆ ˆ
𝐶 (𝒙,𝒙′; 𝑡, 𝑡′)𝑊 (𝒙′)𝜙(𝒙′, 𝑡′)𝑑𝑥′𝑑𝑡′ = 𝜆𝜙(𝒙′, 𝑡′), (2-46)

where
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𝐶 (𝒙,𝒙′; 𝑡, 𝑡′) = 𝐸{𝒒(𝒙, 𝑡)𝒒∗(𝒙′, 𝑡′)}, (2-47)

is the cross-correlation tensor of input vector data 𝒒(𝒙, 𝑡),𝑊 is weight function, 𝐸{·} represents

the ensemble average over different realizations of the flow and 𝜆 is the eigenvalue, which

represents the average amount of energy captured by the corresponding mode 𝜙(𝒙, 𝑡) or the

eigenvector.

It has proven that Eqn. (2-46) can be expressed based on frequency component and

azimuthal mode as

ˆ ˆ
𝑆(𝒙,𝒙; 𝑓 ,𝑚)𝑊 (𝒙′)𝜓(𝒙′, 𝑓 ′)𝑑𝑥′ = 𝜆( 𝑓 ,𝑚)𝜓(𝒙′, 𝑓 ′,𝑚′), (2-48)

where

𝑆(𝒙,𝒙′; 𝑓 ,𝑚) = 𝐸{𝒒̂(𝒙, 𝑓 ,𝑚) 𝒒̂∗(𝒙′, 𝑓 ′,𝑚′)}, (2-49)

where 𝑆 is cross-spectrum tensor, and 𝒒̂ is the Fourier transform of 𝒒 on time and azimuthal

direction.

We follow the method of Towne et al. [148], which has a similar procedure used by Citriniti

[149] but with an additional simplification that reduces the computational cost in most cases.

Firstly, the input data are expressed in matrix form as

𝑸 = [𝒒1 𝒒2 ... 𝒒𝑁 ] ∈ 𝑅𝑀×𝑁 , (2-50)

where each column represents a snapshot of the flow-field and 𝑁 snapshots are sampled with step

size △𝑡. The data is then segmented into partially overlapping blocks.

Next, the DFT is computed for each block

𝑸̂ = [𝒒̂1 𝒒̂2 ... 𝒒̂𝑁 ] . (2-51)

The cross-spectral density matrix at frequency 𝑓𝑘 is calculated using
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𝑆 𝑓𝑘 =
1

(∑𝑁 𝑓

𝑗=1𝑤
2
𝑗
)𝑁 𝑓 𝑁𝑏

𝑁𝑏∑︁
𝑙=1

𝒒̂ (𝑙)
𝑘
𝒒̂ (𝑙)

∗

𝑘
, (2-52)

where 𝑁𝑏 is the total number of blocks and 𝑤 𝑗 is the window function added in each block which

can be used to reduce spectral leakage due to the non-periodicity of the data.

Then, Eqn. (2-51) can be rewritten as a new data matrix

𝑸̂ =

√√
1

𝑁 𝑓

∑𝑁 𝑓

𝑗=1𝑤
2
𝑗

[𝒒̂ (1)
𝑘

𝒒̂ (2)
𝑘

... 𝒒̂ (𝑁𝑏)
𝑘

] ∈ 𝑅𝑀×𝑁𝑏 . (2-53)

The spectral density, Eqn. (2-52), becomes

𝑆 𝑓𝑘 =
1
𝑁𝑏

𝑸̂ 𝑓𝑘
𝑸̂

∗
𝑓𝑘
. (2-54)

Finally, the infinite-dimensional eigenvalue problem reduces to an matrix (𝑁 ×𝑁)

eigenvalue problems

𝑆 𝑓𝑘𝑊Ψ 𝑓𝑘 = Ψ 𝑓𝑘Λ 𝑓𝑘 , (2-55)

where𝑊 accounts for both the weight𝑊 (𝑥) and the numerical quadrature of the integral on the

discrete grid, Ψ 𝑓𝑘 is unitary matrix, of which the columns are POD modes, and Λ 𝑓𝑘 is a diagonal

matrix with eigenvalues corresponding to the extracted modes ranked in descending order. In

practice, the number of blocks 𝑁𝑏 is typically much smaller than the discretized problem size 𝑁 .

The flow-field can be reconstructed by the summation of eigenfunctions multiplied by the

corresponding coefficients 𝑎 𝑓𝑘

𝑞(𝑥,𝑟, 𝜃, 𝑡) =
∑︁
𝑚

𝑁 𝑓∑︁
𝑗=1

∑︁
𝑛

𝑎𝑛𝑓𝑘Ψ
𝑛
𝑓𝑘

exp(𝑖(𝑚𝜃 −2𝜋 𝑓 ( 𝑗)
𝑘
𝑡)), (2-56)

and

𝑎∗𝑓𝑘 = (
√
𝑊𝑄̂ 𝑓𝑘 )𝐻 (Ψ 𝑓𝑘

√
𝑊). (2-57)
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Furthermore, the POD results will depend on the selected norm [71]. The POD results for a

3D turbulent flow based on five norms are compared, which shows that the different number of

POD modes are needed for reconstructing the same flow-fields [71]. Some POD modes based on

pressure perturbations norm that look like a wave packet, similar to a growing and decaying

instability wave [150]. The POD results of a streamwise velocity norm show that there are also

other higher azimuthal modes (𝑚 = 5) having higher energy than the axisymmetric mode [149].

2.1.3 Kirchhoff Surface Method

In this section, the derivation and solution of the Kirchhoff surface method by Freund [151]

will be reviewed. The acoustic disturbances can be described by the linearized, inviscid wave

equation when the viscous attenuation and non-linear effects are minimal and can be neglected

due to the mean velocity and its gradients are sufficiently small. The wave equation for pressure

fluctuation for within a quiescent medium is

[
1
𝑐2
∞

𝜕2

𝜕𝑡2
−∇2

]
𝑝′ = 0. (2-58)

Bodony and Lele [68] indicated there are two equivalent methods that have been employed

for jet noise computation. The first is to apply the Green’s function. The solution for stationary

and moving surfaces are given by Farassat and Myers [15]. Brentner and Farassat [75] also gave

the solution and showed that the noise components terms of the Kirchhoff equations are

equivalent with the FWH equation. The other is from Freund [151] via transforming coordinates

for a Kirchhoff surface 𝑆 of radius 𝑅𝑠 along the jet axis. The Kirchhoff surface as in Fig. 2-3

(modified from [152]) should be far away enough from the hydrodynamic region of the jet and

enclose all the nonlinear effects so that the generating noise can be described by Eqn. (2-58).

The partially transformed form of Eqn. (2-58) outside of the surface 𝑆 is

(
d2

d𝑟2 +
1
𝑟

d2

d𝑟
+
𝜔2
𝑛

𝑐2
∞
− 𝑘2

𝑥 −
𝑚2

𝑟2

)
ˆ̂𝑝𝑚𝑛 (𝑘𝑥 , 𝑟) = 0, (2-59)

where 𝑘𝑥 is the wavenumber along the streamwise direction, and ˆ̂𝑝𝑚𝑛 (𝑘𝑥 , 𝑟) is the fluctuating

pressure with Fourier transform in 𝑥, 𝜃 and 𝑡.
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Figure 2-3. Kirchhoff surface location.

The exact solution [153] in cylindrical coordinates is

𝑝′(𝑥,𝑟, 𝜃, 𝑡) = 1
2𝜋

ˆ ∞

−∞

𝑁𝑡/2−1∑︁
𝑛=−𝑁𝑡/2

𝑁𝜃/2−1∑︁
𝑚=−𝑁𝜃/2

ˆ̂𝑝𝑚𝑛 (𝑘𝑥 , 𝑅𝑠)𝑇 ( 𝑗)
𝑚 exp(𝑖(𝑘𝑥𝑥 +𝑚𝜃 −𝜔𝑛𝑡))𝑑𝑘𝑥 , (2-60)

where 𝑇 ( 𝑗)
𝑚 depends on the value of 𝜔2/𝑐2

∞− 𝑘2 and 𝑚. 𝑇 ( 𝑗)
𝑚 can be expressed as

𝑇
( 𝑗)
𝑚 =



𝐻
( 𝑗)
𝑚 (𝑟

√
𝜔2
𝑛/𝑐2

∞−𝑘2
𝑥)

𝐻
( 𝑗)
𝑚 (𝑅𝑠

√
𝜔2
𝑛/𝑐2

∞−𝑘2
𝑥)

𝜔2
𝑛/𝑐2

∞− 𝑘2
𝑥 > 0

𝑅
|𝑚 |
𝑠

𝑟 |𝑚 | 𝜔2
𝑛/𝑐2

∞− 𝑘2
𝑥 = 0 and 𝑚 ≠ 0

1 𝜔2
𝑛/𝑐2

∞− 𝑘2
𝑥 = 0 and 𝑚 = 0

𝐾𝑚 (𝑟
√
𝜔2
𝑛/𝑐2

∞−𝑘2
𝑥)

𝐾𝑚 (𝑅𝑠

√
𝜔2
𝑛/𝑐2

∞−𝑘2
𝑥)

𝜔2
𝑛/𝑐2

∞− 𝑘2
𝑥 < 0,

(2-61)

where 𝑗 = 1 for 𝜔𝑛 > 0 and 𝑗 = 2 for 𝜔𝑛 < 0 to enforce the outgoing acoustic wave the term 𝐻
( 𝑗)
𝑚 .

Near 𝑟 = 𝑅𝑠, the non-radiating components may affect the pressure field. For the far-field,

only those waves that satisfy 𝜔2
𝑛/𝑐2

∞− 𝑘2 > 0 radiate as sound. Therefore, the stationary phase

method [154] is applied to compute Eqn. (2-60). Finally, the solution in the spherical coordinate

system is
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𝑝′(𝑅,𝜓, 𝜃, 𝑡) =
𝑁∑︁

𝑚=−𝑁

( 𝑁𝑡/2−1∑︁
𝑛=0

ˆ̂𝑝𝑚𝑛 (𝑘𝑛cos𝜓, 𝑅𝑠)
exp(𝑖𝑘𝑛𝑅(−𝑖)𝑚+1)
𝜋𝑅𝐻

(1)
𝑚 (𝑅𝑠𝑘𝑛sin𝜓)

exp(𝑖(𝑚𝜃 −𝜔𝑛𝑡))+

0∑︁
𝑛=−𝑁𝑡/2

ˆ̂𝑝𝑚𝑛 (𝑘𝑛cos𝜓, 𝑅𝑠)
exp(𝑖𝑘𝑛𝑅(𝑖)𝑚+1)

𝜋𝑅𝐻
(2)
𝑚 (−𝑘𝑛𝑅𝑠sin𝜓)

exp(𝑖(𝑚𝜃 −𝜔𝑛𝑡))
)
, (2-62)

where the stationary phase is 𝑘𝑥 = 𝜔𝑛/𝑐∞cos𝜓, 𝑘𝑛 = 𝜔𝑛/𝑐∞, and 𝑁 ≈ 𝑘𝑥𝑅𝑠sin𝜓. Only selected

wavenumbers can propagate to the far-field, and they are dependent on the radial frequency,

radiation angle from the jet exit, and azimuthal number. The conditions are 𝑘𝑥 = 𝜔𝑛/𝑐∞cos𝜓 and

𝑚 ≤ 𝑘𝑥𝑅𝑠sin𝜓.

2.1.4 Correlation and Coherence

Correlation analysis have been applied and proven to be a useful tool in jet noise sources

and characteristics studies [50, 155, 59, 27]. The results of correlation studies based on

experimental results indicate that pressure-field measurements characteristics can provide insights

into source characteristics, such as for the two sources theory of jet noise: fine- and large-scale

noise sources and the spatio-temporal relation of acoustic field.

Correlation can be used more easily to identify waveform periodicity and to obtain

spatiotemporal length scales and phase speeds. On the other hand, coherence [156, 59] is useful

for extracting the spatial phase relations of the field as a function of frequency, which can be used

to illustrate the features seen in the broadband cross-correlation analysis.

The correlation between two waveforms is defined as

𝑅𝑚𝑛 (𝜏) =
⟨𝑝𝑚 (𝑡)𝑝𝑛 (𝑡 + 𝜏)⟩

⟨𝑝2
𝑚 (𝑡)⟩1/2⟨𝑝2

𝑛 (𝑡)⟩1/2
, (2-63)

where 𝑝𝑚 (𝑡) is the pressure time signal of the 𝑚th microphone, 𝑝𝑛 (𝑡) is the pressure time signal of

the 𝑛th microphone, and ⟨⟩ denotes the time-averaged quantity.

The coherence is defined as

𝛾2
𝑚𝑛 ( 𝑓 ) =

|𝐺𝑚𝑛 ( 𝑓 ) |2

𝐺𝑚𝑚 ( 𝑓 )𝐺𝑛𝑛 ( 𝑓 )
, (2-64)
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where 𝐺𝑚𝑛 ( 𝑓 ) is the cross-spectra density between the 𝑚th and 𝑛th microphones, and 𝐺𝑚𝑚 ( 𝑓 )

and 𝐺𝑛𝑛 ( 𝑓 ) is the auto-spectra density of the 𝑚th and 𝑛th microphone.

