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Hypersonic flight-vehicles create shock and expansion waves that propagate through the
atmosphere and are observed on the ground as sonic booms. We present a methodology to pre-
dict the near-field aerodynamic pressure and sonic boom signature using approximately 1% of
the computational cost relative to fully-nonlinear computational fluid dynamics and state-of-
the-art sonic boom propagation solvers. Relative differences in predictions between the present
method and the state-of-the-art are approximately 8%. We find that unique physics must be
accounted for in the hypersonic regime, which includes viscous, non-equilibrium, and real gas
effects. The method is based on the fully-parabolized Navier-Stokes equations, which are solved
via marching in the propagation direction to the aerodynamic near-field. The near-field aero-
dynamic pressure is propagated through the atmosphere to the ground via the waveform pa-
rameter method, and is validated with NASA PCBoom and data from the NASA Sonic Boom
Workshops. To illustrate the approach, three bodies are analyzed: the Sears-Haack geome-
try, the HIFiRE-5 hypersonic test vehicle, and a power-law waverider. Global Mach numbers
range from 4.0 through 15.0. We find that the viscous stress tensor is essential for accurate
hypersonic prediction. For example, viscous effects increase near-field and sonic boom over-
pressure by 15.7% and 8.49%, respectively for the Sears-Haack geometry. Finally, we show
that the divergence of viscous versus inviscid near-field predictions are due to the hypersonic
boundary layer.

Nomenclature

Symbols Description
𝐴 Local ray-tube area
𝑐 Speed of sound
𝐷 Drag
𝑬, 𝑭 ,𝑮 Streamwise flux vectors
𝐹 F-function
𝐻 Atmospheric height
ℎ Vehicle altitude
𝑘𝐵 Boltzmann constant
𝐿 Body length
𝑚 Slope of waveform segment
𝑝 Static pressure
𝑝∞ Freestream pressure
𝑝𝑔 Pressure at ground
�̃� Fourier transform of scaled acoustic pressure
𝑟 Source cylinder radius
𝑠 Ray path length
𝑠𝑙 Streamwise position
𝑈 Velocity magnitude
𝑈∞ Freestream velocity magnitude

Greek Symbols
𝛼𝑡 Effective absorption coefficient
𝛽 Coefficient of non-linearity
𝛽P Prandtl-Glauert factor
𝛾 Ratio of specific heats
𝛿∗ Displacement thickness
𝜉 , 𝜂, 𝜁 Transformed coordinates
𝜆 Time duration of waveform segment

𝜔 Frequency
𝜔′ Variable of integration
𝜙 Azimuthal coordinate
𝜃𝑐 Surface inclination angle

Non-Dimensional Numbers
𝑐𝑙 Lift coefficient
𝑐𝑠 Species mass fraction
�̃� Binary diffusion coefficient
𝑒 Eccentricity
𝑀 Mach number
K Hypersonic similarity parameter
¤𝜔𝑠 Nondimensional production

Abbreviations
CFD Computational Fluid Dynamics
PNS Parabolized Navier-Stokes
UPS Upwind Parabolized Navier-Stokes Solver
IPNS Iterative Parabolized Navier-Stokes
WPM Waveform Parameter Method

Superscripts
𝑝 Elliptic regime
∗ Parabolic-hyperbolic regime

Subscripts
𝑐 Cone surface
∞ Ambient condition
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I. Introduction

FLIGHT-vehicles traveling at hypersonic speeds create shock waves and expansion fans that propagate nonlinearly
through the atmosphere as sonic booms. To aid in the design and development of high-speed flight-vehicles, it is

important to quickly resolve the flow-field using fast flow solvers to minimize design time. Fast and accurate prediction
of low-thickness ratio or bluff body flight-vehicles can Multi-Disciplinary Analysis and Optimization (MDAO) design
time and enable ultra fast prediction to determine the sonic boom footprint. This way, flight-vehicles can be assessed
before higher fidelity computational fluid dynamics (CFD) is performed. Fast flow-field solvers make assumptions
that drastically decrease computational cost and wall-clock time at the expense of solution fidelity. Therefore, their
accuracy must be compared with fully nonlinear CFD solvers or experimental measurements to validate prediction
quality. Prediction of near-field source pressure for sonic boom propagation often is performed using tools such as
NASA’s FUN3D CFD solver [1]. The near-field is defined as the region outside the vorticity induced by the flight-
vehicle. Current methods such as adjoint-based mesh adaptation of Park [2, 3] show significant improvements for near-
field prediction by minimizing uncertainty of error estimates. We accurately predict hypersonic near-field signatures
and sonic boom using a fully-parabolized approach.

