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Background
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• Aerodynamic loading on the flight-vehicle 
surface causes intensive vibration and cabin 
noise

• Instability waves that lead to transition to 
turbulence create large pressure fluctuations 
on the surface of vehicles

• Nose bluntness affect the stability and 
transition

• Objective: to further study the effects of nose 
bluntness within high-speed boundary layer 
flows via computing the pressure fluctuations 
from the instability waves on cones with 
different nose radii and plasma actuation

Fig 1. Launch of Orbital ATK’s Antares rocket[1].

Fig 2. A schlieren of jet moving left to right where a large instability wave is 
circled. Courtesy of Prof. Mitchell.

[1] Lubert, C. P., “Sixty Years of Launch Vehicle Acoustics,”  Acoustic Society of 

America, Vol. 31, 2017.
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Instability Wave Theory
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• Governing Equations[2]
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Fig 3. Coordinate system.

• Boundary conditions
! = 0, %&! = %&" = %&# = %&$=0
! → ∞, %&!, %&", %&#, %&$ → 0
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• Procedure

• Linearize: . = /. + 0., 1 = /1 + 21,etc.
• Parallel flow: /. = /. ! , /1 = /1 ! , etc.

• Nondimensional: edge value, 3 = 4%∗5∗/.%∗

• Sutherland’s law: 8̅ = /1#/" !()/*!
∗

+*()/*!∗

• 29 =
,+-
, +*
21

• Instability Wave Formulation 
:& 5, !, ;, < = =& ! exp(B(C5 + D; − F<))

• C, D are the wavenumber
• =& (!) is shape function

• Linear Stability Equations System
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Pressure Fluctuations from Instability Waves
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• Wall Pressure Fluctuations Construction[3]

Γ I,F =
1
2L
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./
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0N O, < , 0N(O + I, < + P) exp −BFP *P

• Spatial Coherence

[2] Malik, M. R., and Spall, R. E., “On the Stability of Compressible Flow Past Axisymmetric Bodies,” Journal of Fluid Mechanics Digital Archive, Vol. 228, 1991, pp. 443–463.
[3] Zhou, H., “Coherent Structure Modeling and its Role in the Computation of Passive Quantity Transport in Turbulent Flows.” JSME International Journal Series B, Vol. 41, No. 1, 1998, pp. 137–144.
[4] Poggie, J., “Plasma-Based Hypersonic Flow Control,” 37th AIAA Plasmadynamics and Lasers Conference, AIAA Paper No. 2006-3567, 2006.

Maximum growth rate at azimuthal direction is chosen.
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• Phenomenological Plasma Actuator Model[4]

5# =
6

7$/&8$
exp −

4&

8&
, 4 = # − #' & + % − %' & + & − &' &

• Cross-Power Spectral Density (CPSD)
Ψ(( :, 3 = ; 3 Γ(:, 3)



Flow Conditions
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• Cone Configuration and Grid Distribution 

Fig 4. Flow region. Fig 5. Nose region.

• Flow Conditions[5] and nose radii
?" @"(K) A"(kg/m3 ) Re(1/m) L(m) Q0(mm)

3.5 90.1 0.0874 9.45×10) 0.3556 0.038

[5]Gross, A., and Fasel, H. F., “Numerical Investigation of Supersonic Flow for Axisymmetric Cones,” Mathematics and Computer sin Simulation, Vol. 81, No. 1, 2010, pp. 133–142.

E* E& E$ E+ E, E) E- E. E/ E*0
0.038 0.076 0.152 0.38 1.14 1.905 3.969 7.938 15.876 38.1



Stability Properties
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• Maximum Growth Rate Distribution
Mack-mode:	0 < I∗ < 75kHz, 0 < L < 40
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Fig 9. Nose radii distribution. Fig 10. Maximum growth rates over all frequencies 
(R∗) and azimuthal mode number (S).

• Small nose radii do not alter the maximum growth rate and peak locations close to the leading edge (Q!~Q1) ;
• Large nose radii have small growth rate due to thick boundary layer and peak locations moves downstream (Q1~Q2);
• Complex growth rates distribution in larger nose radii (Q2~Q!3). 

Increasing 6$



Spatial Coherence of Base Flow
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Fig 11. Spatial coherence of Q!, Q2, and Q!3 at U/ = 3.5, where the reference point of each case is the 
position of maximum growth rate in the streamwise direction.

• Amplified instability waves have higher spatial coherence

• Growth rates depend on the non-dimensional frequency F =
"45∗6
7#∗

and 3 = 4%∗5∗/.%∗

!! = 0.038 mm !" = 3.969 mm !!# = 38.1 mm



Effects of Plasma Actuation 

J. Cheng, University of Florida, Department of Mechanical and Aerospace Engineering, chengjianhui@ufl.edu

Fig 12. Mean flow field comparison between base flow and flow with actuation (Left) and relative temperature difference 
between base flow and flow with actuation (Right )

• Temperature increase and velocity decrease
• Relative temperature difference increase for blunt cone due to entropy layer
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Increasing $!

6 = 100W, %' = 0.008m, 8 = 0.005m, #' is the position of maximum growth rate of each case
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• Plasma actuation stabilize the flow-field
• Growth rates decrease with same plasma actuator with increasing nose radii (Q!~Q1) 

Effects of Plasma Actuation 

Fig 13. Growth rates distribution along streamwise direction of flow with plasma actuation (Left) and relative growth 
rates between base flow and flow with actuation (Right) 
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Spatial Coherence of Actuated Flow
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Fig 14. Spatial coherence of base flow (left) and actuated flow (right) for Q! = 0.038 mm, where the reference 
point of each case is the position of maximum growth rate in the streamwise direction.

• Growth rates depend on the non-dimensional frequency F =
"45∗6
7#∗

and 3 = 4%∗5∗/.%∗ , .%∗ decrease

• Compared with base flow, the frequency range become smaller and move to low frequency
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Summary and Conclusion

• Summary and Conclusion
• Linear stability solver is applied to compute the growth rate distribution

• The small nose radii would not affect the maximum growth rate and spatial coherence

• The large nose radii have higher spatial coherence within a smaller frequency range 

• The plasma actuation adds heating, stabilizes the flow-field, and decreases the frequency 
range of spatial coherence 
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• Future Work
• Study the effects of positions of plasma actuator model on flow-fields and stability 

properties 



Thank you!
Questions?
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