2.2 Methodology for Boundary Layer Flows

2.2.1 Linear Stability Theory

We use LST to predict the unstable modes within the boundary layer that develops within

supersonic flows. We assume that the flow is governed by the Navier-Stokes equations, energy

equation, and ideal gas law. These equations and overall method are discussed in Malik and Spall

[45]. The equations governing the flow of a viscous compressible ideal gas include the continuity

equation

𝜕𝜌

𝜕𝑡
+∇ · (𝜌𝑽) = 0, (2-65)

the momentum equation

𝜌

[
𝜕𝑽

𝜕𝑡
+ (𝒖 · ∇)𝑽

]
= −∇𝑝 +∇ · [𝜆(∇ ·𝑽)𝐼] +∇ · [𝜇(∇𝑽 +∇𝑽𝑡𝑟)], (2-66)

the energy equation

𝜌𝑐𝑝

[
𝜕𝑇

𝜕𝑡
+ (𝑽 · ∇)𝑇

]
= ∇ · (𝑘∇𝑇) + 𝜕𝑝

𝜕𝑡
+ (𝑽 · ∇)𝑝 +Φ, (2-67)

and the ideal gas law

𝑝 = 𝜌𝑅𝑇. (2-68)

Here, 𝑽 = (𝑢, 𝑣,𝑤) is the velocity vector, 𝑘 is the thermal conductivity, 𝜇 is the first coefficient of

viscosity, Φ = 𝜆(∇ ·𝑽) + 𝜇[∇𝑽 +∇𝑽𝑡𝑟]2/2 is the viscous dissipation, and 𝜆 is the second

coefficient of viscosity. The perturbation equations that govern the instability waves are derived

from the linearized Eqs. (2-66) to (2-68) in non-dimensional form. All lengths are scaled by

viscous length 𝑙 = (𝜈∗𝑒𝑥∗/𝑢∗𝑒)1/2. Here, 𝜈∗𝑒 is the dimensional viscosity at the boundary layer edge,

where the definition of boundary layer edge values depends on the specific flow conditions.
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Velocities are scaled by 𝑢∗𝑒, density by 𝜌∗𝑒, pressure by 𝜌∗𝑒𝑢
∗2
𝑒 , time by 𝑙/𝑢∗𝑒, and other variables by

their corresponding values at the boundary layer edge position. The instantaneous values of the

field variables and parameters in Eqs. (2-66) to (2-68) can be expressed as the sum of a mean and

a fluctuation quantity

𝑢 = 𝑢̄ +𝑢′, 𝑣 = 𝑣̄ + 𝑣′, 𝑤 = 𝑤̄ +𝑤′,

𝑝 = 𝑝 + 𝑝′, 𝑇 = 𝑇 +𝑇 ′, 𝜌 = 𝜌̄ + 𝜌′,

𝜇 = 𝜇̄+ 𝜇′, 𝜆 = 𝜆̄+𝜆′, 𝑘 = 𝑘̄ + 𝑘′.

(2-69)

In this study, we consider the flow over a cone, which is an axisymmetric body at zero

incidence. The body-fitted orthogonal curvilinear coordinates 𝑥, 𝑦, and 𝑧 are used, where 𝑥 is the

streamwise coordinate along the cone surface, 𝑦 is the coordinate normal to the surface, and 𝑧 is

the azimuthal direction, as shown in Fig. 2-4.

Θx

y

Figure 2-4. Body-fitted orthogonal curvilinear coordinates.

The scale factors are determined via coordinate transformations and are defined as

ℎ1 = 1+ 𝜅(𝑥)𝑦; ℎ2 = 1; ℎ3 = 𝑟0(𝑥) + 𝑦 cos(𝜃), (2-70)

where 𝜅 = − 𝑑𝜃
𝑑𝑥

is local body curvature, 𝜃 is the half-angle of the cone, and 𝑟𝑜 (𝑥) = 𝑥 cos(𝜃).

The curvature coefficients are

𝑚13 =
1
ℎ1

𝜕ℎ1
𝜕𝑦

; 𝑚21 =
1

ℎ1ℎ2

𝜕ℎ2
𝜕𝑥

; 𝑚23 =
1
ℎ2

𝜕ℎ2
𝜕𝑦

. (2-71)

Here, 𝑚13 = 0 is the streamwise curvature for cone cases, 𝑚21 is related to body divergence

due to increase in the body radius, and 𝑚23 represents transverse curvature effect.

68



For cone geometries, 𝑚21 and 𝑚23 are

𝑚21 =
𝑑 (ln𝑟)/𝑑𝑥

1+ 𝜖 𝑦 =
𝑙 sin𝜃

𝑟 (1+ 𝜖 𝑦) (2-72)

and

𝑚23 =
𝜖

1+ 𝜖 𝑦 , (2-73)

where 𝜖 = 𝑙 cos(𝜃)/𝑟 .

We assume that the flow is locally parallel within the boundary layer on the cone surface to

simplify the LST prediction. Specifically, we assume that the gradients of the mean flow in the

streamwise direction and the mean vertical velocity are negligible. However, the numerical

prediction of the mean flow-field does not make this assumption. Under these assumptions we set

𝑢̄ = 𝑢̄(𝑦); 𝑣̄ = 0; 𝑇 = 𝑇 (𝑦); 𝑝 = 𝑝(𝑦); 𝜌̄ = 𝜌̄(𝑦), (2-74)

and

𝑤̄(𝑦) = 0, (2-75)

because of the axisymmetric nature of the time-averaged flow.

We also make a number of other minor simplifying assumptions. Firstly, due to the

boundary layer assumption, pressure (𝑝) is constant across the layer and is equal to 1/(𝛾𝑀2
𝑒 ),

where 𝑀𝑒 = 𝑢
∗
𝑒/

√︁
𝛾𝑅𝑇∗

𝑒 . The viscosity 𝜇̄ is calculated using Sutherland’s law. Sutherland’s law is

𝜇̄ = 𝑇
3
2

1+𝐶/𝑇∗
∞

𝑇 +𝐶/𝑇∗
∞
, (2-76)

where 𝐶 = 110.4 K is a constant or effective temperature and 𝑇∗
∞ represents the dimensional

free-stream temperature. Moreover, 𝜇̃, 𝜆̃, and 𝑘̃ are related to temperature as

𝜇′ =
𝑑𝜇̄

𝑑𝑇
𝑇 ′, 𝜆′ =

𝑑𝜆̄

𝑑𝑇
𝑇 ′, and 𝑘′ =

𝑑𝑘̄

𝑑𝑇
𝑇 ′. (2-77)
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The disturbance amplitudes are assumed to be small enough so that they do not interact in a

nonlinear fashion to avoid nonlinear effects. We assume that the solution of the instability waves

can be expressed in the following form

𝝓′(𝑥, 𝑦, 𝑧, 𝑡) = 𝝓̂′(𝑦) exp[𝑖(𝛼𝑥 + 𝛽𝑧−𝜔𝑡)], (2-78)

which consists of a spatially varying function and an exponentially varying spatial periodic

function. Here, 𝝓′ is a five-element vector defined by {𝑢′, 𝑣′, 𝑝′,𝑇 ′,𝑤′}, 𝝓̂(𝑦) is the shape function

of each element vector, 𝛼 and 𝛽 = 𝑛𝑙/𝑟 (𝑛 is the azimuthal mode number) are the wavenumbers in

the streamwise and spanwise directions, and 𝜔 = 2𝜋 𝑓 ∗𝑙/𝑢∗𝑒 is non-dimensional frequency. In

general, 𝛼, 𝛽, and 𝜔 are complex numbers. In this paper, we focus on spatial stability and set 𝜔

and 𝛽 as real numbers.

The compressible linear instability equations combining the above assumptions for

boundary layer flow over a cone are

𝑑2𝑢̂

𝑑𝑦2 + (𝑐1𝑇
′+𝑚23)

𝑑𝑢̂

𝑑𝑦
+ 𝑖𝛼0𝑙1

𝑑𝑣̂

𝑑𝑦
+ 𝑐1𝑢̄

′𝑑𝑇

𝑑𝑦

+
[
𝑖𝑐3𝑅𝑒

𝜇̄𝑇
− 𝑙2𝛼2

0 − 𝛽
2
0 + 𝑖𝛼0𝑙2𝑚21 − 𝑙2𝑚2

21

]
𝑢̂ +

[
𝑖𝛼0(𝑐1𝑇

′+ 𝑙1𝑚23) −
𝑅𝑒𝑢̄

′

𝜇̄𝑇
− 𝑙2𝑚2

21

]
𝑣̂− 𝑖𝛼0𝑅𝑒

𝜇̄
𝑝

+ [𝑐1(𝑢̄′′+𝑚23𝑢̄
′+ 𝑖𝛼0𝑙0𝑢̄𝑚21 − 𝑙2𝑢̄𝑚2

21) + 𝑐2𝑢̄
′𝑇 ′]𝑇 − [𝛼0𝛽0𝑙1 + 𝑖𝛽0𝑙3𝑚21]𝑤̂ = 0, (2-79)

𝑑2𝑣̂

𝑑𝑦2 +
(𝑖𝛼0 +𝑚21)𝑙1

𝑙2

𝑑𝑢̂

𝑑𝑦
+ (𝑐1𝑇

′+𝑚23)
𝑑𝑣̂

𝑑𝑦
− 𝑅𝑒

𝑙2 𝜇̄

𝑑𝑝

𝑑𝑦
+ 𝑐1𝑢̄𝑚21𝑙0

𝑙2

𝑑𝑇

𝑑𝑦
+ 𝑖𝛽0(𝑐1𝑇

′𝑙0 −𝑚23𝑙3)
𝑙2

𝑤̂

+ 𝑖𝛽0𝑙1
𝑙2

𝑑𝑤̂

𝑑𝑦
+

[
𝑐1𝑇

′(𝑙0𝑖𝛼0/𝑙2 +𝑚21)𝑚21𝑚23
]
𝑢̂ +

[
1
𝑙2
{ 𝑖𝑐3𝑅𝑒

𝜇̄𝑇
− 𝛽2

0 + 𝑖𝛼0𝑚21 + 𝑐1𝑇
′𝑚23𝑙0} −𝑚2

23

]
𝑣̂

+
[

1
𝑙2

{
𝑖𝛼0𝑐1𝑢̄

′+ 𝑐1(𝑢̄′𝑚21𝑙1 − 𝑢̄𝑚21𝑚23) + 𝑐2𝑢̄𝑇
′𝑚21𝑙0

}
− 𝑐1𝑢̄𝑚21𝑚23

]
𝑇 = 0, (2-80)
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𝑑𝑣̂

𝑑𝑦
+ (𝑖𝛼0 +𝑚21)𝑢̂ +

[
𝑚23 −

𝑇 ′

𝑇

]
𝑣̂ +𝛾𝑀2

𝑒 (𝑚21𝑢̄− 𝑖𝑐3)𝑝−
[
𝑚21𝑢̄− 𝑖𝑐3

𝑇

]
𝑇 + 𝑖𝛽0𝑤̂ = 0, (2-81)

𝑑2𝑇

𝑑𝑦2 + 𝑐4𝑢̄
′𝑑𝑢̂

𝑑𝑦
+ 𝑐4𝑢̄𝑚21𝑙0

𝑑𝑣̂

𝑑𝑦
+

(
2
𝑘̄′

𝑘̄
+𝑚23

)
𝑑𝑇

𝑑𝑦

+ 𝑐4 [𝑖𝛼0𝑢̄𝑚21𝑙0 + 𝑢̄𝑚2
21𝑙2]𝑢̂ +

[
𝑐4(𝑖𝛼0𝑢̄

′+ 𝑢̄𝑚21𝑚23𝑙0) −
𝜎𝑅𝑒𝑇

′

𝜇̄𝑇

]
𝑣̂− 𝑖𝑐3𝑐4𝑅𝑒

2𝜇̄
𝑝

+
[
𝑖𝑐3𝑅𝑒𝜎

𝜇̄𝑇
− 𝛽2

0 + 𝑖𝛼0𝑚21 +
𝑐1𝑐4

2
(𝑢̄′2 + 𝑢̄2𝑚2

21𝑙2) +𝑚23
𝑘̄′

𝑘̄
+ 𝑘̄

′′

𝑘̄

]
𝑇 + 𝑖𝛽0𝑐4𝑢̄𝑚21𝑙2𝑤̂ = 0. (2-82)

and

𝑑2𝑤̂

𝑑𝑦2 + 𝑖𝛽0𝑙1
𝑑𝑣̂

𝑑𝑦
+ (𝑐1𝑇

′+𝑚23)
𝑑𝑤̂

𝑑𝑦
+ (𝑖𝛽0𝑚21𝑙3 −𝛼0𝛽0𝑙1)𝑢̂ + 𝑖𝛽0(𝑐1𝑇

′+ 𝑙3𝑚23)𝑣̂−
𝑖𝛽0𝑅𝑒
𝜇̄

𝑝

+ 𝑖𝛽0𝑐1𝑢̄𝑚21𝑙2𝑇 +
[
𝑅𝑒

𝜇̄𝑇
(𝑖𝑐3 −𝑚21𝑢̄) − 𝑙2𝛽2

0 + 𝑖𝛼0𝑚21 −𝑚2
21 −𝑚23(𝑐1𝑇

′+𝑚23)
]
𝑤̂ = 0, (2-83)

where ()′ ≡ 𝑑/𝑑𝑦, ()′′ ≡ 𝑑2/𝑑𝑦2, 𝑙𝑞 = 𝑞 +𝜆/𝜇, 𝛼0 = 𝛼/ℎ1, 𝛽0 = 𝛽/ℎ2, 𝑅𝑒 = 𝜌𝑒𝑢𝑒𝑙/𝜇𝑒 is Reynolds

number, 𝜎 = 𝜇𝑐𝑝/𝑘 = 0.7 is Prandtl number for this computation, and

𝑐1 =
1
𝜇̄

𝑑 𝜇̄

𝑑𝑇
, 𝑐2 =

1
𝑑𝜇̄

𝑑2 𝜇̄

𝑑𝑇2 , 𝑐3 = −(𝛼𝑢̄−𝜔),and 𝑐4 = 2(𝛾−1)𝑀2
𝑒𝜎. (2-84)

The linear stability equations can be written as a system of equations as

(
𝑨
𝑑2

𝑑𝑦2 +𝑩
𝑑

𝑑𝑦
+𝑪

)
𝝓 = 0, (2-85)

where 𝑨 is a diagonal matrix and 𝑩 and 𝑪 are 5×5 matrices.

