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Instability waves create intense aerodynamic loading that is spatially coherent near the
leading edges of flight-vehicles. This loading creates intense vibrations within the underlying
structures. Previous investigations have shown that the nose bluntness alters the stability and
transition process. The objective of the present paper is to further study the effects of nose
bluntness on the pressure fluctuations on the vehicle surface via linear stability theory. This
paper presents the results of a free-stream Mach 3.50 axisymmetric flow over a seven degree
half-angle cone with varying nose radii. Ten cones with nose radii ranging from 0.038 to 38.1
mm (A1 ∼ A10), covering both the small and large bluntness regions, are used to study the
effects of nose bluntness on stability, spectra of fluctuating pressure, and spatial coherence.
It is found that small nose radii do not alter these properties. The larger nose radii show
lower growth rates due to the thick boundary layer and lower pressure fluctuation spectrum.
However, variations of the growth of the Mack-mode instability do not demonstrate similarity
with small nose radii when the nose radii is larger than A7 = 3.969 mm. The pressure spectrum
decreases as the nose radii increases except for small nose radii. The value of spatial coherence
decreases with increasing frequency.

Nomenclature

Symbols Description
G, H,I Matrices
� Sutherland’s constant
2? Specific heat
5 Frequency
ℎ1 , ℎ2 , ℎ3 Scale factors
8 Imaginary number
: Thermal conductivity
! Length of the cone along axis
; Length scale
<12 , <23 , <13 Curvature coefficient
= Azimuthal mode
? Pressure
A Local radius
' Gas constant
'?? Spatial-time correlation function
) Temperature
C Time
u Velocity vector
D? Phase speed

Superscripts and subscripts
∗ Dimensional value
4 Edge value
= Normal direction
∞ Ambient or infinity

Greek Symbols
U Streamwise wavenumber
V Spanwise wavenumber
Γ Spatial coherence
W Ratio of specific heats
^ Body curvature
_ Second coefficient of viscosity
` First coefficient of viscosity
a Kinematic viscosity
Φ Viscous dissipation
5 Disturbance vector
q Single-point wavenumber spectrum
Ψ?? Pressure cross-power spectra density matrix
k Wave angle
l Radial frequency
d Density
g Time lag
\ Half angle of cone
/ Separation distance vector

Non-Dimensional Numbers
"4 Edge Mach number
f Prandtl number
Re Reynolds number

I. Introduction

Leading edge geometries of flight-vehicles experience intense aerodynamic loading at high-speeds. Instability waves
that lead to transition to turbulence create large pressure fluctuations on the surface of vehicles. The action of the
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stochastic pressure distribution associated with instability waves and turbulence provides the driving force that excites
the underlying structure [1, 2]. This excitation in turn generates intense vibrations on the payload, personnel, or other
critical flight-vehicle systems [3, 4] during rocket ascent [1]. Reduction of these vibrations will increase flight-vehicle
safety [5], reduce vibration induced failure of satellites [5], and reduce noise for astronauts [5, 6]. Therefore, accurate
external wall-pressure predictions are necessary for leading edge geometries at supersonic and hypersonic speeds. This
will provide designers a tool to make improved predictions that may result in lower weight of vehicles and reduce
harmful vibrations.

Previous Approaches
A turbulent boundary layer (TBL) is characterized by the development of large-scale structures from instabilities

and turbulent eddies ranging through the entire cascade. High-speed boundary layers are unstable and instability waves
form. The wall pressure fluctuations induced by instability waves and turbulent flow are broadband in nature. Thus, the
wall pressure statistics are difficult to calculate, predict, or measure [6] as they are an imprint of instability waves or
turbulence at the wall. The fluctuating pressures at the wall are usually described via statistics as the turbulent flow is
random in nature. A large number of empirical and theoretical models [7–10] have been developed to describe these
random wall-pressure fluctuations, and the parameters of these models are fitted with experimental measurement. One
of the models for power spectral density (PSD) of the TBL wall pressure fluctuations was introduced by Corcos [9].
Corcos [9] developed a statistical empirical model that fit a large number of measurements of the pressure field from
an attached flow, and provided the cross-power spectral density (CSD) of the wall pressure fluctuations. The Corcos
[9] model is well suited to describe the statistics of wall-pressure fluctuations induced by high-speed subsonic flows.
Palumbo [11] has also applied the Corcos [9] model and others to higher-speed supersonic flows using test data, where
it was shown that wind-tunnel calibration often did not match flight-test data. Graham [12] summed, outlined and
compared different types of empirical models. These empirical models and corresponding experiments demonstrate
a need for more first-principle based prediction approaches, as often the empirical models must be re-calibrated for
particular flight-vehicles.