In this study, we predict the source near-field via spatially marching solutions of the Parabolized Navier-Stokes
(PNS) equations and predict sonic boom at the ground via the Waveform Parameter Method (WPM) [4, 5]. We demon-
strate that we can achieve nearly equivalent solution quality using fully-parabolized near-field and sonic boom prediction
methods relative to industry standard approaches. Furthermore, the wall-clock time of the present approach is reduced
by up to two orders of magnitude [6]. We are also able to capture the effect of chemically reacting non-equilibrium
flows, which are important for hypersonic calculations. The present paper investigates the effects of viscosity and non-
equilibrium reacting flow on the hypersonic near-field and sonic boom at the ground for three hypersonic vehicles: The
Sears-Haack [7] geometry, a HIFiRE-5 [8] hypersonic test vehicle, and a power-law waverider [9].

A. Previous Approaches
Previously, two major analytical approaches were developed for predicting the near-field. The methods of Whitham

[10, 11] and Carlson [12] are based on linearized aerodynamic theory. These methods predict the near-field using
a closed-form integral equation, which includes the so-called F-function in the integrand. The formulation of these
methods is similar and often confused with the area rule, which was initially developed by Vera Maslennikova in
the Soviet Union and later by Whitcomb and Fischetti [13] and Whitcomb [14] in the United States. Unfortunately,
these theories are restricted to slender flight-vehicles with freestream Mach numbers, 𝑀∞, between 1.2 and 3.0, as
noted by Hayes [15] and Hayes and Runyan [16]. For bluff-body hypersonic flows, Seebass [17] and Tiegerman [18]
developed an instantaneous impulse method that is applicable to high-speed flows over an infinitely long fuselage that
does not generate lift. Their models account solely for flight-vehicle volume, which contributes to over 40% [19] of the
sonic boom overpressure at moderate supersonic to hypersonic speeds. Housman et al. [20] predict near-field pressure
signatures by spatially marching the Euler equations to an extraction point.

The F-function (see Whitham [10, 11] and Carlson [12, 21]) relies on linearized supersonic theory and corrections
for lift. Specifically, the F-function is an argument of an integral equation for the pressure time history in the flight-
vehicle near-field. Typically, this pressure time history is propagated through the atmosphere with contemporary sonic
boom propagation solvers. The theory leads to the basic equation for static pressure about the atmospheric pressure

Δ𝑝(𝑥 − 𝛽P𝑟, 𝑟) =
𝑝∞𝛾𝑀2𝐹 (𝑥 − 𝛽P𝑟)

(2𝛽P𝑟)1/2 , (1)

where 𝑝 is pressure, 𝑝∞ is ambient pressure, 𝑟 is the radius, 𝑀 is the Mach number, 𝑥 is the axial coordinate, 𝛽P is the
Prandtl-Glauert factor, and 𝛾 is the ratio of specific heats. The 𝐹-function is

𝐹 (𝑥) = 1
2𝜋

ˆ 𝑥

0

𝐴′′ (𝜉)
(𝑥 − 𝜉)1/2 𝑑𝜉, (2)

and 𝐴 is modified by Cramer [22] as

𝐴𝐿 (𝑥, 𝜃) =
𝛽𝑝

𝜌𝑢2
∞

ˆ 𝑥

0
𝐿 (𝑥, 𝜃)𝑑𝑥, (3)
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to account for lift. Here, 𝐿 is the component of lift per unit length and 𝐴𝐿 is the modified area. At hypersonic Mach
numbers the error increases, and the F-function is no longer applicable. Even though the F-function accounts for lift and
is designed for slender bodies, the disagreement at hypersonic speeds is unacceptable. Linearized theory (F-function
method with corrections for lift) is unable to account for hypersonic Mach numbers, and the error is compounded with
the addition of lift. This error is primarily due to the nonlinear nature of hypersonic flow-fields. F-function theory does
not provide satisfactory predictions at 𝑀∞ > 3 with or without non-zero lift. Example predictions are shown in Morris
et al. [23] and Hunton [24], where predictions depart from theory at high-speeds.