The boundary conditions at the wall and in the far-field are

𝑦 = 0; 𝝓1 = 𝝓2 = 𝝓4 = 𝝓5 = 0,

𝑦→∞; 𝝓1,𝝓2,𝝓4,𝝓5 → 0.
(2-86)
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We seek to ascertain the instability wave solution represented by 𝝓. First, we calculate the

local wavenumber by solving the eigenvalue problem defined by Eqs. (2-85) through (2-86).

There are two main methods to solve the discretized system. The first is the local method, and the

second is the global method [45]. The global method yields all the eigenvalues of the discretized

system. Both methods require that the equations be discretized by the finite difference method

[44, 45] or a spectral approach [45]. The problem is then reduced to a linear algebraic system.

Four different schemes and detailed analyses were introduced to discretize the system of

equations [45]. In this study, the global method via finite difference is adapted.

2.2.2 Cross-Power Spectral Density of Pressure from Instability Waves

We can directly predict the wall pressure field from the instability waves based on the

solution of Eq. (2-85) at multiple axial positions on the cone surface. We choose the most

amplified instability waves in the azimuthal direction as the source of the driving force [157].

Equation (2-78) represents the form of a single instability wave. However, in high Reynolds

number high-speed flow, there is a wide spectrum of instability waves [18]. As a linear theory is

adapted, we superimpose solutions to obtain contributions from multiple waves. The pressure

fluctuations field from instability waves can be constructed via integration over 𝜔 as

𝑝′(𝒙, 𝑡) =
ˆ ∞

−∞
𝑝(𝑦) exp [𝑖(𝛼𝑥 + 𝛽𝑧−𝜔𝑡)] 𝑑𝜔. (2-87)

Here, the instability wave solution with angular frequency −𝜔 and azimuthal wavenumber −𝛽 is

related to the solution with positive frequency 𝜔 and wavenumber 𝛽 (see [100, 18]). For example,

the relation for eigenvalue (𝛼) is 𝛼(𝒙,−𝜔,−𝛽) = −𝛼∗(𝒙,𝜔, 𝛽), where the asterisk denotes the

complex conjugate. We do not focus on the overall amplitudes of the predicted instability waves.

Scaling the solution results in another solution.

The spatial coherence of pressure fluctuations from instability waves is calculated via

Γ𝑝𝑝 (𝝃,𝜔) =
1

2𝜋

ˆ ∞

−∞
⟨𝑝′(𝒙, 𝑡)𝑝′(𝒙 + 𝝃, 𝑡 + 𝜏)⟩ exp(−𝑖𝜔𝜏)𝑑𝜏, (2-88)

where 𝝃 is the spatial separation vector.
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Furthermore, in a typical vibration-acoustic problem of TBL flows, the semi-empirical

models, such as the Corcos model [37] and modified Corcos model [29], have been proposed to

express the excitation from pressure fluctuations within TBL flows. Such models can be modeled

in terms of a point pressure spectrum term multiplied by a spatial expression [34] as

Ψ𝑝𝑝 (𝝃,𝜔) = 𝜙(𝜔)Γ𝑝𝑝 (𝝃,𝜔), (2-89)

where 𝜙(𝜔) is the single-point wall pressure fluctuation spectrum.

2.2.3 Phenomenological Model of Plasma Actuators

The Navier-Stokes equations can be expressed in differential form [158] as

R(𝑈) = 𝜕𝑈
𝜕𝑡

+∇ · 𝐹̄𝑐 (𝑈) −∇ · 𝐹̄𝑣 (𝑈,∇𝑈) − 𝑆 = 0, (2-90)

where the conservation variables are𝑈 = {𝜌, 𝜌𝑽̄, 𝜌𝐸}, 𝐹̄𝑐 and 𝐹̄𝑣 are the convective and viscous

fluxes, respectively, and 𝑆 is a generic source term. Under the plasma actuator conditions,

𝑆 = {0, 𝐹̄, 𝐹̄ · 𝑽̄ + 𝑆𝑣}, where 𝐹̄ = ( 𝑓𝑥 , 𝑓𝑦, 𝑓𝑧) is the body force vector and 𝑆𝑣 is the volume heating

source term generated by plasma actuators.

Phenomenological models of dissipative heating was considered, and the effect on the flow

was evluated [137]. The volumetric heating model had the form

𝑆𝑣 =
𝑄

𝜋3/2𝑎3 exp
(
−𝑑

2

𝑎2

)
, (2-91)

where 𝑑 =
√︁
(𝑥− 𝑥𝑐)2 + (𝑦− 𝑦𝑐)2 + (𝑧− 𝑧𝑐)2 is the distance from the center (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) of the

heating source, 𝑄 is the total energy exerted by the source term, and 𝑎 is the radius of the source.
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CHAPTER 3
JET NOISE PREDICTION AND DISCUSSION

In this chapter, jet aeroacoustics in two different configurations will be discussed and the

focus will be on the noise generated from instability waves. The first configuration is a round

convergent nozzle. The second configuration is a bi-conic nozzle. The two nozzles are with

representative configurations and widely used in the industry area.

3.1 Results of SHJAR Case

3.1.1 Flow-Field Analysis

We first focus on the under-expanded hot supersonic jet from the SHJAR database [159].

The nozzle is the circular convergent small metal chevron number 000 (SMC000) designed by

NASA Glenn Research Center. The geometry of the nozzle is shown in Fig. 3-1. The nozzle exit

diameter is 0.0508 m with lip thickness of approximately 2.5% of the nozzle diameter. The

fully-expanded Mach number is 𝑀 𝑗 = 1.47. The corresponding NPR and TTR are 3.514 and 3.2,

respectively. The 𝑢 𝑗 is 762.39 m/s, and the Reynold number at the nozzle exit, Re𝐷 , is 6.26×105,

respectively.

Figure 3-1. Axisymmetric view of SMC000 nozzle geometry with units in mm.

Figure 3-2 shows the results of mean axial velocity. The LES results [160] are compared

with an axisymmetric Reynolds-averaged Navier-Stokes (RANS) equation simulation with the

above jet operating conditions. The non-dimensional mean axial velocity from LES only has a

small difference compared to RANS from the nozzle exit to 𝑥/𝐷 = 7. The mean axial velocity

decays at same rate in RANS relative to the LES after 𝑥/𝐷 = 7. Similar decay between LES and

RANS are observed by Georgiadis et al. [161]. The potential core length of LES is approximately

7.5𝐷, and that of RANS is approximately 10𝐷.
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Figure 3-2. Comparison of mean axial velocity distribution between the LES and RANS
simulation on the centerline.

An instantaneous pressure field of the LES [152] is shown in Fig. 3-3. At the nozzle exit,

semi-periodic shock-cells are formed due to the pressure mismatch between the nozzle exhaust

and ambient gas. It is observed that there are acoustic waves that propagate in the downstream

and upstream directions in the near-field region. The parallel patterns in the downstream direction

are the Mach wave radiation [22] caused by the large-scale turbulent structures, whereas the

acoustic waves in the upstream direction are BBSAN [22].

Figure 3-3. Instantaneous pressure contour (𝑝− 𝑝∞) in Pa.

Frequency spectra of pressure perturbations of the LES data inside the shear layer at

𝑟/𝐷 = 0.5 and axial locations 𝑥/𝐷 = 1, 4, 7, and 10 for azimuthal modes 𝑚 = 0 to 3 are shown in

Fig. 3-4. These azimuthal modes are selected because they capture large amount of energy. These
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locations correspond to the near jet exit, the middle of core region, the end of potential core

region, and the fully developed region, which are representative.

The frequency spectra is dominated by the frequency near St = 0.2 at 𝑚 = 1 for different

axial locations, which are apparent at 𝑥/𝐷 = 1. The feed-back mechanism instigates strong

instability waves at this particular frequency and corresponding harmonics [19]. These

frequencies are most amplified in the jet by the instability waves [89] and are also captured by the

LES. These instability modes correlate with noise radiated from the shear layer in the direction of

the dominant radiation direction (see Mohseni [89]), which will provide more understanding and

directions to examine specific frequencies for following linear instability modes.
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Figure 3-4. Frequency spectra of modal pressure perturbations of LES data at several axial
positions in the jet shear layer at 𝑟/𝐷 = 0.5.
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3.1.2 Instability Wave Detection

In this section, the properties of the instability waves are shown. The growth rate and phase

speed at distinct St and streamwise direction are obtained firstly. The shape functions associated

with instability waves in the radial and streamwise directions are presented. Finally, the

amplitudes of the instability waves are determined via matching with the LES dataset. The

pressure field is constructed from particular POD modes.

3.1.2.1 Stability Analysis

The mean velocity and density are required to evaluate the Rayleigh equation (Eqn. 2-12

with 𝑛 = 0). Figure 3-5 shows the velocity and density component along the radial direction at

different axial positions. It can be seen that the velocity will decay sharply outside the jet in the

core region. At the end of the core and the transitional regions where 𝑥/𝐷 > 7, it is observed that

the mean streamwise velocity starts to spread slowly. Similar trends are also observed for denstiy,

which is expected. The normalized velocity and density of 𝑥/𝐷 = 1 and 4 are above and below

the fully expanded values within the results near the centerline. This is because the existence of

shock cell structure in the potential region.
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Figure 3-5. Variation of the streamwise velocity component and density in the radial direction at
different axial locations from the LES.

Figure 3-6 presents the phase speed and growth rate for 0 < St < 0.6 with ΔSt = 0.05 for

different azimuthal modes at 𝑥/𝐷 = 2.5. For different azimuthal modes, the phase speeds have
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similar trend which decreases firstly and then start to increase. Generally, the growth rate is

relatively small at lower and higher St. The peak value of growth rate is near St ∼ 0.2. This

phenomenon is consistent with the changes of spectra of pressure perturbations (Fig. 3-4), where

the largest amount of energy are at around St ∼ 0.2 and the energy at the higher St are relatively

low. Also, it is very close to the peak magnitude of large scale structure jet noise radiation.

Figure 3-7 shows the phase speed and growth rate in the streamwise direction at St = 0.2006

for 𝑚 = 0, 1, and 2. The analysis is initiated from 𝑥/𝐷 = 0.1, which is the left boundary of the

sampling region of the LES. The phase speeds exhibit strong oscillations inside the potential core

region and begin to decay sharply behind the potential core region. This phenomenon reflects that

the instability wave extracts the energy from the mean flow and is similar to the mean flow

variation in the core region. The phase speed of 𝑚 = 0 is larger than other modes inside the

potential core region. The initial growth rates for all modes peak on the initial axial plane and

then decay with axial distance. However, the growth rates appear to contain a local increase near

𝑥/𝐷 = 2.
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Figure 3-6. Variation of phase speed and growth rate of different azimuthal modes at 𝑥/𝐷 = 2.5.