Both instability waves and large-scale turbulent structures have been studied both analytically and experimentally.
The existence of large-scale coherent motions within high-speed flows has been identified [13, 14] and defined via
statistical means [15], instantaneous flow patterns [16], stability theory [17], and techniques from dynamical systems
theory [18]. There are different stable and unstable modes with corresponding effects within boundary layer flows. One
important unstable wave is called the first mode (Mack’s first mode), which is an extension of the Tollmien-Schlichting
(TS) instability waves present in incompressible flows [19]. This wave is most amplified when it is an oblique wave
at supersonic Mach numbers and represents viscous instability at low Mach numbers [19]. Additionally, there exist
an infinite number of modes when the wave speed is supersonic within boundary layer flows (Mode I, Mode II, etc.
[20]), and the second mode (Mack’s second mode) forms. The second mode is significant at boundary layer edge Mach
numbers ("4) approximately above 4, has growth rates much higher than the first mode, and is most amplified when the
wave angle is zero or two-dimensional wave. In fact, studies also showed that the Mack modes (the first and the second
modes) are slightly unstable in multiple regions of varying frequencies [13, 20]. The first modes are slightly unstable in
the range of lower frequencies (i.e. 5 ∗ ≤ 112 kHz for "∞ = 7.99). The conventional second mode are unstable at
higher frequencies [20]. The first mode is responsible for transition when the wall is adiabatic for freestream Mach
number ("∞) up to approximately 7 [21].

Stability theory has been applied to study the transition of the boundary layer and the effect of heat exchange on the
vehicle surface (see for example Malik and Spall [19], Malik [22], Knisely and Zhong [23], Laible et al. [24]). It has been
shown that the first and second mode instability waves play important roles in the transition process [13, 25]. Various
parameters, including body configurations, the Mach number, wall temperature, entropy layer, and roughness, would
affect the stability and transition within boundary layer flows [13]. The effects of nose bluntness [25–30] on transition are
investigated both experimentally and numerically. In experimental measurements of cones with nose radii ranging from
0.7937 to 38.1 mm were tested and transition locations (G) ) were measured [26]. Flight test data of transition position
at different conditions are summarized [27]. However, there are discrepancies between experimental measurement and
numerical predictions. In general, the results of numerical predictions are larger than the corresponding experimental
measurements. For example, G) is larger than 3.2 m (maximum cone length for numerical simulation) from numerical
calculations, whereas G) is 0.24 m from experimental measurement for "∞ = 5.46 with nose radius 38.1 mm [26].
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Present Approach
The objective of our research is to study the effects of instability waves within high-speed boundary layer flows

via computing the pressure fluctuations from the instability waves on cones with different leading edge radii. These
geometries are similar to the leading edges of supersonic and hypersonic flight-vehicles. They represent prototypical
geometry for investigating boundary layer stability and transition [31]. We seek to study the effects of two-point
statistics and loading from instability waves during rocket launching. Two-point statistics are used for rocket and
flight-vehicle structural vibration estimates, and some analysts use a simpler approach involving single values of intensity
and length-scale. Here, we explore a combination of traditional approaches to find two-point statistics over cones at
high-speed flow and how they can be altered with different nose radii.

In this paper, we apply the linear stability theory (LST) within boundary layer flows described by Malik [22]
and Malik and Spall [19] to obtain the instability wave solutions and construct the pressure fluctuations on the cone
surface. The time-averaged velocity field, pressure, and temperature distribution over a cone are computed via numerical
simulation and validated by comparing with publicly available data in the literature (see Laible et al. [24] and Gross
and Fasel [31]). The base flow-field (time-averaged Navier-Stokes equations) is used as an argument for the instability
equations. These instability solutions include local wavenumbers and shape functions at varying azimuthal modes and
frequencies at multiple streamwise locations. The LST predictions are validated with publicly available results of Mayer
[32]. Additionally, the stability properties, single-point wall pressure spectrum, and spatial coherence of cones with
varying nose radii are computed and analyzed. These methods and results facilitate our understanding of the effects of
large-scale structures as the driving force within high-speed boundary layers. This will allow us to develop a database of
flow-fields that can be used to understand the changes of coherence and intensity from instability waves as a function of
cone configuration.