An alternative method was formulated to overcome the limitations of the F-function approach at a hypersonic flight-
vehicle Mach number. It was pioneered by Seebass [17] and uses the instantaneous energy pulse method. It was later
extended in the Ph.D. dissertation of Tiegerman [18] and by Cramer [22], who performed an analysis with similarity
and scaling laws to match the near-field flow to the far-field, where the method of Whitham [10] applies. The method
works well for hypersonic flows for bluff bodies with zero lift. It cannot be applied to slender hypersonic bodies or
lifting bodies.

Recently, Miller [25] proposed a new analytical method in two-dimensions to predict the near-field. However, the
method relies on constructing complicated source and propagation functions that are difficult to ascertain for complex
flight-vehicle configurations. We hope that in the future, this newly developed analytical method will replace the present
and other approaches entirely.

Experiments can capture near-field pressure, but they are very costly and measurement is difficult [26–28]. Near-
field pressure can be measured in a wind-tunnel [29]; however, the near-field required for sonic boom propagation is
often contaminated by wind tunnel wall effects. This results in measurements that are made too close to the model
flight-vehicle for sonic boom propagation codes (see Carlson [12], Morgenstern [30], and Carlson and Morris [31]).

CFD can successfully predict the near-field pressure [32–34], but it is computationally expensive. This makes
fully nonlinear CFD undesirable for MDAO, which requires rapid prediction. Generally nonlinear CFD solvers, that
often use adjoint based grid adaptation, are computationally expensive. They are emerging as the industry standard for
near-field sonic boom source prediction.

Typically, computational domains for near-field prediction are much higher than typical aerodynamic predictions,
and grid points per condition are approximately on the order of 108. Shock waves must be resolved, which greatly
increases the problem complexity. Adaptive grids are often used to capture shock waves far from the flight-vehicle.
The volume of the domain must also be large as to contain the source cylinder for the propagation solver, and the
domain must extend well outside the induced vorticity field. Typically, the near-field should be extended by multiple
body lengths in the cross-stream direction to conduct a proper sonic boom prediction. Unfortunately, this means that the
computational domain must resolve shock and expansion waves accurately with little dissipation and dispersion error.
This has continued to challenge the community for decades. Recent advances in sonic boom near-field prediction have
been made by the research conducted under the NASA X-59 program. For example, recent CFD advances for NASA
X-59 are presented by Park and Carter [35]. However, these advances have focused on sonic boom for commercial
aircraft in the supersonic regime and not for hypersonic flight-vehicles.

These near-field pressure waveforms must be propagated to the ground through the atmosphere. There are mul-
tiple contemporary solvers for this purpose and are generally called sonic boom solvers. These include sBOOM by
Rallabhandi [36] and PCBoom by Plotkin et al. [37]. These are the most advanced contemporary sonic boom propaga-
tion solvers available to the present investigators, are highly validated, used throughout industry and government, and
represent the state-of-the-art.

The prediction methodologies for the near-field and sonic boom are explained in Sec. II. Results and analyses of
hypersonic near-field and sonic boom are presented in Sec. III. The summaries and conclusions of this research are in
Sec. IV.

II. Prediction Methodology
We use a fully-parabolized marching solver to predict the flow-field of a hypersonic flight-vehicle. The near-field

for slender, hypersonic flight-vehicles, is in the range of 𝑟𝐿−1 = 0.15 to 𝑟𝐿−1 = 1.0 (see Loubeau and Coulouvrat [38]).
Here, 𝑟 is the radial position from the centerline of the flight-vehicle, and 𝐿 is the length of the flight-vehicle. The near-
field represents the region as close to the flight-vehicle as possible, but outside the region of induced vorticity. Higher
fidelity near-field predictions are made by accounting for viscosity in the cross-flow directions as well as including
finite-rate air chemistry.