3.1.2.2 Eigenfunction Comparison

The shape function 𝒒̂ of the instability wave solution, Eqn. (2-11), is important for

determining the spatial distribution of perturbations. Figures 3-8 and 3-9 show comparisons of the

shape functions of pressure and axial velocity perturbations at different axial locations for 𝑚 = 0
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Figure 3-7. The development of phase speed and growth rate of different azimuthal modes along
the streamwise direction at St = 0.2006.

and 1 between the LES and instability wave prediction. The corresponding St is 0.2006. The

eigenfunctions are not valid at larger 𝑟 because solutions of the compressible Rayleigh equation

are not valid in that region and must be asymptotically matched with the outer solution [89]. The

shape functions at specified axial locations are scaled with the maximum value obtained from

LES at equivalent axial locations. For 𝑚 = 0, the eigenfunction can be matched at the lip-line

when 𝑥/𝐷 < 2.5, while the agreement is poor in the region 2.5 < 𝑥/𝐷 < 6. This is because the

instability wave excited by the screech tone in the jet exit region becomes amplified in the

downstream and interacts with the shock cell structure. This is a nonlinear interaction.. The

instability wave theory cannot capture the nonlinear effects due to the formulation based on the

linearization of Navier-Stokes equations. The amplitudes of corresponding eigenfunctions of

velocities in the radial direction are near infinity as shown in Figs. 3-8(b) and 3-9(b) due to the

existence of a critical layer [89].
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Figure 3-8. Comparisons of pressure and axial velocity eigenfunctions for 𝑚 = 0 between
prediction (dash line) and LES (solid line).
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Figure 3-9. Comparisons of pressure and axial velocity eigenfunctions for 𝑚 = 1 between
prediction (dash line) and LES (solid line).

We apply the matched asymptotic expansion method [17] to combine the inner and outer

solution so that the eigenfunction can be extended to larger radial distances. The amplitudes of

instability wave solutions are obtained by matching with the LES database (Eqn. (2-45)). The
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comparisons of eigenfunctions of pressure perturbations between the LES and instability wave

solutions are shown in Fig. 3-10 and 3-11. It can be seen that the eigenfunctions have a very

similar decay rate at 𝑚 = 1, 2, and 3 along the radial direction within the linear-hydrodynamic

regime, where the region is approximately located at 0.5 < 𝑟/𝐷 < 2.5 [54, 82]. However, the

comparison of decay rate at 𝑚 = 0 is poor. For the comparisons in the streamwise direction, the

amplitudes of instability wave modes increase from the nozzle exit, and then reach a higher value

around 𝑥/𝐷 = 4 to 6, and finally decrease. These trends agree with Liu’s observations [70, 83] of

variation of amplitudes of instability waves, which have a maximum value near the end of

potential core. The position of peak amplitude is close to the nozzle exit as the azimuthal mode

increases, as observed in the Fig. 3-11, which is similar with the previous results of Liu [70, 83].

The amplitudes of LES increase from the nozzle exit along the streamwise direction.
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Figure 3-10. Comparisons of eigenfunctions of pressure perturbations between LES and
prediction at St = 0.1506 for different azimuthal modes at 𝑥/𝐷 = 2.5.

We next apply the POD method to the LES database to decompose the mean flow-field. The

extracted modes which represent the energy they captured. In general, the energetic modes can be

used to construct the flow-field and represent the effects of the coherent structures. The

reconstructed flow-field dataset is substituted into Eqn. (2-45) to compute amplitudes of

instability wave models.

The POD modes are obtained in the space (𝑥,𝑟) domain corresponding each azimuthal

mode. Figure 3-12 shows the eigenvalues of the POD results with increasing St. The dimension
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Figure 3-11. Comparisons of eigenfunctions of pressure perturbations between LES and
prediction at St = 0.1506 for different azimuthal modes along the streamwise
direction at 𝑟/𝐷 = 3.

of the sampled LES database is 2281×30×12×44, which corresponds to [𝑡, 𝑟, 𝜃, 𝑥]. We separate

the database with 𝑁 = 512 with an overlap of 0.50. The total block number is 7. The setting is

enough for analysis. The norm is based on pressure perturbations. The eigenvalues decrease as

the mode number increases from 𝑗 = 1 to 7 as the direction of the arrows in Fig. 3-12. It can be

seen that as the azimuthal modes increase, the energy decreases. We observer a strong low-rank

behaviour near St = 0.2 for 𝑚 = 1, which coincides with the screech frequency of the jet.

However, the low-rank behavior in other azimuthal modes do not exist.

The pressure fields of the first and second POD modes for azimuthal modes 𝑚 = 0, 1, 2, and

3 are plotted at St = 0.12, 0.21, 0.4, and 0.61 in Figs. 3-13 to 3-16. Some modes at some

azimuthal modes take the form of coherent structures, such as the first mode of St = 0.6 for 𝑚 = 0.

Some modes have complex structures, such as the second mode of St = 0.4 for 𝑚 = 0. We believe

this is due to the existence of fine-scale structures in these modes. We reconstruct the flow-field

from −3 ≤ 𝑚 ≤ 3 with the 1st and 2nd POD modes as they are dominated by coherent structures.
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Figure 3-12. Eigenvalues as a function of St at different azimuthal modes.
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Figure 3-13. Eigenfunctions at St = 0.12, 0.21, 0.4, and 0.61 for 1st mode and 2nd mode for 𝑚 = 0.
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Figure 3-14. Eigenfunctions at St = 0.12, 0.21, 0.4, and 0.61 for 1st mode and 2nd mode for 𝑚 = 1.
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Figure 3-15. Eigenfunctions at St = 0.12, 0.21, 0.4, and 0.61 for 1st mode and 2nd mode for 𝑚 = 2.
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Figure 3-16. Eigenfunctions at St = 0.12, 0.21, 0.4, and 0.61 for 1st mode and 2nd mode for 𝑚 = 3.
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Figure 3-17 shows the comparisons of POD results and the calibrated instability wave

models. It can be seen from the eigenfunctions in the radial direction (Fig. 3-17(a)) at 𝑥/𝐷 = 2.5

that they have a similar decay rate at 𝑚 = 1 and 2. Furthermore, the comparison at 𝑚 = 0 is

improved due to the similar decay rate in the linear-hydrodynamic region. However, the

eigenfunctions have poor agreement in the streamwise direction. We believe there are several

reasons causing this. The matched asymptotic expansion method to combine the inner and outer

solutions of instability waves may have some problems. The modes we chose to reconstruct the

flow-field needs to be determined carefully. The norm of the POD analysis is a potential factor in

constructing the flow-field to find the coherent structures.
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Figure 3-17. The comparison of eigenfunctions for different azimuthal modes at St = 0.1506.

3.1.3 Far-Field Sound

The far-field SPL from the instability wave solution is evaluated by Eqn. (2-27), where the

term 𝑔̂(𝜂;𝜔,𝑚) is computed via Eqn. (2-37). The axial source region is chosen to extend to

𝑥 = 13𝐷, which is the maximum downstream location of sampled LES data.
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Figure 3-18 shows the computed far-field SPL at discrete St = 0.1003, 0.2006, and 0.4004,

where St = 0.1003 is the subharmonic frequency of 0.2006, and St = 0.4004 is the harmonic

frequency. The unknown constant 𝐷̃ in Eqn. (2-27) is set equal to 0.05, which ensures the SPL is

the same as the maximum of experimental measurements at St = 0.2006. Figure 3-18(b) shows

that predicted SPL matches experimental measurements for 𝜓 < 80◦, where the jet noise from the

large-scale turbulence dominants. In the upstream direction, the predicted SPL is approximately 7

to 10 dB lower than measurements. Our predictions confirm that the instability waves radiate

noise in the upstream direction, but fine-scale mixing noise and BBSAN dominate in this

direction. For FWH predictions ([152]) the peak noise amplitude in the upstream direction is

dominated by BBSAN. The SPL predicted by FWH differs by at most 4 dB relative to experiment

over the whole region as shown in Figs. 3-18(a) and 3-18(b). The predicted SPL of the instability

wave at St = 0.4004 in Fig. 3-18(c) is lower by about 30 dB than experimental measurements and

FWH in the upstream and lower by about 15 dB in the downstream directions. The subharmonic

frequency of the excited instability wave in Fig. 3-18(a) shows that predicted SPL is 5 ∼ 8 dB

lower than the experiment in the downstream direction. This is because nonlinear effects are more

pronounced at lower frequencies [80].

Figure 3-19 illustrates comparisons between the FWH and instability wave theory at

different azimuthal modes from 𝑚 = 0 to 3. We only present the positive azimuthal modes. The

negative modes are the same as positive modes due to properties of eigenfunction [18]. The SPL

from the FWH at 𝑚 = 0 is higher than 𝑚 = 1, 2 and 3, which means large-scale turbulent

structures contribute more to 𝑚 = 0 radiated acoustic energy in the downstream direction. The

instability noise source dominants at 𝑚 = 1. According to Tam [19], when 𝑀 𝑗 > 1.3, the screech

tone will change the mode shape from 𝑚 = 0 (axisymmetric mode) to 1 (helical mode). Our

predictions capture this observation. For St = 0.4004, the SPL of instability wave theory at 𝑚 = 2

and 3 is larger than 𝑚 = 0 and 1, which means that the dominant modes will change or there is no

single dominant mode for higher frequencies as described by Tam [18].
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Figure 3-18. Far-field noise comparisons on a polar arc of 100𝐷 relative to the nozzle exit at
different St.
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Figure 3-19. Far-field noise comparisons on a polar arc of 100𝐷 at different St at different
azimuthal modes.
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3.1.4 Correlation and Coherence Analysis

In this section, the auto-correlation, cross-correlation, and coherence in the far-field region

for the predictions of instability waves and FWH methods are presented. The noise sources are

analyzed based on the correlation results. In addition, the coherence analysis are used to

understand the relation of the noise source in the frequency domain.

Firstly, the time series of pressure perturbations from instability wave models are

constructed. We convert the outer solution (Eqn. (2-19)) to spherical coordinates and apply the

stationary phase approximation method. Therefore, the pressure at the fixed azimuthal mode and

frequency is obtained at the observer locations as

𝑝(𝑅,𝜓) = 𝑅
2
𝐴̂0𝑔̂(𝜂)exp

(
𝑖(Φ(𝜂) − 𝜋

2
(𝑚 +1))

)
exp(−𝑖𝜔𝑡 + 𝑖𝑚𝜃), (3-1)

and

Φ(𝜂) = 𝑅

1−𝑀2
∞
𝜌̄

1/2
∞ 𝑀 𝑗𝜔

[
(1−𝑀2

∞sin2𝜓)1/2 −𝑀∞cos𝜓
]
. (3-2)

The amplitudes 𝐴̂0 are calibrated with the results in downstream direction (𝜓 = 150◦) where

the large-scale turbulent structures dominant. The time series of pressure perturbations from

instability wave models are obtained with the inverse Fourier transform of Eqn .(3-1).

3.1.4.1 Correlation Analysis

Figure 3-20 shows the comparison of measured normalized auto-correlations between the

predictions from instability wave models and FWH method from 𝜓 = 160◦ (downstream) to 50◦

(upstream) relative to the nozzle exit, where the dashed line is for results of instability waves and

solid line is for FWH. It is shown that there are three shapes from the FWH results. When

𝜓 ≥ 130◦, they show large negative peaks, which demonstrates the character of the noise from

large-scale turbulent structures [50]. When 𝜓 = 110◦ and 120◦, the negative values of FWH

become smaller, which represent there are other noise sources become equivalent important as

large-scale turbulent structures. When 𝜓 ≤ 90◦, there is a sharp peak and a clear ringing around

the peak, which implies the combination of noise from fine-scale turbulent structures and BBSAN
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[51]. On the other hand, the predictions show wide and large negative peaks for every angle,

which provide evidence that the noise source of predictions are from large-scale turbulent

structures. The instability waves can be used to approximate part of the noise from large-scale

turbulence structures.
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(a) 𝜓 = 160◦
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(b) 𝜓 = 150◦
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(c) 𝜓 = 140◦
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(d) 𝜓 = 130◦
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(e) 𝜓 = 120◦
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(f) 𝜓 = 110◦
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(g) 𝜓 = 90◦
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(h) 𝜓 = 80◦
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(i) 𝜓 = 70◦
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(j) 𝜓 = 60◦
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(k) 𝜓 = 50◦

Figure 3-20. Comparison of auto-correlation between the predictions’ and FWH results from
𝜓 = 160◦ to 𝜓 = 50◦.
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Figure 3-21 shows the comparison of normalized cross-correlations between the predictions

based on instability wave models and FWH method, where the fixed microphone is at 𝜓 = 150◦

and 𝑅/𝐷 = 100 and the other microphone moves along an arc centered on the nozzle exit from

𝜓 = 150◦ to 50◦ with distance 𝑅/𝐷 = 100. There is a peak value for 𝜓 = 150◦ with 𝜓 = 160◦ and

𝜓 = 140◦, which means the dominant noise is from large-scale turbulent structures. However,

there is no such peak at other observation angles. The results from predictions show similar shape

and the range of coefficient are close, which shows that the radiated noise at other angles and the

reference angle are from the similar noise source.

3.1.4.2 Coherence Analysis

An alternative method for ascertaining the level of correlation throughout the radiated

sound field is formed via the coherence spectra computed via Eqn. (2-64). It can be used to learn

more about the relation in the frequency domain. We show the coherence on several distinct St

and observation angles.