In the next section, the LST is presented along with our approach for calculating the pressure fluctuations from
instability waves. In the results section, the mean flow-field of a base case are computed and validated firstly. The value
of different nose radii are listed and the mean flow-field of each case are computed. The stability results of base case
are validated first. The stability properties of each case are computed and compared. The single-point wall pressure
spectrum and spatial coherence from instability waves are shown and analyzed. Finally, we summarize the present effort
and propose the future work.

II. Methodology

Linear Stability Theory
We use LST to predict the unstable modes within the boundary layer that develops within supersonic flows. We

assume that the flow is governed by the compressible Navier-Stokes equations, energy equation, and ideal gas law.
The ideal gas law is used for simplicity in our accompanying CFD simulations and for the subsequent analysis. These
equations and overall method are discussed in Malik and Spall [19]. The equations governing the flow of a viscous
compressible ideal gas include the continuity equation

md

mC
+ ∇ · (du) = 0, (1)

the momentum equation

d

[
mu

mC
+ (u · ∇)u

]
= −∇? + ∇ · [_(∇ · u)�] + ∇ · [`(∇D + ∇DCA )], (2)

the energy equation

d2?

[
m)

mC
+ (u · ∇))

]
= ∇ · (:∇)) + m?

mC
+ (u · ∇)? +Φ, (3)

and the ideal gas law

? = d'). (4)

Here, 2? is the specific heat, : is the thermal conductivity, ? is the pressure, ' is the gas constant, ) is the temperature,
u = (D, E, F) is the velocity vector, ` is the first coefficient of viscosity, Φ = _(∇ · u) + `[∇u + ∇uCA ]2/2 is the viscous
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dissipation, _ is the second coefficient of viscosity, and d is the density. The perturbation equations that govern the
instability waves are derived from the linearized Eqs. (2) to (4) in non-dimensional form. All lengths are scaled by
viscous length ; = (a∗4G∗/D∗4)1/2. Here, a∗4 is the dimensional viscosity at the boundary layer edge, where the definition
of boundary layer edge values depends on the specific flow conditions. Velocities are scaled by D∗4, density by d∗4,
pressure by d∗4D∗24 , time by ;/D∗4, and other variables by their corresponding values at the boundary layer edge position.
The instantaneous values of the field variables and parameters in Eqs. (2) to (4) can be expressed as the sum of a mean
and a fluctuation quantity

D = *̄ + D̃, E = +̄ + Ẽ, F = ,̄ + F̃,
? = %̄ + ?̃, ) = )̄ + )̃ , d = d̄ + d̃,
` = ¯̀ + ˜̀, _ = _̄ + _̃, : = :̄ + :̃ ,

(5)

where ¯{·} denotes the non-dimensional mean quantity and ˜{·} denotes the non-dimensional fluctuating quantity.
In this study, we consider the flow over a cone, which is an axisymmetric body at zero incidence. The body-fitted

orthogonal curvilinear coordinates G, H, and I are used, where G is the streamwise coordinate along the cone surface, H
is the coordinate normal to the surface, and I is the azimuthal direction. The scale factors are determined via coordinate
transformations and are defined as

ℎ1 = 1 + ^(G)H; ℎ2 = 1; ℎ3 = A + H cos(\), (6)

where ^ = − 3\
3G

is local body curvature, \ is the half-angle of the cone, and A is the local body radius.
The curvature coefficients are

<13 =
1
ℎ1

mℎ1
mH

; <21 =
1

ℎ1ℎ2

mℎ2
mG

; <23 =
1
ℎ2

mℎ2
mH

. (7)

Here, <13 = 0 is the streamwise curvature for cone cases, <21 is related to body divergence due to increase in the
body radius, and <23 represents transverse curvature effect.