Figure 1 presents the prediction approach. Here, the source cylinder (top), the near-field pressure (middle), and
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the ground waveform (bottom) are shown. A generic flight-vehicle is shaded grey. Flow moves from left to right.
The source cylinder is located at 𝑟 . The source cylinder represents the mathematical surface that encompasses the
flight-vehicle where pressure is measured or predicted in the near-field. Strong leading and trailing shock waves will
be attached to the vehicle, shown as solid and dashed lines, respectively. There are many shock and expansion waves
in between. In the parabolized approach, solutions are marched downstream and terminate when they intersect the
source cylinder at location, 𝑟 . Solutions are initialized from the free-stream in front of the flight-vehicle. We normalize
the local static pressure, 𝑝, relative to the local ambient pressure, by the ambient pressure, 𝑝∞. This near-field source
cylinder, that is a function of azimuthal angle, 𝜙, is propagated to the ground to predict the footprint of the hypersonic
flight-vehicle. It is very typical that hypersonic flight-vehicles, even at low altitude, produce strong over-pressure and
N-waves at the ground, which are represented at the bottom of Fig. 1. We use both WPM and PCBoom to predict sonic
boom propagation and the sonic boom footprint (ground signature).

Figure 2 shows a flow-chart of the prediction process. The solver requires that we specify the shape of the vehicle.
The domain of the solution is constructed by the solver automatically as it marches downstream. Here, at minimum we
define the flight-vehicle half-angle, 𝜃𝑐, cross-section eccentricity, 𝑒, and the body length, 𝐿 to construct a simplified
geometry. A grid spreading angle is determined by the user and is bounded by the leading shock wave angle. The
computational domain is algebraically generated within the solver. This angle is larger than the Mach angle of the
ambient flow-field to guarantee that shock waves do not intersect the outer edge of the grid. The flow-field is calculated
by solving the PNS equations, which are closed by equilibrium, finite-rate non-equilibrium, or frozen air chemistry
[39–41] models. The ratio, 𝑝𝑝−1

∞ , at a specified source-cylinder radius is then extracted for the sonic boom solver.

xL-1

t [ms]

𝚫p/p∞

p [Pa]

Sonic Boom Signature at the Ground

Extract Source Cylinder at Altitude

CFD

L

r Leading 
Shock

Trailing Shock

Fig. 1 Geometry, source cylinder, near-field pressure, and sonic boom signature.

A. Upwind Parabolized Navier-Stokes Solver
We present the PNS equations that model the hypersonic near-field and associated numerical solution approach.

The PNS equations are derived from the Navier-Stokes equations by assuming unsteady and viscous derivatives to be
zero [42]. The PNS equations are

𝜕𝑬

𝜕𝜉
+ 𝜕𝑭

𝜕𝜂
+ 𝜕𝑮

𝜕𝜁
= 0, (4)

4



Atmospheric 
Conditions

Mach 
Number Geometry Boundary 

Conditions

Parabolized 
Navier-Stokes

Equilibrium 
Air

Finite-Rate 
Non-Equilibrium 

Air

Frozen 
Chemistry

Extract Near-Field 
Source Cylinder

Burgers’ Equation 
Solver

Waveform 
Parameter Method

Sonic Boom at 
Ground

Species 
Continuity

Fig. 2 Fully-parabolized prediction system.

where 𝑬, 𝑭, and 𝑮 are the flux vectors in the 𝜉, 𝜂, and 𝜁 directions, respectively.
The PNS equations are parabolic-hyperbolic in the 𝜉-direction if the local flow-field is supersonic. In subsonic

regions (elliptic) of the flow-field, departure behavior is restrained by employing the technique of Vigneron et al. [43].
Vigneron’s technique separates the streamwise flux vector into two terms, where 𝑬 𝑝 is the elliptic portion and 𝑬∗ is
the parabolic-hyperbolic portion. This is represented as