Figures 3-22 and 3-23 are comparisons of coherence of far-field pressure perturbations

between the instability waves models prediction and FWH method, where the reference

microphone is located at 𝜓 = 150◦ and 𝑅/𝐷 = 100. Figure 3-22 shows the variation of coherence

with increasing St for 𝜓 = 150◦ with 160◦, 90◦, and 50◦, where Fig. 3-22(a) is the coherence of

the results of instability waves. It can be seen that the coherence value are in the range of 0.4 to 1,

while the coherence of the associated FWH method has its largest value at St = 0.2 (screech tone

frequency). The value at other frequencies are relatively lower, for 𝜓 = 150◦ with 90◦ and 50◦.

This phenomena shows the noise source is similar for the predictions based on the instability

waves models. To be consistent with the far-field noise analysis, we still choose St = 0.1, 0.2, and

0.4 to study the coherence. The coherence values from predictions based on the instability wave

models are very close for three St for all the angles.
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(a) 𝜓 = 150◦ vs 𝜓 = 160◦
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(b) 𝜓 = 150◦ vs 𝜓 = 140◦
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(c) 𝜓 = 150◦ vs 𝜓 = 130◦
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(d) 𝜓 = 150◦ vs 𝜓 = 120◦
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(e) 𝜓 = 150◦ vs 𝜓 = 110◦
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(f) 𝜓 = 150◦ vs 𝜓 = 90◦
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(g) 𝜓 = 150◦ vs 𝜓 = 80◦
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(h) 𝜓 = 150◦ vs 𝜓 = 70◦

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

10
-3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(i) 𝜓 = 150◦ vs 𝜓 = 60◦
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(j) 𝜓 = 150◦ vs 𝜓 = 50◦

Figure 3-21. Comparison of cross-correlation between the predictions’ and FWH results from
𝜓 = 160◦ to 𝜓 = 50◦ at far-field, where the reference microphone is at 𝜓 = 150◦ and
𝑅/𝐷 = 100.
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(a) Instability Wave
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(b) FWH

Figure 3-22. Coherence of far-field pressure perturbations along with St for 𝜓 = 150◦ vs 160◦,
90◦, and 50◦.
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(a) Instability Wave

6080100120140160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) FWH

Figure 3-23. Coherence of far-field pressure perturbations at different angles at St = 0.1, 0.2, and
0.4, where the reference microphone is at 𝜓 = 150◦.
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3.2 Results of SERDP Case

3.2.1 Flow-Field Analysis

The second case we examine is an over-expanded conical nozzle from the SERDP program

designed by Dr. Ukeiley’s group at the University of Florida. The geometry of the nozzle is

shown in Fig. 3-24 (courtesy by Dr. Ukeiley’s group) [162]. The nozzle exit diameter is 0.0508

m. The design Mach number is 𝑀𝑑 = 1.76. The fully-expanded jet Mach number is 𝑀 𝑗 = 1.3. The

NPR and TTR are 2.77 and 1.00, respectively. The 𝑢 𝑗 is 385.6 m/s, and Re𝐷 is 1.0×106.

Figure 3-24. Isometric view of SolidWorks Nozzle (Top Left); Cut View of SolidWorks Nozzle
(Top Right); Side View of Nozzle (Bottom Left); Front View of Nozzle (Bottom
Right).

Figure 3-25(a) shows the results of mean axial velocity along the jet centerline from the

LES and RANS, simulated by Dr. Shen [160] and Dr. Patel, respectively. Figure 3-25(b) shows

comparison of the momentum thickness calculated numerically, which is an important factors in

stability. The non-dimensional mean axial velocity from LES only has a small difference

compared to RANS from the nozzle exit to 𝑥/𝐷 = 2.5. The potential core length of LES is
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approximately 4.5𝐷 and that of RANS is around 5.5𝐷. The mean axial velocity of RANS and

LES begin to decay with a similar rate after 𝑥/𝐷 = 5. The values of momentum thickness of

RANS and LES are very close in the potential core region, however, the thickness of RANS

becomes larger than that of LES.
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Figure 3-25. Comparisons of mean flow at the centerline and momentum thickness between LES
and RANS.

3.2.2 Stability Analysis

Figure 3-26 presents the comparison of the phase speed and growth rate computed from the

mean flow from RANS and LES for 0 < St < 0.7 for 𝑚 = 0 and 1 at 𝑥/𝐷 = 2. The changes of

phase speed based on the mean flow of LES and RANS are similar. The phase speeds decrease at

first and then have a fixed value around 0.78 for 𝑚 = 0. The phase speed increases with the

increasing St for 𝑚 = 1. The growth rate of LES agree with that of RANS for 0.1 ≤ St ≤ 0.4 for

𝑚 = 0, while the growth rate of RANS is less than LES when St > 0.4. The growth rate of RANS

is higher than that of LES when St < 0.3 for 𝑚 = 1, but it becomes lower after this frequency. The

variation is due to the difference of the mean flow and the momentum thickness [163, 88].

Figure 3-27 shows the comparison of phase speed and growth rate computed from the mean

flow from the RANS and LES in the streamwise direction at St = 0.2 for 𝑚 = 0 and 1. The analysis

is initiated from 𝑥/𝐷 = 0.2. The phase speeds exhibit oscillations inside the potential core region

for all modes analyzed for LES and RANS. This phenomenon reflects again that the instability
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wave extracts the energy from the mean flow and is similar to the mean flow variation in the core

region. Similarly, the phase speeds of LES and RANS begin to decay after the potential core. The

growth rates for both modes peak on the initial axial plane and then decay with axial distance.
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Figure 3-26. Phase speed and growth rate at different St computed from the mean flow of LES
and RANS.
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Figure 3-27. Phase speed and growth rate along the streamwise direction computed from the
mean flow of LES and RANS.

3.2.3 Far-Field Noise Prediction

3.2.3.1 Far-Field Noise via Kirchhoff Surface Method

The experimental data was measured using a microphone array on an arc with a radius of

30𝐷 from the upstream direction of 60◦ to the downstream direction of 150◦ with an interval 10◦
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(measured and courtesy by Dr. Ukeiley’s lab). The data on the Kirchhoff surface (𝑅𝑠) is from

LES database [160]. The number of samples is 2230 time steps on the KS with radius 𝑅𝑠 = 3.5𝐷

and length 𝑥𝑠 = 35𝐷. The time history of pressure fluctuations via the KS method is computed via

Eqn. 2-62, where 12 evenly spaced azimuthal locations for each observation angle are computed.

The spectra are averaged at the azimuthal locations to obtain the noise spectrum for each

observation angle. This also can be used to eliminate the poor statistical convergence, especially

at low frequencies.

Figure 3-28 shows comparisons of acoustic spectral between predictions and experimental

measurement at one upstream angle of 60◦, one sideline angle of 90◦, and one downstream angle

of 140◦. For the KS approach, the predicted noise decays rapidly for St ≥ 1. Based on grid

resolution of the simulation, the St𝑚𝑎𝑥 is around 1.5 computed with St𝑚𝑎𝑥 =
(P+1)𝑐∞𝐷

8Δ𝑥𝑢 𝑗
, where P is

the order of precision and Δ𝑥 is the point spacing of the CFD simulation [164]. In addition, the

specific decay frequency also depends on the observation angle. Therefore, the results are

reasonable. There is an over-prediction at 60◦ when St ≤ 0.1. We believe there are two reasons

causing this. The first is the open-shell of KS, the other is the abrupt increment of pressure

perturbations on the KS. It can be seen that the sound spectrum is improved when removing the

abrupt increment of pressure perturbations as the blue line from the Fig. 3-28. The cut-off

frequency at lower range is extended to St = 0.04.

3.2.3.2 Far-Field Noise from Instability Wave Models

The amplitudes of the instability waves are determined firstly within Eqn. (3-1) to

reconstruct the time series of pressure perturbations. The dataset used to calibrate the amplitudes

is obtained with KS method. We choose the dominant direction via the OASPL as shown in Fig.

3-29 within the range of 0 < St ≤ 0.7, which is the range of validity of instability waves for the

present calculation. Therefore, we choose 𝜓 = 150◦ as the angle to calibrate the amplitudes of

instability waves.

Figure 3-30 shows the sound spectra at 𝜓 = 60◦,90◦, and 150◦ for SERDP at 𝑅/𝐷 = 30. The

acoustic predictions are presented within the range of St < 1. It can be seen that the value of SPL
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Figure 3-28. Comparisons of far-field sound spectra between the experiment and KS method at
sideline and downstream directions.

of the predictions from the instability wave modes are lower than the experiment and KS method

at lower St < 0.1, and higher at St ≥ 0.5. The value of SPL at the intermediate St range are close

to the experiment and KS method. The near-field sound spectrum (𝜓 = 50◦ and 𝑅/𝐷 = 15) is also

predicted with the instability wave model and the comparison with the experimental measurement

is shown in Fig. 3-31. The figure shows that there is an over-prediction for the KS method at

lower frequencies, which is similar to the far-field results. The prediction from instability wave

models show poor agreement with the experiment. But this large discrepancy is expected at the

sideline and upstream directions, where the noise from fine-scale and BBSAN dominants.
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Figure 3-29. Comparisons of OASPL among predictions, the KS method, and experimental
measurement.
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Figure 3-30. Comparisons of far-field sound spectra among the instability wave solutions, KS
method, and experiment in the upstream, sideline, and downstream directions.
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Figure 3-31. Comparisons of near-field sound spectrum between the instability wave solutions
and experiment at upstream direction (𝜓 = 50◦).

103



3.2.4 Correlation and Coherence Analysis

The auto-correlation and cross-correlation of experimental measurements and predictions

from instability wave models are compared for the bi-conic nozzle. The noise source are analyzed

based on the correlation results. The coherence analysis provide information in the frequency

domain. In addition, the correlation and coherence between the near- and far-field are analyzed.

The results are used to explain that it is possible to design a control system for large-scale

structure noise based on upstream control if the instability noise can be extracted.

3.2.4.1 Correlation Analysis

Figure 3-32 shows the comparison of measured normalized auto-correlations for the

SERDP nozzle between the predictions’ and experimental results from 𝜓 = 150◦ to 60◦. It is

shown that there are two distinct shapes from the experimental results, which represent two

different noise sources, as described by Tam et al. [50]. The wide peak and large negative peaks

at 𝜓 = 150◦ and 140◦ shows the character of the noise from large-scale turbulent structures. When

𝜓 ≤ 110◦, there is peak and clear ringing around the peak, which implies the combination of noise

from fine-scale turbulent structures and BBSAN [51]. On the other hand, the results of

predictions show wide peak and large negative peaks for every angle, which provides evidence

that the noise source of predictions is large-scale turbulent structures. The instability waves can

be used to approximate part of the noise from large-scale turbulence structures.

Figure 3-33 shows a comparison of maximum normalized cross-correlations. Comparisons

are made between the predictions, KS results, and experiments, where the 𝜓 = 150◦ microphone

is the fixed microphone. The other microphone is moved along an arc centered on the nozzle exit.

For 140◦, the value of cross-correlation coefficient is larger than that of other angles, which

indicates that the dominate noise at the downstream direction is from the large-scale turbulent

structures. The cross-correlation coefficient of the instability predictions at other observer angles

(𝜓 ≤ 130◦) is much larger than experiment. This shows that the noise source in the upstream and

sideline directions is very different from the downstream direction, which is related to the

instability model.
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(a) 𝜓 = 150◦
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(b) 𝜓 = 140◦
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(c) 𝜓 = 130◦
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(d) 𝜓 = 120◦
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(e) 𝜓 = 110◦
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(f) 𝜓 = 100◦
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(g) 𝜓 = 90◦
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(h) 𝜓 = 80◦
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(i) 𝜓 = 70◦
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(j) 𝜓 = 60◦

Figure 3-32. Comparison of auto-correlation between the predictions’ and experimental results
from 𝜓 = 150◦ to 𝜓 = 60◦.

Next, we study the correlation between the near- and far-field acoustic pressure of

predictions, experimental measurement, and KS method. We choose the near-field microphone

(𝑅/𝐷 = 15 and 𝜓 = 50◦) as the fixed reference microphone. Other microphones are at 𝑅/𝐷 = 30

from 𝜓 = 150◦ to 60◦. For the calculation of the time delay (𝜏), the near-field acoustic pressure
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Figure 3-33. Comparison of maximum cross-correlation among the predictions, the KS method,
and experimental results from 𝜓 = 140◦ to 𝜓 = 60◦, where the reference microphone
is at 𝜓 = 150◦.

has an approximate time advancement 𝑑𝜏 = ( |𝑦𝑛 | − |𝑦 𝑓 |)/𝑐∞, where the subscript 𝑛 and 𝑓 denote

the near- and far-field, and 𝑦 is the distance between the noise source and observer locations [27].

The maximum normalized cross-correlation between the near- and far-field is shown in Fig. 3-34.

It can be seen that the correlation coefficients of experimental measurements are less than 0.1

from 𝜓 = 150◦ to 90◦, while there is an incremental change for 𝜓 = 80◦ to 60◦. These results

imply that the near-field upstream and far-field downstream radiation directions are uncorrelated,

and the sound sources are distinct. The correlation coefficients of prediction results vary in the

range between 0.2 to 0.6.