For cone geometries, <21 and <23 are

<21 =
3 (ln A)/3G

1 + n H =
; sin \

A (1 + n H) (8)

and

<23 =
n

1 + n H , (9)

where n = ; cos(\)/A .
We assume that the flow is locally parallel within the boundary layer on the cone surface to simplify the LST

prediction. This is a common assumption for LST analysis. Specifically, we assume that the gradients of the mean flow
in the streamwise direction and the mean vertical velocity are negligible. However, the numerical prediction of the mean
flow-field does not make this assumption. Under these assumptions we set

*̄ = *̄ (H); +̄ = 0; )̄ = )̄ (H); %̄ = %̄(H); d̄ = d̄(H), (10)

and

,̄ (H) = 0, (11)

because of the axisymmetric nature of the time-averaged flow.
We also make a number of other minor simplifying assumptions. Firstly, due to the boundary layer assumption,

pressure (?̄) is constant across the layer and is equal to 1/(W"2
4 ), where "4 = D∗4/

√
W')∗4 . The viscosity ¯̀ is calculated

using Sutherland’s law. Sutherland’s law is

¯̀ = )̄
3
2

1 + �/)∗∞
)̄ + �/)∗∞

, (12)
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where � = 110.4 K is a constant or effective temperature and )∗∞ represents the dimensional free-stream temperature.
Moreover, ˜̀, _̃, and :̃ are related to temperature as

˜̀ =
3 ¯̀
3)̄
)̃ , _̃ =

3_̄

3)̄
)̃ , and :̃ =

3:̄

3)̄
)̃ . (13)

The disturbance amplitudes are assumed to be small enough so that they do not interact in a nonlinear fashion to
avoid nonlinear effects. We assume that the solution of the instability waves can be expressed in the following form

5̃(G, H, I, C) = 5̂(H) exp[8(UG + VI − lC)], (14)

which consists of a spatially varying function and an exponentially varying spatial periodic function. Here, 5̃ is a
five-element vector defined by {D̃, Ẽ, ?̃, )̃ , F̃}, 5̂(H) is the shape function of each element vector, U and V = =;/A (=
is the azimuthal mode number) are the wavenumbers in the streamwise and spanwise directions, l = 2c 5 ∗;/D∗4 is
non-dimensional frequency, and 5 ∗ is dimensional frequency. In general, U, V, and l are complex numbers. In this
paper, we focus on spatial stability and set l and V as real numbers.

After using these assumptions and dropping the bar notation for mean flow variables, the compressible linear
instability equations for boundary layer flow over a cone are

32D̂

3H2 + (21)
′ + <23)

3D̂

3H
+ 8U0;1

3Ê

3H
+ 21*

′ 3)̂

3H

+
[
823'4/(`)) − ;2U2

0 − V
2
0 + 8U0;2<21 − ;2<2

21
]
D̂ +

[
8U0 (21)

′ + ;1<23) − '4* ′/(`)) − ;2<2
21

]
Ê − (8U0'4/`) ?̂

+ [21 (* ′′ + <23*
′ + 8U0;0*<21 − ;2*<2

21) + 22*
′) ′])̂ − [U0V0;1 + 8V0;3<21]F̂ = 0, (15)

32Ê

3H2 +
(8U0 + <21);1

;2

3D̂

3H
+ (21)

′ + <23)
3Ê

3H
− '4

;2`

3 ?̂

3H
+ 21*<21;0

;2

3)̂

3H

+ 8V0;1
;2

3F̂

3H
+ [21)

′(8U0 + <21);0/;2 − <21<23] D̂ +
[
{823'4/`) − V2

0 + 8U0<21 + 21)
′<23;0}/;2 − <2

23
]
Ê

+ [{8U021*
′ + 21 (* ′<21;1 −*<21<23) + 22*)

′<21;0} /;2 − 21*<21<23] )̂ + [8V0 (21)
′;0 − <23;3)/;2]F̂ = 0,

(16)

3Ê

3H
+ (8U0 + <21)D̂ + [<23 − ) ′/)] Ê + W"2

4 (<21* − 823) ?̂ −
[
<21* − 823

)

]
)̂ + 8V0F̂ = 0, (17)

32)̂

3H2 + 24*
′ 3D̂

3H
+ 24*<21;0

3Ê

3H
+ (2: ′/: + <23)