𝑬 = 𝑬∗ + 𝑬 𝑝 . (5)

Using forward differencing, the streamwise flux gradient is

(
𝜕𝑬

𝜕𝜉

)
𝑖+1

=
1
Δ𝜉

[𝑬∗
𝑖+1 − 𝑬∗

𝑖 + 𝑬 𝑝 (𝑑𝑺𝑖+1,𝑼𝑖+2) − 𝑬 𝑝 (𝑑𝑺𝑖 ,𝑼𝑖+1)] . (6)

Streamwise and cross-stream flux gradients are then linearized and substituted into the PNS equations (see Eqn. 4) and
the Iterative PNS (IPNS) method of Miller et al. [42] is implemented to improve predictions in regions with upstream
influence. The full discretized form of the equations is

{
1
Δ𝜉

[𝐴∗ (𝑑𝑺𝑖+1,𝑼𝑖) − 𝐴𝑝
𝑖 ]

𝑘+1 + 𝜕

𝜕𝜂

[
𝜕𝑭(𝑑𝑺𝑖+1,𝑼𝑖)

𝜕𝑼

] 𝑘+1
+ 𝜕

𝜕𝜁

[
𝜕𝑮 (𝑑𝑺𝑖+1,𝑼𝑖)

𝜕𝑼

] 𝑘+1
}
Δ𝑼𝑘+1

𝑖

= − 1
Δ𝜉

{
[𝐴(𝑑𝑺𝑖+1,𝑼𝑖) − 𝐴𝑖]𝑘+1𝑼𝑘+1

𝑖 − 𝑬 𝑝 (𝑑𝑺𝑖+1,𝑼𝑖+2)𝑘 + 𝑬 𝑝 (𝑑𝑺𝑖+1,𝑼𝑖)𝑘+1}
−
[
𝜕𝑭(𝑑𝑺𝑖+1,𝑼𝑖)

𝜕𝜂

] 𝑘+1
−
[
𝜕𝑮 (𝑑𝑺𝑖+1,𝑼𝑖)

𝜕𝜁

] 𝑘+1
.

(7)

The Upwind Parabolized Navier-Stokes Solver (UPS) is used to predict flow-fields for flight-vehicles and is origi-
nally based on Lawrence et al. [4]. UPS has the ability to predict ideal, real, and non-equilibrium reacting flow-fields
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[44]. UPS employs the real gas model implemented by Tannehill et al. [40] to resolve chemically reacting flows. For
non-equilibrium flows, the species continuity equation employed by Tannehill et al. [39] is solved. The non-dimensional
species continuity equation is

𝜕𝑐𝑠
𝜕𝜉

+
(
𝜂𝑥 +

𝑣

𝑢

) 𝜕𝑐𝑠
𝜕𝜂

=
1
𝜌𝑢

[
¤𝜔𝑠 +

𝜂𝑦

Re∞
𝜕

𝜕𝜂

(
𝛽3𝜌�̃�𝜂𝑦

𝜕𝑐𝑠
𝜕𝜂

)
+ 𝜂𝑥

Re∞
𝜕

𝜕𝜂

(
𝛽3𝜌�̃�𝜂𝑥

𝜕𝑐𝑠
𝜕𝜂

+
)
𝛿

𝑦

𝜂𝑦

Re∞

(
𝛽3𝜌�̃�

𝜕𝑐𝑠
𝜕𝜂

)]
, (8)

where the governing equation for species continuity is a function of species mass fraction, 𝑐𝑠 , non-dimensional produc-
tion, ¤𝜔𝑠 , binary diffusion coefficient, �̃�, freestream Reynolds number, Re∞, and 𝛽, where 𝛽 = (𝑘𝐵𝑇)−1 (see Tannehill
et al. [41] for details). Near-field prediction validations using UPS have previously been performed by King and Miller
[6].