3.2.4.2 Coherence Analysis

Figure 3-35 shows the coherence of far-field acoustic pressure for the SERDP case, where

the reference microphone is located at 𝜓 = 150◦. The variation of coherence at distinct St in Fig.

3-35 shows a lower coherence value than 0.3 for the chosen St (Fig. 3-35(b)), while the coherence

value of predictions are in the range of 0.4 to 1 as shown in Fig. 3-35(a). These results show that

significant coherence is present according to the instability wave prediction alone compared to

experimental measurements. The latter has dominant sources at varying observer angles, and

therefore coherence is not expected to be large over a wide range of observer angles.
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Figure 3-34. Comparison of maximum cross-correlation between the near- and far-field acoustic
pressure from the prediction, the KS method, and experiment. The reference
microphone is in the near-field.
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Figure 3-35. Coherence of far-field acoustic pressure at different angles for St = 0.2,0.35, and 0.6,
where the reference microphone is at 𝜓 = 150◦.
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Next, we present the coherence between near- and far-field acoustic pressures in Fig. 3-36,

where the reference microphone is at the near-field upstream position (𝜓 = 50◦ and 𝑅/𝐷 = 15).

The coherence from instability waves varies within the range of 0.4 to 0.7 at all St, while the

experimental results have coherence values less than a maximum of 0.30 and are nearly zero

through the entire St investigated.
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Figure 3-36. Coherence of near- and far-field acoustic pressure at different angles at St = 0.2,
0.35, and 0.6, where the reference microphone is at 𝜓 = 50◦ and 𝑅/𝐷 = 15.
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CHAPTER 4
CONE FLOWS AND STABILITY CALCULATIONS OF BOUNDARY LAYERS

In this chapter, the mean flow-fields, stability properties, and spatial coherence of pressure

perturbations from instability waves for flows over the cone configuration are predicted, validated,

and discussed, where the cone configuration with different nose radii from sharp to blunt and flow

over cones at different free-stream Mach numbers are studied. Finally, the flow-fields with plasma

actuation are examined.

4.1 Base Flow-Fields Computation and Validation

4.1.1 Mean Flow-Field Computation and Validation

The Stanford University Unstructured (SU2) open source software suite (see Palacios et al.

[158] for details) is used to compute the time-averaged flow-field. The SU2 solver is finite-volume

based, and we solve the steady compressible NS equations in axisymmetric form. We computed

the freestream Mach number (𝑀∞ = 3.5) flow of Gross and Fasel [48] as the test case. In this test

case, the cone half angle is (𝜃) 7◦, the nose radii (𝑟𝑛) is 0.038 mm, and the length of the cone (𝐿)

is 0.3556 m. The other freestream parameters used for the simulations are freestream temperature

and density, and are 90.1 K and 8.74×10−2 kg/m3, respectively. Figure 4-1(a) shows the entire

flow region (0.3556 m × 0.2 m). A structured grid is used with an exponential distribution. This

allows for decreased grid spacing near the wall. The grid point distribution around the nose region

is shown in Fig. 4-1(b). We set the first mesh cell off the wall as 1×10−6 m, which is estimated

for a desired Y+ value less than 1 using flat-plate compressible boundary layer theory.

Additionally, a grid independence study is conducted. On the cone surface, the no-penetration and

the no-slip conditions are enforced. The wall is set to be adiabatic (𝜕𝑇/𝜕𝑦𝑛 = 0).

(a) Flow region (b) Nose region

Figure 4-1. The domain and computational grid near the nose.
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Two grid size are used to examine grid independence. The coarse grid size is 201 points in

the wall normal direction and 201 points in the streamwise direction, and the fine grid uses 401

points in the wall normal direction and 201 points in the streamwise direction. Figure 4-2 shows

the residual and Y+ of the coarse grid simulation. These graphs show that the numerical

simulation converges, and the grid distribution is sufficient to resolve the flow-field.
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(b) Y plus

Figure 4-2. Residual and Y plus of the CFD simulation for the coarse grid point distribution.

The validations of flow-fields from numerical simulation are shown in Fig. 4-3.

Comparisons of the flow-field between two profiles from numerical simulation and Gross and

Fasel [48] (shown as “Ref”) are made with axial velocity and temperature distributions at three

streamwise locations corresponding to Gross and Fasel [48] of 𝑥∗/𝐿 = 0.624, 0.76, and 0.825.

The axial velocity and temperature are normalized with the boundary layer edge values, which are

directly extracted from the CFD solution. The positions of the boundary layer edge of Laible

[165] are defined as the point where the wall normal derivative, 𝜕𝑢/𝜕𝑦, of the velocity component

parallel to the cone surface (𝑢) is minimum. In this paper, we choose the positions as the value of

derivative less than a small value (0.05). We apply the infinity norm of the relative error to

quantify the error among the profiles in the Fig. 4-3. The error of flow-field profiles of the coarse

and fine grid is 1.4% at 𝑥∗/𝐿 =0.76 based on the variation of 𝑇 in the cross-stream direction,

which shows grid independence of the current numerical simulations. In addition, the maximum

infinity norm of relative error between the numerical simulation and Gross and Fasel [48] (shown
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as “Ref”) is 0.8% at 𝑥∗/𝐿 =0.624. Therefore, the coarse grid distribution is used in the following

analysis.
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(b) Temperature

Figure 4-3. The comparison of axial velocity and temperature at different streamwise positions,
where 𝑥∗/𝐿 = 0.624, 0.76, and 0.825.

We perform a parametric study of flow conditions, which is summarized in Table 4-1. We

vary Mach number and leading edge radius. The leading edge radii vary from a sharp curvature to

a blunt cone [111]. We refer to the leading edge radii from smallest to largest as 𝑟𝑖, where 𝑖 is

from 1 to 10.

Table 4-1. Flow conditions.
Free-stream Mach numbers 𝑀∞ = 2, 3.5, and 5
Nose radius 𝑟𝑖 = 0.038, 0.076, 0.152, 0.38, 1.14, 1.905,

3.969, 7.938, 15.876 and 38.1 mm
Half-angle 𝜃 = 7◦
Free-stream temperature 𝑇∞ = 90.1 K
Free-stream pressure 𝑝∞ = 2260.4 Pa

For the flow region, we extend the test case region to 3.5 m × 3.5 m, which is a large value

to guarantee that the flow-field is large enough to capture relevent data for our analysis. The grid

size is 267 points in the wall normal direction and 301 points in the streamwise direction.

Numerical predictions are conducted in serial on the local high-performance computing cluster at

University of Florida.
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Figures 4-4, 4-5, and 4-6 show Mach number contours of a portion of the entire flow region

(0.3 m × 0.2 m) of 𝑟1 = 0.038, 𝑟7 = 3.969, and 𝑟10 = 38.1 mm at 𝑀∞ = 2, 3.5, and 5. As the nose

radii increases at fixed 𝑀∞, the shock detached from the leading edge and a bow shock appears.

The shock layer becomes increasingly thicker, and the entropy layer emerges due to the shock

curvature in the downstream direction. For example, the shock layer thickness within Fig. 4-6 for

𝑟1, 𝑟7 and 𝑟10 at 𝑥∗ = 0.2 m is 0.02, 0.03, and 0.08 m, respectively.

0.0e+00 2.0e+000.5 1 1.5
Mach

(a) 𝑟1 = 0.038 mm

0.0e+00 2.0e+000.5 1 1.5
Mach

(b) 𝑟7 = 3.969 mm

0.0e+00 2.0e+000.5 1 1.5

Mach

(c) 𝑟10 = 38.1 mm

Figure 4-4. Mach number contours at 𝑟1, 𝑟7, and 𝑟10 at 𝑀∞ = 2.
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(a) 𝑟1 = 0.038 mm

0.0e+00 3.5e+000.5 1 1.5 2 2.5 3
Mach

(b) 𝑟7 = 3.969 mm

0.0e+00 3.5e+001 2 3

Mach

(c) 𝑟10 = 38.1 mm

Figure 4-5. Mach number contours at 𝑟1, 𝑟7, and 𝑟10 at 𝑀∞ = 3.5.
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(a) 𝑟1 = 0.038 mm

0.0e+00 5.0e+001 2 3 4
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(b) 𝑟7 = 3.969 mm
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(c) 𝑟10 = 38.1 mm

Figure 4-6. Mach number contours at 𝑟1, 𝑟7, and 𝑟10 at 𝑀∞ = 5.
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4.1.2 Stability Computation and Validation

The stability parameters of our LST solver and results from Mayer [166] are shown in Table

4-2. The values of 𝛽 and 𝜔 are given for the oblique wave and spatial stability computation. The

eigenvalue 𝛼 = 𝛼𝑟 + 𝑖𝛼𝑖 is found from the previously described eigenvalue solver. The oblique

wave angle (𝜓) is computed via tan−1(𝛽/𝛼𝑟). Several factors affect the calculation of eigenvalues,

which include the number of grid points, the discretization method, and the flow-fields. We note

that there are some discrepancies between our calculation and the reference solution due to these

factors.

Table 4-2. Stability Parameters.
𝑓 ∗(kHz) 𝑛 𝛼 𝜓 𝑢𝑝

Mayer [166] 23.415 21 350.1-22.5 𝑖 N/A N/A
LST 23.415 21 353.2-14.96 𝑖 65.93◦ 0.64

Figure 4-7 shows the comparison of the normalized amplitude of eigenfunctions in the

wall-normal direction between the LST and the results from Mayer [166], where the distance in

the normal direction is normalized by the boundary layer thickness 𝛿. Here, “Ref” indicates the

results from Mayer [166]. It can be seen that similar variations of the eigenfunctions exist

between our LST solver and Mayer [166]. There are discrepancies between LST and Mayer [166]

results near the wall region for the 𝑢-velocity component and temperature eigenfunctions. The

positions of the maximum value of 𝑢̂ are at 𝑦𝑛/𝛿 = 0.6154 and 0.5654 for LST and Mayer [166].

The error is 8.9% for the 𝑢̂ component. The error of 𝑇 is approximately 7.2%. The results of our

LST prediction and that of Mayer [166] agree well after the position of the maximum value.

We focus on prediction of the unsteady coherent forcing on the vehicle surface due to

instability waves from the Mack first mode within the present work. We restrict the frequency

( 𝑓 ∗) to be less than 75 kHz for the flow conditions and the azimuthal modes less than 40 because

the first modes are dominant at low supersonic speeds within these ranges. Figure 4-8 shows the

maximum growth rates over all frequencies and azimuthal modes examined for conditions shown

in Table 4-1. It can be seen that the difference of maximum growth rates along the streamwise

direction are less than 1 (1/m) for 𝑟1 = 0.038 to 𝑟4 = 0.38 mm, which demonstrate that the very
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Figure 4-7. Comparison of normalized amplitudes of eigenfunctions between the LST prediction
and the results from Mayer (Ref).

small nose radius will not have too many effects on the maximum growth rate. From 𝑟5 = 1.14 to

𝑟7 = 3.969 mm, the growth rates decrease monotonically as the nose radius increases at 𝑀∞ = 3.5

and 5. However, the trend does not appear at 𝑀∞ = 2. In addition, there are no trends for

𝑟7 = 3.969 to 𝑟10 = 38.1 mm especially in the region close to the leading edge. This is due to the

formation of the entropy layer. For leading edge geometries of 𝑟1 = 0.038 to 𝑟6 = 1.905 mm, there

is an obvious peak in growth rate, then growth rates become smaller after the peak position at

𝑀∞ = 3.5 and 5, which shows the instability waves firstly are amplified, then less amplified, and

decayed finally within the physical sense. After the locations of peak value for 𝑟7 to 𝑟10, the

values of maximum grow rates are changed less relative to the case of 𝑟1 to 𝑟6. Specifically, the

positions of peak value of each case are shown at Table 4-3. On the other hand, the value of

growth rates maintain in the range between 18 and 23 for 𝑟1 to 𝑟6 after the locations of peak value

at 𝑀∞ = 2 except 𝑥∗ = 0.54 m of 𝑟5 due to numerical error.

Table 4-3. Peak position of maximum growth rates of each case (m).
𝑀∞ 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10
2.0 0.31 0.31 0.26 0.26 0.31 0.54 0.50 0.47 0.47 0.34
3.5 0.14 0.14 0.14 0.18 0.23 0.31 0.46 0.3 0.26 0.55
5.0 0.10 0.14 0.10 0.10 0.18 0.34 0.75 0.71 0.34 0.46

116



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-5

0

5

10

15

20

25

(a) 𝑀∞ = 2

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

14

16

18

(b) 𝑀∞ = 3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

12

14

16

18

(c) 𝑀∞ = 5

Figure 4-8. Comparison of maximum growth rate over all frequencies and spanwise wavenumber
along streamwise direction for 𝑟1 to 𝑟10 at 𝑀∞ = 2, 3.5 and 5.