3)̂

3H

+ 24 [8U0*<21;0 +*<2
21;2]D̂ + [24{8U0*

′ +*<21<23;0} − f'4) ′/(`))] Ê − [82324'4/(2`)] ?̂
+

[
823'4f/(`)) − V2

0 + 8U0<21 + 2124{0.5(* ′2 +*2<2
21;2)} + <23:

′/: + : ′′/:
]
)̂ + 8V024*<21;2F̂ = 0. (18)

and

32F̂

3H2 + 8V0;1
3Ê

3H
+ (21)

′ + <23)
3F̂

3H
+ (8V0<21;3 − U0V0;1)D̂ + 8V0 (21)

′ + ;3<23)Ê −
8V0'4
`

?̂

+ 8V021*<21;2)̂ +
[
(823 − <21*)'4/(`)) − ;2V2

0 + 8U0<21 − <2
21 − <23 (21)

′ + <23)
]
F̂ = 0, (19)

where () ′ ≡ 3/3H, ;@ = @ + _/`, U0 = U/ℎ1, V0 = V/ℎ2, '4 = d4D4;/`4 is Reynolds number, f = `2?/: = 0.7 is
Prandtl number for this computation and

21 =
1
`

3`

3)
, 22 =

1
`

32`

3)2 , 23 = −(U* − l), 24 = 2(W − 1)"2
4f. (20)
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The linear stability equations can be written as a system of equations as(
G
32

3H2 + H
3

3H
+ I

)
5̂ = 0, (21)

where G is a diagonal matrix and H and I are 5 × 5 matrices.
The boundary conditions at the wall are

H = 0; 5̂1 = 5̂2 = 5̂4 = 5̂5 = 0, (22)

and the boundary conditions in the far-field are

H →∞; 5̂1, 5̂2, 5̂4, 5̂5 → 0. (23)

We seek to ascertain the instability wave solution represented by 5̂. First, we calculate the local wavenumber by
solving the eigenvalue problem defined by Eqs. (21) through (23). The phase speed and growth rate of the instability
wave are obtained from the complex wave number, U = UA + 8U8 . The real part of the complex wave number, UA ,
represents the number of axial oscillations per unit length (axial wave number). The phase speed is obtained from
D? = lU

−1
A . The phase speed, D?, is a measure of the convection speed of the instability wave. The growth rate is

given by the negative part of the complex wavenumber, −U8 . If the growth rate is positive, then the instability wave is
amplified, whereas, the instability wave becomes damped if the growth rate is negative.

There are two main methods to solve the discretized system. The first is the local method, and the second is the
global method [19]. The global method yields all the eigenvalues of the discretized system. Both methods require that
the equations be discretized by the finite difference [19, 22] or spectral approach [19]. The problem is then reduced to
a linear algebraic system. Four different schemes and detailed analyses were introduced to discretize the system of
equations [19]. In this study, the global method via finite difference is adapted. The mean velocity and density within
the equations are found from numerical simulation using a CFD solver.

Cross-Power Spectral Density of Pressure from Instability Waves
We can directly predict the wall pressure field from the instability waves based on the solution of Eq. (21) at

multiple axial positions on the cone surface. We choose the most amplified instability waves in the azimuthal direction
as the source of the driving force [33]. Equation (14) represents the form of a single instability wave. However, in high
Reynolds number high-speed flow, there is a wide spectrum of instability waves [34]. As a linear theory is adapted, we
superimpose solutions to obtain contributions from multiple waves. The pressure fluctuations field from instability
waves can be constructed via integration over l as

?̃(x, C) =
ˆ ∞
−∞

?̂(H) exp [8(UG + VI − lC)] 3l. (24)

Here, the instability wave solution with angular frequency −l and azimuthal wavenumber −V is related to the
solution with positive frequency l and wavenumber V (see [34, 35]). For example, the relation for pressure (?̂)
is ?̂(x,−l,−V) = ?̂∗ (x, l, V), where the asterisk denotes the complex conjugate. We do not focus on the overall
amplitudes of the predicted instability waves. Scaling the solution results in another solution.