B. PCBoom
We use two sonic boom solvers. PCBoom is used to validate and compare predictions of various source waveforms

with those predicted with WPM. PCBoom has a long and prestigious history within the aeronautics community, and
many iterations of the solver have been published (see Salvetti and Seidman [45] and Plotkin [19] for details). We use
the version of PCBoom presented by Lonzaga [46]. The solver is based on the traditional idea of finding rays through
the atmosphere, and then subsequently propagating the source waveform to the ground along these rays. In the present
formulation of Lonzaga [46], a propagation equation is numerically integrated and is

𝑑𝑝

𝑑𝑠
=
𝑖𝜔𝛽

4𝜋

ˆ ∞

−∞
𝑝 (𝑠, 𝜔′) 𝑝 (𝑠, 𝜔 − 𝜔′) 𝑑𝜔′ − 𝛼𝑡 (𝑠, 𝜔)𝑝(𝑠, 𝜔), (9)

where 𝑝 is the Fourier transform of the scaled acoustic pressure, 𝑠 is the ray path length, 𝛼𝑡 is the effective absorption
coefficient, 𝛽 is the scaled coefficient of non-linearity, and 𝜔 is the frequency. The variable of integration is 𝜔′. For
predictions, we use the FOBoom module within version 7.1 of PCBoom. The ray path solver includes the ray velocity,
slowness vector, and Doppler shift effect. The solver computes the evolution of the sonic boom signature using a
Middle-Carlson-Hayes age parameter [47].

C. Waveform Parameter Method
WPM is an alternative propagation method relative to PCBoom. The approach is based on the research of Thomas

[5], and was compared with other methods by Cleveland et al. [48]. This method eliminates the requirement for area
balancing to determine shock wave location used by other methods, while being mathematically equivalent to it (similar
assumptions are used in the derivation). The methodology represents a semi-closed-form set of equations. To close
the equations, we identify the shock-coalescence positions along the path from the flight-vehicle to the ground. Each
step of the propagation solver occurs at these shock-coalescence positions. Therefore, it is possible that a single step
of the solver can occur between source and observer. This is advantageous for fast parabolic solver techniques, which
can potentially reduce computational cost of MDAO analysis.

Three major equations are advanced after solving for the propagation path, 𝑠, via ray-theory. The first differential
equation tracks the evolution of the local slope of each waveform segment, 𝑚, as

𝑑𝑚𝑖

𝑑𝑡
= 𝑐1𝑚

2
𝑖 + 𝑐2𝑚𝑖 , (10)

where 𝑖 is the segment number and 𝑡 is waveform time. Auxiliary functions 𝑐1 and 𝑐2 are defined below. Increase in 𝑝
due to shock waves is tracked by Δ𝑝 and governed by

𝑑Δ𝑝𝑖
𝑑𝑡

=
1
2
𝑐1Δ𝑝𝑖 (𝑚𝑖 + 𝑚𝑖−1) + 𝑐2Δ𝑝𝑖 , (11)

where 𝑝 is the local static over-pressure. Finally, the duration of each segment is tracked and is defined as 𝜆𝑖 , which
evolves according to
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𝑑𝜆𝑖
𝑑𝑡

= −1
2
𝑐1 (Δ𝑝𝑖 + Δ𝑝𝑖+1) − 𝑐1𝑚𝑖𝜆𝑖 . (12)

Auxiliary functions 𝑐1 and 𝑐2 are

𝑐1 =
𝛾 + 1
2𝛾

𝑐∞
𝑝∞𝑐

and 𝑐2 =
1
2

(
3
𝑐∞

𝑑𝑐∞
𝑑𝑡

+ 1
𝜌∞

𝑑𝜌∞
𝑑𝑡

− 2
𝑐𝑛

𝑑𝑐

𝑑𝑡
− 1

𝐴

𝑑𝐴

𝑑𝑡

)
, (13)

respectively. Here, 𝐴 is the local ray-tube area at the waveform position along the ray path, 𝑐 is the local ambient speed
of sound, 𝛾 is the ratio of specific heats, and 𝜌 is the local density.