4.1.3 Spatial Coherence

We now present spatial coherence predictions relative to separation distance and radial

frequency. Figures 4-9, 4-10, and 4-11 show the spatial coherence for nose radii from 𝑟1 through

𝑟10 at 𝑀∞ = 2, 3.5, and 5, where the reference point (𝜉 = 0) is the position of maximum growth

rate of each case of Fig. 4-8. For example, spatial coherence shows similar trends for 𝑟1 through

𝑟4. The separation distance between the reference point for higher spatial coherence becomes

smaller as the frequency increases. The larger nose radii shows higher spatial coherence within a

smaller range of frequencies. Secondly, the distribution of high spatial coherence in the frequency

domain is different at each 𝑀∞. The results of spatial coherence at 𝑀∞ = 2 (Fig. 4-9) are at
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higher value when 𝜔∗ ≤ 100 kHz. A narrow band of higher spatial coherence of 𝑟1 to 𝑟7 occurs

when 𝜔∗ ≥ 100 kHz. However, there are unexpected bands at 𝑟8 to 𝑟10. The results at 𝑀∞ = 3.5

and 5.0 are similar. The frequency range of high spatial coherence is from 50 kHz to the

maximum frequency at 𝑟1 to 𝑟4. The lower frequency band becomes smaller when nose radii

increase. However, the upper frequency band of 𝑟5 and 𝑟6 does not change at 𝑀∞ = 5. Several

unexpected bands also appears for 𝑟10 at 𝑀∞ = 3.5 and 𝑟8 at 𝑀∞ = 5.

Amplified instability waves show higher spatial coherence than damped instability waves,

which create the distribution of the spatial coherence within Figs. 4-9, 4-10, and 4-11. The values

of growth rates mainly depend on the non-dimensional frequency, 𝜔 = 2𝜋 𝑓 ∗(𝜈∗𝑒𝑥∗/𝑢∗𝑒)1/2/𝑢∗𝑒, and

the instability waves are amplified when 𝜔 is within a range, i.e. 0.02 ∼ 0.06. The

non-dimensional frequency is proportional to the dimensional frequency, streamwise locations,

length scale, and inversely proportional to velocity. Specifically, for the nose radii 𝑟1 through 𝑟4 at

fixed 𝑀∞, the reference points (𝑥∗) are smaller so that the instability waves are amplified at higher

dimensional frequencies. The length scale increases as the nose radii increases at fixed 𝑀∞,

hence, the frequency range becomes smaller as nose radii increases. The frequency range

becomes larger for higher 𝑀∞.
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(j) 𝑟10

Figure 4-9. Spatial coherence of different nose radii from 𝑟1 to 𝑟10 at 𝑀∞ = 2, where the reference
point of each case is at the maximum grow rate along streamwise direction.
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Figure 4-10. Spatial coherence of different nose radii from 𝑟1 to 𝑟10 at 𝑀∞ = 3.5, where the
reference point of each case is at the maximum grow rate along streamwise direction.
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Figure 4-11. Spatial coherence of different nose radii from 𝑟1 to 𝑟10 at 𝑀∞ = 5, where the
reference point of each case is at the maximum grow rate along streamwise direction.

121



4.2 The Effects of Plasma Actuator Model

4.2.1 Validation and Flow Structures

We validate our implementation of the plasma actuation model via comparison with the

ramp flow of Poggie [138, 137]. The ramp configuration of Poggie [138, 137] consists of an

initial flat plate of length 𝐿 = 0.439 m and width𝑊 = 0.61 m mounted parallel to the freestream.

The wall turns at an angle of 𝜃 = 24◦. The freestream conditions are 𝑀∞ = 14.1, 𝑇∞ = 72.28 K,

and 𝑅𝑒∞(1/𝑚) = 238,040. The parameters of the plasma actuator model (Eqn. (2-91)) are set as

𝑄 = 100 W, 𝑥𝑐 = 𝐿/2, 𝑦𝑐 = 0.008 m, 𝑧𝑐 =𝑊/2 m, and 𝑎 = 0.005 m. We reduce the computation by

scaling half size of the ramp configuration. The wall is set as isothermal, and the temperature is

𝑇𝑤 = 297.46 K. Figure 4-12 shows the grid distribution. The gird is finer in the inlet and the

corner region to resolve the base flow (Fig. 4-12(a)). The grid is also finer in the region around

the plasma actuator model for flow with plasma actuation (Fig. 4-12(b)). The number of grid

points are 181×61×90 and 196×61×90, respectively. The number of grid in the cross-stream

direction is set to ensure the value of Y+ less than 1.

(a) Grid distribution of base flow (b) Grid distribution of flow with plasma actuation

Figure 4-12. Grid distribution.

The comparison of pressure coefficient, 𝐶𝑝 = 2𝑝𝑤/𝜌∞𝑢2
∞, between the simulations and

experimental measurement is shown in Fig. 4-13. The comparison between the results of the base

flow and experiment has a maximum difference of approximately 0.23 at 𝑥/𝐿 = 1.42. This is

likely due to the closure not accurately predicting the correct separation point. On the other hand,

the value of 𝐶𝑝 of flow with a source at 𝑥/𝐿 = 1.29 is 0.356, which is lower than the that of base

flow of 0.465. This is consistent with results of [137, 141]. In addition, the values of 𝐶𝑝 of flow
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with the actuator model are larger near the position of 𝑥𝑐. This observation is expected based on

experimental results [130].
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Figure 4-13. Comparison of pressure coefficient of base flow and flow with plasma actuator
model.

We show contours of pressure and temperature of flow-fields with and without actuation in

Figs 4-14 and 4-15. These contours are in the plane 𝑧 = 𝑧𝑐. The actuator causes an increase of

pressure around the source region (Fig. 4-14(b)) and a conic shock forms in front of the actuator,

which explains the localized increasing 𝐶𝑝 by 0.05 as shown in Fig. 4-13. It can be seen that the

plasma actuator model generates a localized region with high temperature up to 3500 K above the

plate surface as shown in Fig. 4-15(b) (scaled to 2000K for comparison). The temperature of the

region behind 𝑥𝑐 also increases because the heat is convected to downstream regions. Figure 4-16

shows the temperature distribution at the surface 𝑦 = 𝑦𝑐. There is a limited region in the

𝑧-direction with higher temperature due to the added plasma actuator model. The affected range

in the 𝑧-direction is between 𝑧− 𝑧𝑐 ∼ [−0.01 0.01], which is consistent with the distributions of

plasma actuator. The temperature decreases by 70.8% relative to the center of the plasma actuator.

In addition, the heat is transferred to the end of the ramp, which has a distance of 0.48 m to the

actuator.
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Figure 4-14. Pressure distribution at the surface 𝑧𝑐.
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Figure 4-15. Temperature distribution at the surface 𝑧𝑐.
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Figure 4-16. Temperature distribution at the surface 𝑦𝑐.

4.2.2 Cone Flows with plasma actuator

We now examine steady flows over cones with plasma actuation. The mean flow-field over

the cone with actuation is computed with SU2. We use the same boundary conditions as the base

flow described in Section 4.1. The computational domain is refined near the plasma actuator

region. We modified the plasma actuator model by eliminating 𝑧-direction as 𝑆𝑣 =
𝑄

𝜋𝑎2 exp
(
− 𝑑2

𝑎2

)
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and 𝑑 =
√︁
(𝑥− 𝑥𝑐)2 + (𝑦− 𝑦𝑐)2. The parameters of the plasma actuator model are 𝑄 = 100 W,

𝑎 = 0.005 m, 𝑦𝑐 = 0.008 m, and 𝑥𝑐 is set as the position of maximum growth rate of each case

(Fig. 4-8) according to the investigations of Corke et al. [136].

4.2.2.1 Mean Flow-Field Modifications

We first examine modifications to the steady flow-field. Figures 4-17, 4-18, and 4-19 show

the comparison of temperature and velocity in the cross-stream direction for 𝑟1, 𝑟7, and 𝑟10 at

𝑥∗ = 𝑥𝑐 at 𝑀∞ = 2,3.5, and 5, where the 𝑦-axis is extended to 𝑦𝑐. The solid lines are the

predictions from the base flow, and the dash lines are the predictions of the flow with actuation. It

can be seen that the temperature increases from the cone surface and the velocity become smaller

for each case. For example, the temperature differences between the flow with plasma actuator

model and base flow at 𝑀∞ = 3.5 of each nose radii around of 𝑦∗ = 𝑦𝑐 are 20, 55.2, and 38.4 K,

respectively. The velocity difference of each case around 𝑦∗ = 𝑦𝑐 are 15.2, 91.1, and 68.7 m/s,

respectively.
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(a) 𝑟1 = 0.038 mm
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Figure 4-17. Comparison of temperature and velocity between base flow and flow with plasma
actuator model of 𝑟1, 𝑟7, and 𝑟10 at 𝑥∗ = 𝑥𝑐 at 𝑀∞ = 2.
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(a) 𝑟1 = 0.038 mm
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(b) 𝑟7 = 3.969 mm
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Figure 4-18. Comparison of temperature and velocity between base flow and flow with plasma
actuator model of 𝑟1, 𝑟7, and 𝑟10 at 𝑥∗ = 𝑥𝑐 at 𝑀∞ = 3.5.
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(a) 𝑟1 = 0.038 mm
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(c) 𝑟10 = 38.1 mm

Figure 4-19. Comparison of temperature and velocity between base flow and flow with plasma
actuator model of 𝑟1, 𝑟7, and 𝑟10 at 𝑥∗ = 𝑥𝑐 at 𝑀∞ = 5.
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We compare the temperature distribution in the wall normal direction at 𝑥∗ = 𝑥𝑐 for 𝑟1 to 𝑟10

at 𝑀∞ = 2, 3.5, and 5 because the main effect of plasma actuation adds an equivalent heating

source. Figure 4-20 shows the temperature difference between the flow with the plasma actuator

model (𝑇ℎ) and base flow (𝑇𝑏) related to the temperature of the base flow at 𝑥∗ = 𝑥𝑐, where the

𝑥-axis is distance from the cone surface normalized with the boundary layer thickness (𝛿) of the

base flow. The maximum value of the relative temperature difference becomes larger as

freestream Mach number increases. There are two peaks for the 𝑟1 to 𝑟5 cases, which we refer to

as the first and second peaks, where the positions of the two peaks are at the boundary layer edge

and shock layer edge, respectively. The value of the first peak is larger than that of the second

peak because the center of the plasma actuator is more closer to the bounday layer edge. The

values of relative temperature difference between the first and second peak become larger at 𝑟6

due to the presence of an entropy layer. A new peak appears between the first and second peaks at

𝑟8 to 𝑟10. The value of the new peak is larger than the first and second peaks at 𝑀∞ = 3.5 and 5.

For example, the value of new peak is 1.2 for 𝑟9 for 𝑀∞ = 5, whereas that of second value is 0.64.

Based on our predictions, the effect of high freestream Mach number is relatively strong

compared to lower Mach numbers on the maximum relative temperature difference.

4.2.2.2 Stability Modifications

Figure 4-21 shows the maximum growth rate distribution in the streamwise direction with

actuation for 𝑟1 to 𝑟10 at 𝑀∞ = 2, 3.5 and 5, respectively. In general, the growth rates decrease

with actuation except 𝑟9 and 𝑟10 at 𝑀∞ = 2, which shows the instability waves are stabilized with

actuation. It can be seen that there is no obvious trends of the growth rate distributions with

increasing nose radii. We believe this is due to the different positions of plasma actuator model at

each nose radii. However, we can still obtain several trends. For 𝑟1 to 𝑟4, the positions of plasma

actuator are same or varies between -0.04 to 0.04 m. It can be seen that the values of maximum

growth rate decrease as the nose radii increase at 𝑀∞ = 3.5 and 5, which shows that the

flow-fields with actuation are stabilized more intensively with larger nose radii. On the other

hand, at 𝑀∞ = 2, the values of maximum growth rates of 𝑟1 to 𝑟4 vary less than 4 before 𝑥∗ = 0.3
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Figure 4-20. Relative temperature difference caused by the plasma actuator at 𝑥∗ = 𝑥𝑐 for 𝑟1 to 𝑟10
at 𝑀∞ = 2, 3.5, and 5.

m, which is the position of the plasma actuation of 𝑟1 and 𝑟2. Based on the phenomenon, we think

that the effects of nose radii is notable for flow with actuation at higher free-stream Mach number.

Figure 4-22 shows the relative difference of maximum growth rates between the base flow

and flow with actuation, where the 𝑥−axis is normalized with 𝑥𝑐. The growth rate difference is

normalized with maximum growth rate of the base flow-fields for each conditions. These results

illustrate the effect of the plasma actuator model on stability in the positions before and after the

position of the plasma actuator model. For smaller nose radii (𝑟1 to 𝑟4), the higher value of the

relative difference is located close to the heating source (0.5 < 𝑥∗/𝑥𝑐 < 1.5) at 𝑀∞ = 3.5 and 5.

However, the reverse effect is shown at 𝑀∞ = 2. One potential reason is that the value of 𝑥𝑐 of
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Figure 4-21. Comparison of maximum growth rate over all frequencies and spanwise
wavenumber along streamwise direction of flow with plasma actuator model for 𝑟1
to 𝑟10 at 𝑀∞ = 2, 3.5 and 5.