The spatial coherence of pressure fluctuations from instability waves is calculated via

Γ?? (/, l) =
1

2c

ˆ ∞
−∞
〈?̃(x, C) ?̃(x + /, C + g)〉 exp(−8lg)3g = 1

2c

ˆ ∞
−∞

'?? (/, g) exp(−8lg)3g, (25)

where '?? (/, g) is the space-time cross-correlation function, / is the spatial separation vector, and g is the time lag.
Furthermore, in a typical vibration-acoustic problem of TBL flows, the semi-empirical models, such as the Corcos

model [9] and modified Corcos model [1], have been proposed to express the excitation from pressure fluctuations
within TBL flows. Such models can be modeled in terms of a point pressure spectrum term multiplied by a spatial
expression [6] as

Ψ?? (/, l) = q(l)Γ?? (/, l), (26)

where q(l) is the single-point wall pressure fluctuation spectrum.
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III. Results and Analysis
In this section, we compute and validate the mean flow-field of a cone configuration with a circular nose of constant

radius. The growth rate, phase-speed, and eigenfunctions of the test case are also computed and validated. The
single-point wall pressure spectrum and spatial coherence of pressure fluctuations from instability waves on the cone
surface for different nose radii are presented.

The Steady Mean Flow-Field Validation and Computation
The Stanford University Unstructured (SU2) open source software suite (see Palacios et al. [36] for details) is used

to compute the time-averaged flow-field. The SU2 solver is finite-volume based, and we solve the steady compressible
NS equations in axisymmetric form. We computed the "∞ = 3.50 flow of Gross and Fasel [31] as the test case. In this
test case, the cone half angle is (\) 7◦, the nose radii is 0.038 mm, and the length of the cone (!) is 0.3556 m. The other
freestream parameters used for the simulations are freestream temperature and density are 90.1 K and 8.74× 10−2 kg/m3,
respectively. Figure 1(a) shows the entire flow region (0.3556 m × 0.2 m). A structured grid is used with an exponential
distribution. This allows for decreased grid spacing near the wall. This grid point distribution around the nose region is
shown in Fig. 1(b). We set the first mesh cell off the wall as 1 × 10−6 m, which is estimated for a desired Y+ value less
than 1 using flat-plate compressible boundary layer theory. Additionally, the grid independence study is applied. On the
cone surface, the no-penetration and the no-slip conditions are enforced. The wall is set to be adiabatic (m)/mH= = 0).

(a) Flow region (b) Nose region

Fig. 1 The domain and computational grid near the nose.

Two grid sizes are used to examine grid independence. The coarse grid size is 201 points in the wall normal direction
and 201 points in the streamwise direction, and the fine grid uses 401 points in the wall normal direction and 201 points
in the streamwise direction. Figure 2 shows the residual and Y+ of the coarse grid simulation. These graphs show that
the numerical simulation converges, and the grid distribution is sufficient to resolve the flow-field.
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Fig. 2 Residual and Y plus of numerical simulation with coarse grid distribution.

Comparisons of flow-field between two mean profiles from numerical simulation and Gross and Fasel [31] (shown as
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“Ref”) are made with axial velocity and temperature distributions at three streamwise locations corresponding to Gross
and Fasel [31] of G∗/! = 0.624, 0.76, and 0.825 are shown in Fig. 3. In the Fig. 3, the axial velocity and temperature
are normalized with the boundary layer edge values, which are directly extracted from the CFD solution. The positions
of the boundary layer edge of Laible [37] are defined as the point where the wall normal derivative, m*/mH, of the
velocity component parallel to the cone surface (*) is minimum. In this paper, we choose the positions as the value of
derivative less than a small value (0.05). We apply the infinity norm of the relative error to quantify the error among
the profiles in the Fig. 3. The error of flow-field profiles of the coarse and fine grid is 1.4% at G∗/! =0.76 based on
the variation of ) in the cross-stream direction, which shows grid independence of the current numerical simulations.
In addition, the maximum infinity norm of relative error between the numerical simulation and Gross and Fasel [31]
(shown as “Ref”) is 0.8% at G∗/! =0.624. Therefore, the coarse grid distribution is used in the following analysis.
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(a) Axial velocity
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(b) Temperature

Fig. 3 The comparison of axial velocity and temperature at different streamwise positions.

In this paper, cones with ten different nose radii with the same freestream conditions as the test case are studied
because the nose bluntness is an important factor for stability and transition properties for boundary layer flows. We
choose the nose radii based on the validation case up to 38.1 mm and indicate the ten nose radii as A1 to A10, respectively.
The specific value of each case is shown within Table 1.