Source cylinder waveforms from CFD, experiment, or analytical theory provide 𝑝 versus 𝜏 or 𝑥. These waveforms
must be parameterized for WPM. It is easy to discretize these initial wavesforms and quickly approximate each segment
with corresponding slopes, 𝑚, duration, 𝜆, and over-pressures, Δ𝑝. Note that Δ𝑝 is zero unless a discontinuity occurs,
which is denoted by 𝜆 = 0. The original WPM developed at NASA has been improved through conversion to contem-
porary Fortran. WPM is compatible with source cylinders generated from FUN3D and the fully-parabolized approach
previously described. This makes WPM a more versatile and fast sonic boom solver for integration with parabolized
approaches and MDAO analysis.

D. Sonic Boom Signal Processing
We present sonic boom spectra in the form of SPL per unit Hz in addition to time domain predictions of sonic

boom. These spectra can be interpreted as the amount of energy per unit bandwidth in the waveform at frequency, 𝑓 .
Low frequency resolution is increased via mirroring (creating additional periodic instances of the waveform). Each
waveform contains 16 periods. Waveforms are zero-padded and interpolated onto a constant time step for calculation
of energy spectral density (ESD). ESD is calculated via the discrete Fourier transform and its associated complex
conjugate. Sound pressure level (SPL) is calculated via SPL = 10 log10

[
FT(𝑝)FT∗ (𝑝)/𝑝2

ref
]
. Here, FT is the Fourier

transform, superscript ∗ represents the complex conjugate, and 𝑝ref is the reference pressure of 20 𝜇Pa.

III. Results
We first present the sonic boom prediction validation of WPM with PCBoom and data from the NASA/AIAA

Second Sonic Boom Prediction Workshop. Next, grid independence studies for prediction of the aerodynamic near-
field are presented. Parabolized predictions for the near-field and sonic boom from three major configurations are
analyzed: the Sears-Haack geometry [7], the HIFiRE-5 hypersonic flight-vehicle, and a power-law waverider. In each
case, the near-field pressure and sonic boom waveform are predicted. Near-field and sonic boom signature alterations
resulting from viscosity and non-equilibrium effects are analyzed and presented.

A. Validation of Waveform Parameter Method with PCBoom and NASA/AIAA Sonic Boom Prediction Work-
shop
Predictions of WPM are validated with PCBoom and the averaged consensus predictions of the 2ⁿᵈ AIAA Sonic

Boom Workshop [49]. The ground track from both the Lockheed-Martin (LM) 1021 and the axisymmetric, equivalent
area configurations are propagated using WPM and PCBoom. These two predictions are then compared with the
workshop consensus predictions. Each sonic boom prediction is performed at a latitude of 34 deg. All sonic boom
predictions use a ground reflection factor of 1.90.

PCBoom is a suite of sonic boom prediction methodologies. The FOBoom module within PCBoom is used to prop-
agate the zero azimuth, 𝜙 = 0 deg., of the source waveform to the ground. PCBoom uses 𝑇 , 𝑝, and 𝑢 (horizontal wind)
as a function of altitude to account for the atmosphere. The wind velocity vector is decomposed into two components:
north and east. Vertical wind is not accounted for in WPM or PCBoom. Like PCBoom, WPM uses the same profiles
of 𝑇 and 𝑝. However, WPM calculates pressure as a function of altitude using a gas law. Note that public availability
of sonic boom measurements are limited, if not non-existent at 𝑀∞ > 5, especially for slender hypersonic waveriders.

Three atmospheric profiles are examined for each sonic boom validation case, which include the standard atmo-
sphere without wind, and two atmospheres with varying thermodynamic properties and wind. For the LM1021 pre-
dictions, two atmospheric profiles are obtained from Green Bay, WI in February [50], labeled ‘Atmosphere 1’ and
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‘Atmosphere 2’ in Fig. 3a and 3b, respectively. For these latter cases, predictions of sonic boom are located at the
ground, which is 214.0 m above sea-level. The axisymmetric case is run with Atmosphere 3, measured at the NASA
Wallops Flight Facility, where the ground elevation is 13.0 m. Finally, