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Importance & Objectives
Importance:

▶ Useful for rapid approximate
calculations for design

▶ Allow for an increased
understanding of the physics
of high-speed flows

Objective:

▶ Find fast accurate analytical
solutions for high-speed
inviscid flow-fields,
eventually relaxing
assumptions to predict
flow-fields for more complex
geometries

▶ Assessment of current
methods is the first step

Figure 1: X-15 hypersonic aircraft
(top) [1] and shadowgraph of wind
tunnel model (bottom) [2].
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Taylor-Maccoll (1933)

▶ By definition of conical flow, flow-variables are functions of
polar coordinate (θ) only

▶ System of ODEs representing an exact solution to inviscid
axisymmetric irrotational flow [3]:
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Stone (1948)

▶ Flow variables are expressed in a power series in α (angle of
attack) [4]. Neglecting higher terms gives:

u = u1 + αu2 cosϕ

v = v1 + αv2 cosϕ

w = αw2 sinϕ

P = P1 + αP2 cosϕ

ρ = ρ1 + αρ2 cosϕ

▶ The following differential equation is solved, where coefficients
A, B, and C are functions of the Taylor-Maccoll solution and
f is a function of (P1, P2, , ρ1, ρ2):
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Savin (1951)

Figure 2: Geometry and coordinate system [5].
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Savin (1951)

▶ Governing equation in the plane of symmetry (irrotational):
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▶ Assume a conical shock with circular cross-sections:

ωs = (ωs)ϕ=0 + η(1− cosϕ) (2)

▶ This leads to:
(ωs)ϕ=π − (ωs)ϕ=0 = 2η (3)

▶ An expression for δ in the plane of symmetry is obtained from
governing equation by assuming either ω − δ << 1 or δ << 1

▶ Solve a system of nonlinear algebraic equations for ωs until
(3) is satisfied
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Savin’s Equations

▶ Assume ω − δ << 1 or δ << 1 only no solution is available
with first assumption

▶ Equation (1) becomes analytically integrable to obtain an

equation governs the entire plane of symmetry

δs = δs (Ms , δc , V0, ϵ) (4)

▶ Mach number after shock (Ms):
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▶ Deflection angle after shock (δs):

δs ± α = tan−1

 cot (ωs ± α)
(
M2

0 sin2 (ωs ± α) − 1
)

γ+1
2

M2
0 − M2

0 sin2 (ωs ± α) + 1

 (6)
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Comparison of Methods

Taylor-Maccoll Stone Savin

Assumptions: Inviscid Inviscid Inviscid

Irrotational Velocity components ω − δ << 1 or δ << 1

Axisymmetric vary linearly with α

Range of Validity: α=0◦ Small α M0δc ≥ 1

Computation: Numerical integration Numerical integration Fully analytical,

Numerical root-finding used

to solve algebraic system
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Savin Versus Taylor-Maccoll (α = 0◦)
▶ Better agreement with higher Mach numbers and cone angles
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Figure 3: δc − ωs −M relation.
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Savin Versus Stone First-Order
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Figure 4: Cross-stream view 1 m downstream of vertex of shock in Mach
10 flow past 15◦ half-angle cone at 3◦ angle of attack (left) and 5◦ angle
of attack (right).
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Savin Versus Stone First-Order
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Figure 5: Cross-stream view 1 m downstream of vertex of shock in Mach
7 flow past 7.5◦ half-angle cone at 3◦ angle of attack (left) and 5◦ angle
of attack (right).
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Predictions
▶ Simplicity of Savin’s method allows for predictions like the

following to be made in seconds with shock-expansion theory:

Figure 6: Near-field shock comparison with experiment for Mach 3 flow
past 20◦ cone at 8◦ angle of attack [7].
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Conclusions

▶ Savin’s method has good agreement with other well-known
methods

⋄ Has a maximum error of less than half a degree from the
Taylor-Maccoll solution

⋄ Produces similar results to Stone’s theory for hypersonic
similarity parameters greater than 1

▶ Future work: make similar assumptions or relax current
assumptions to extend current methods to obtain shock
shapes and flow-fields for more complex geometries.
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Thank You!
Questions?
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Extra Slides - Savin’s Equations
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Extra Slides - Savin’s Equations

δs = δc
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Extra Slides - Savin Method Applicability

Figure 7: Savin method applicability.
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