Table 1 Nose radii (mm).

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

0.038 0.076 0.152 0.38 1.14 1.905 3.969 7.938 15.876 38.1

For the flow region, we extend the test case region to 3.5 m × 3.5 m, which is a large value to guarantee a region is
large enough for future analysis (i.e. changing free-stream Mach numbers or determining heating source location). The
grid size is 267 points in the wall normal direction and 301 points in the streamwise direction. Numerical predictions
are conducted in serial on the local high-performance computing cluster at University of Florida.

Figure 4 shows the Mach number contours for cones with nose radii A1, A7, and A10 of part of the entire flow region
(0.3 m × 0.2 m). As the nose radii increases, the shock detached from the leading edge, or bow shock appears. In
addition, an entropy layer appears in the region near the leading nose for the larger nose radii cases (A7 and A10). In the
downstream direction, the entropy layer gradually merges with the boundary layer.

Stability Validation and Computation
In this section, the linear stability results of the test case are validated firstly. The stability parameters of our

LST solver and results from Mayer [32] are shown in Table 2. The values of V and l are given for the oblique wave
and spatial stability computation. The eigenvalue, U = UA + 8U8 , is found from the previously described eigenvalue
solver. The oblique wave angle (k) is computed via tan−1 (V/UA ). Several factors are important for the calculation of
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Fig. 4 Mach number contours of A1, A7, and A10 conditions.

eigenvalues, which include the number of grid points, the discretization method, and the flow-field. We note there are
some discrepancies between our calculation and the reference solution [32] due to these factors.

Table 2 Stability Parameters.

5 ∗ = U k D?

Mayer [32] 23.415 kHz 21 350.1-22.5 8 N/A N/A
LST 23.415 kHz 21 353.2-14.96 8 65.93◦ 0.64

Figure 5 shows the comparison of the amplitude of eigenfunctions in the wall-normal direction between the LST and
the predictions of Mayer [32], where the distance in the normal direction is normalized by the boundary layer thickness,
X. Here, “Ref” indicates the results from Mayer [32]. It can be seen that similar variations of the eigenfunctions
exist between our LST solver and Mayer [32]. There are discrepancies between LST and Mayer [32] results near the
wall region for the D-velocity component and temperature eigenfunctions. The positions of the maximum value of D̂
are at H=/X=0.6154 and 0.5654 for LST and Mayer [32]. The error is 8.9% for the D̂ component. The error of )̂ is
approximately 7.2%. The results of our LST prediction and that of Mayer [32] are in good agreement at the higher H=
value.

We focus on prediction of the unsteady coherent forcing on the vehicle surface due to instability waves from the
Mack mode within the present work. These are dominant at low supersonic speeds. We restrict the frequency to be less
than 75 kHz for the flow conditions and the azimuthal modes less than 40. Figure 6 shows the maximum growth rates
for all frequencies and azimuthal modes of leading edge radii A1 to A10 along the streamwise direction. It can be seen
that the maximum growth rates are very similar for A1 to A4. This similarity indicates small leading edge radii for cones
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Fig. 5 Comparison of amplitudes of eigenfunctions between the LST prediction and Mayer [32] (Ref).

do not alter maximum growth rate. For larger leading edge radii, A4 to A7, the growth rates decrease as the nose radius
increase monotonically. There are no apparent trends for A7 to A10, especially in the region close to the leading edge.
This is potentially caused by the entropy layer that forms for larger leading edge radii. For A1 to A6 conditions, there is an
obvious peak of growth rates, then growth rates decrease. However, the peak locations of growth rates for A7 to A10 are
not clear. The peak locations of each case are 0.14, 0.14, 0.14, 0.18, 0.23, 0.31, 0.46, 0.30, 0.26, and 0.55 m, respectively.
The locations of maximum growth rates move to downstream directions as the nose radii increases (A4 to A7).
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Fig. 6 Comparison of maximum growth rate for all frequencies and azimuthal modes along streamwise
direction for A1 to A10.
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Single-point Wall Pressure Spectrum
Figure 7 shows the comparisons of single-point wall pressure spectrum over frequency ranges at G∗=0.14, G∗=0.31,