𝑀∞ = 2 is larger than that of 𝑀∞ = 3.5 and 5. It also can be seen that the effects of plasma

actuation on stability at 𝑀∞ = 2 within the region 𝑥 > 𝑥𝑐 is stronger than that at 𝑀∞ = 3.5 and 5.

For large nose radii (𝑟5 to 𝑟10), the trends are difficult to ascertain. The interaction of the entropy

layer and plasma actuation create a complicated nonlinear trend.

Figures 4-23, 4-24, and 4-25 show the spatial coherence of flow with actuation for nose

radii from 𝑟1 through 𝑟10 at 𝑀∞ = 2, 3.5, and 5. The actuated flows have smaller separation

distance with high spatial coherence than that of base flow at the same frequency. For example,

for 𝑟5 at 𝑀∞ = 3.5, the separation distance is 0.68 m for base flow at 𝜔∗=75 kHz, however, that

value of actuated flow is 0.12 m. Additionally, the actuated flows show high spatial coherence
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Figure 4-22. Relative difference of maximum growth rate along streamwise direction for 𝑟1 to 𝑟10
at 𝑀∞ = 2, 3.5 and 5.

within a smaller frequency range compared with the base flow. For example, at 𝑀∞ = 3.5 with

radii 𝑟5, the frequency range with high spatial coherence for base flow is between 26 to 371 kHz,

whereas the range of flow with plasma actuator is 15 to 105 kHz. It also can be seen that the lower

and upper limit frequency with high spatial coherence of actuated flow become smaller than that

of base flow. The reason is that the value 𝑢∗𝑒 of the flow with plasma actuation is smaller than that

of base flow. Therefore, the frequency needs to become smaller to keep the value of 𝜔 to have the

instability wave amplified. The decrease of separation distance can also be explained via this way.
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Figure 4-23. Spatial coherence of flow with plasma actuator model for 𝑟1 to 𝑟10 at 𝑀∞ = 2.
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Figure 4-24. Spatial coherence of flow with plasma actuator model for 𝑟1 to 𝑟10 at 𝑀∞ = 3.5.
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Figure 4-25. Spatial coherence of flow with plasma actuator model for 𝑟1 to 𝑟10 at 𝑀∞ = 5.
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CHAPTER 5
SUMMARY AND FUTURE WORK

5.1 Summary of Results

5.1.1 Jet Flows

Large-scale turbulent structures are the dominant noise sources in the downstream direction

within jet flows. In this dissertation, we apply instability wave models to represents the effects of

large-scale turbulent structures within the turbulent jet. The near-field dynamics and far-field

noise in both the downstream and upstream directions are calculated and analyzed. The previous

chapters reviewed the method used, such as the POD method to identify the large-scale turbulent

structures. The instability wave amplitudes are calculated with the far-field noise predicted by the

KS method. The jet noise prediction via the KS method is based on an LES database.

The results and discussion are shown for two jet flows in different configurations. One is a

round convergent nozzle with an under-expanded condition from the SHJAR database. The other

is a bi-conic nozzle operating at an over-expanded condition, which is the SERDP case. The

corresponding operating conditions are shown in Table 5-1.

Table 5-1. Operating Conditions.
Nozzle NPR TTR 𝑇𝑗 [K] 𝑀 𝑗 𝑢 𝑗 [m/s] 𝑅𝑒𝐷

SHJAR 3.514 3.20 670.4 1.47 762.39 6.26×105

SERDP 2.77 1.00 218.9 1.30 385.62 1.60×106

We examine the properties of the noise from instability waves, such as the directivity in the

far-field and the dominance of azimuthal modes for the SHJAR case. The results show that the

instability wave theory captures the directivity pattern of large-scale turbulent structures, which

dominates the downstream radiation direction. Instability theory is able to quantify the radiation

of noise from the large-scale turbulent structures in the upstream direction, where fine-scale

turbulent structures dominate. The SPL from instability waves are lower by approximately 10 to

30 dB relative to experiment as expected. Predictions using instability wave theory in terms of

azimuthal decomposition verify that the screech tone can alter the dominant mode shape of jet

noise from an axisymmetric mode to helical mode. Additionally, the phase speed in the

streamwise direction oscillates strongly similar to mean flow variations due to the existence of the
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shock cell structure. This is unlike supersonic jets that operate on-design or subsonic jets, which

do not contain shock waves.

The POD method is used to extract the most energetic part from LES results and are applied

to calibrate the amplitudes of the instability wave models. Even though the results are improved

after calibration with the reconstructed flow-fields with selected POD modes, the region after the

potential core cannot be matched. The nonlinear interaction mechanism at the lower frequencies

cannot be captured with linear theory.

The newly implemented Kirchhoff surface prediction scheme is validated against

experimental measurement by comparison with acoustic spectra for the SERDP case. The

radiation from the instability wave model are used to calculate far-field noise signal statistics

including coherence and cross-correlations. The auto-correlation and cross-correlation results

from the predictions of instability waves have similar statistics relative to the experiment at the

downstream direction (𝜓 = 140◦ and 130◦). The correlations maintain a similar shape at other

observation angles, which shows the sound at various observation angles is from the similar noise

source. We compare statistics of near-field upstream radiation at 𝜓 = 50◦ with downstream

far-field radiation from 𝜓 = 140◦ to 60◦. As expected, there is high coherence of the predictions

from instability waves between the near-field upstream and far-field radiation, which reside

between 0.4 and 0.62. In summary, the instability waves can be used to represent the onset of

large-scale turbulent structures and associated radiation statistics.

5.1.2 Boundary Layer Flows

The amplitude and location of excitation strongly affect the vibration and radiated noise of a

structure. In general, the excitation is expressed in terms of a single power spectral density and

spatial coherence. In this dissertation, we apply the LST within boundary layer flows to obtain the

instability wave solutions, construct the pressure fluctuations, and obtain the corresponding

spatial coherence of pressure fluctuations on the cone surface. The time-averaged velocity field,

pressure, and temperature distribution over a cone with different conditions are computed via SU2

and validated by comparing with publicly available data in the literature. The base flow-field

137



(time-averaged Navier-Stokes equations) is used as an argument for the instability equations.

These instability solutions include local wavenumbers and shape functions at varying azimuthal

modes and frequencies at multiple streamwise locations. Additionally, the phenomenological

plasma actuator model is added as the heating source to the energy equation and can be used to

alter the flow-fields and stability properties. The previous chapters reviewed the formulas used,

such as the reconstructed pressure time history based on the instability wave solutions.

The results and discussion are shown for cone flow with different nose radii and at different

free-stream Mach numbers. The cone configuration is selected because it is similar with the

leading edge geometries of flight-vehicle at high-speed. The nose radii cover from the sharp to

blunt cones. The freestream Mach number is from the moderate supersonic to hypersonic regime.

The specific conditions are shown in Table 4-1.

We examine the growth rate distribution of instability waves along the streamwise

directions. The results show that the small leading edge radii for cones do not alter maximum

growth rate. Large radii cones have lower growth rates due to a thicker boundary layer. In

addition, the existence of entropy layer affect the properties of the first-mode. Therefore, the

larger nose radii may not decrease the growth rates of the first mode and the corresponding effects.

For example, the distribution of growth rates show complex behavior when the nose radii is larger

than 𝑟7 = 3.969 mm for 𝑀∞ = 3.5. The spatial coherence of pressure fluctuations from instability

waves with varying nose radii are computed and analyzed, where the reference point is selected as

the peak value of growth rates distribution of each conditions. The results are presented in terms

of the separation distance and frequency. The frequency range with higher spatial coherence

decreases with nose radii. The frequency range with high spatial coherence of typical nose radii

are shown in Table 5-2. The relative frequency ranges with high spatial coherence between 𝑟1 and

𝑟10 are around 50%, 88.5%, and 76.9% for 𝑀∞ = 2, 3.5, and 5, respectively.

Additionally, the effects of phenomenological plasma actuator model are also examined.

Firstly, the flow structures of ramp configuration are investigated. The results show that the

phenomenological plasma actuator model can add local heating to the flow-field. The position
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Table 5-2. Frequency range (𝜔∗) with high spatial coherence (kHz) of base flow.
𝑀∞ = 2 𝑀∞ = 3.5 𝑀∞ = 5

𝑟1 = 0.038 mm 10 ∼ 100 50 ∼ 440 50 ∼ 440
𝑟7 = 3.967 mm 15 ∼ 90 10 ∼ 140 10 ∼ 180
𝑟10 = 38.1 mm 10 ∼ 55 10 ∼ 65 10 ∼ 100

(𝑥𝑐) of plasma actuator model of cone flows is chosen as the peak value of the growth rates

distribution in the streamwise directions. Increased nose radii lowers the relative temperature

difference between the actuated and base flow-fields. The values of relative temperature

difference are higher at higher freestream Mach number based on the current results. We find that

plasma actuation stabilizes the flow-field and spatial coherence becomes smaller. The frequency

range with high spatial coherence of typical nose radii are shown in Table 5-3. The frequency

range with higher spatial coherence of each nose radii decreased by around 10 ∼ 40% for actuated

flow compared with base flow except for 𝑟1 at 𝑀∞. On the other hand, for 𝑟1 at 𝑀∞, the value of

separation distance with high spatial coherence of actuated flow is around 30% ∼ 50% of base

flow.

Table 5-3. Frequency range (𝜔∗) with high spatial coherence (kHz) of actuated flow.
𝑀∞ = 2 𝑀∞ = 3.5 𝑀∞ = 5

𝑟1 = 0.038 mm 5 ∼ 50 10 ∼ 270 10 ∼ 440
𝑟7 = 3.967 mm 5 ∼ 50 10 ∼ 55 5 ∼ 50
𝑟10 = 38.1 mm 10 ∼ 50 5 ∼ 50 10 ∼ 60

The results of this dissertation demonstrate the effects of leading edge radii on the growth

rate distributions and spatial coherence, which is beneficial to understand the characteristics of the

driving force causing the vibration during rocket ascent. These results can be used to choose an

appropriate nose radius when combined with structural analysis to minimize unsteady loading in

the region leading to transition. In addition, the flow-field variation with plasma actuation can be

used to understand the mechanism of temperature effects on stability and transition.
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5.2 Future Work

5.2.1 Jet Flows

For jet noise prediction, we applied the instability wave method to predict the pressure

perturbation signal at the upstream and sideline directions. The results show the high correlation

between the signal at the upstream and downstream direction. Therefore, the effects of instability

waves as a stimulus signal to the plasma actuator control to destroy the coherent structures can be

measured in the upstream direction as we proposed. In the future, we plan to further study the

modification of the SPL and correlation of noise source by adding the plasma actuation.

Additionally, the POD method has been used to extract the most energetic part of flow-fields and

compared with the results of instability waves. However, the POD modes used to reconstruct the

pressure perturbations history need to be further investigated. In the future, we will try to find the

POD modes via the results of correlation between POD modes and the radiation part of the

Lighthill noise source [71] and predict the jet noise from the flow-fields reconstructed from the

selected POD modes.

Kirchhoff surface method is an acoustic analogy method, however, there is an

over-prediction at lower frequency and smaller cut-off frequency. The method can be used to

predict the jet noise from the POD modes, which has been applied and discussed in the previous

investigation. In the future, we will try to resolve this over-prediction and increase the cut-off

frequency. In addition, the far-field noise from POD modes via this method will be computed and

discussed.

5.2.2 Boundary Layer Flows

The pressure fluctuations from instability waves at the cone surface are constructed via

linear superposition over the frequency range and the effects of amplitude of instability waves are

not considered. In fact, in order to obtain the accurate excitation within vibro-acoustic problems,

the amplitudes is an important factor. However, the amplitudes of instability waves require the

pressure fluctuations from experimental measurements and/or high-fidelity numerical simulation

[98, 49]. Additionally, in order to calibrate the amplitudes of instability waves, the methods to
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extract the coherent structures are required, such as the POD method as shown in Section 2.1.2.2.

In the future, we will consider the effects of amplitudes of instability waves. The calibration

process will based on the least-square sense as shown in Section 2.1.2.1.

The mean flow-field variables to obtain the instability wave solutions are from laminar flow

in this dissertatioon. In the future, the mean flow-field variables from turbulent flows will be

applied and studied. The work from Sharma and McKeon [58] is based on an analysis of the

Navier-Stokes equations under an assumption of a turbulent mean profile for a pipe flow, where

the velocity fluctuation is expressed as a sum of harmonic, radially varying travelling waves. The

results show that the complex coherent structures can be created from minimum superpositions of

response modes. In addition, hairpins and modulated hairpin packets are predicted by simple

combinations of response modes.

The frequency range with high spatial coherence decreases with plasma actuation, which

shows the possibility that the plasma actuation can alter the excitation of vibro-acoustic problems.

However, the position (𝑦𝑐) of the plasma actuation is same as the previous investigations. In the

future, we plan to change the positions of plasma actuator model, especially 𝑦𝑐, based on the

results of experimental measurements related to plasma actuators.
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