G∗=0.46, and G∗=0.62 m for A1 to A10. The spectrum value increase firstly and then decrease. It can be seen that the
maximum spectrum value of each case in the upstream direction is lower than that of downstream direction. The
corresponding frequency of maximum spectral value decreases with increasing streamwise location. For A1 and A4, the
spectral values are close at the selected locations because the small nose radii do not alter maximum growth rate. The
spectrum value of A5 and A6 are closer to A1 to A4 except at G∗ = 0.14 m because the growth rates of A5 and A6 show large
difference relative to A1 to A4. For A7 to A10, the spectrum value is lower than that of A1 to A6 when l∗ is larger than the
frequency corresponding to the maximum spectrum value.
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Fig. 7 Comparison of single-point wall pressure spectrum over frequency range at G∗= 0.14, 0.31, 0.46, and
0.62 m for A1 to A10 conditions.

Spatial Coherence
Figure 8 shows the spatial coherence for nose radii from A1 through A10, where the reference point is the peak position

of each case of Fig. 6. The results show the spatial coherence variations on the separation distance and dimensional
frequency. It can be seen that the spatial coherence shows similar trends for A1 through A4 (Fig. 8(a) through 8(d)),
which is consistent with the growth rate distribution for these four cases. Figures 8(a) to 8(e) (A1 to A5) show higher
value of spatial coherence when l∗ ≥ 50 kHz, and the separation distance between the reference point for higher
spatial coherence become smaller as the frequency increases. However, the value of spatial coherence are higher when
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l∗ is less than 150 kHz for Fig. 8(g) to 8(i) (A7 to A9). We assume that amplified instability waves will show higher
spatial coherence than damped instability waves. The growth rates mainly depend on the non-dimensional frequency
(l = 2c 5 ∗ (a∗4G∗/D∗4)1/2/D∗4), and the instability waves are amplified when l is within a range, i.e. 0.02 ∼ 0.06. The
non-dimensional frequency is related to the dimensional frequency and streamwise locations/length scale. In specific,
for the nose radii A1 through A4, the reference points (G∗) are smaller so that the instability waves are amplified at higher
dimensional frequencies. The value of spatial coherence are higher when 30 kHz≤ l∗ ≤ 350 kHz for A5 (Fig. 8(e))
and 20 kHz≤ l∗ ≤ 250 kHz for A6 (Fig. 8(f)) conditions because the length scale increases as the nose radii increase.
For A7 through A9 conditions (Fig. 8(g) to 8(i)), the positive growth rates of instability waves are at lower dimensional
frequency. This is due to a thicker boundary layer and entropy layer caused by larger nose radii. However, Fig. 8(j) (A10)
shows higher spatial coherence within the separation distance -0.1 to 0.2 m over all frequencies unexpectedly.
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Fig. 8 Spatial coherence of different nose radii from A1 to A10, where the reference point of each case is at the
maximum grow rate along streamwise direction.
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IV. Summary and Conclusion
We predict the spectra and spatial coherence due to the pressure induced by instability waves over cones of various

radii. The mean-flow variables for instability wave solutions are computed via SU2 and show good agreement with
previous investigations. The growth rate and shape functions of instability waves are also validated. The maximum
growth rates for frequencies and azimuthal mode numbers of different nose radii along the streamwise direction show
that the small leading edge radii for cones do not alter maximum growth rate. Larger leading edge radii have smaller
pressure spectral value at higher frequencies. The higher spatial coherence within a small frequency range for larger
leading edge radii.

The results of this paper demonstrate the effects of leading edge radii on the growth rate distributions, pressure
perturbation spectrum, and spatial coherence, which is beneficial to understand the characters of the driving force
causing the vibration during rocket ascent. For A1 ∼ A5 conditions, the higher spatial coherence value is at medium and
high frequencies, l∗ > 50 kHz, as the nose radii increase (A7 ∼ A9), the high value of spatial coherence are at relative
low frequency l∗ < 150 kHz. The separation distances relative to the reference point become smaller as the frequency
increases. Additionally, the approach can be used to choose an appropriate nose radii in the design process by combing
the structural analysis to predict vibration. In the future, we plan to alter the flow-field via plasma actuation. The effects
of plasma actuators model on the stability properties, pressure spectrum, and spatial coherence will be investigated.
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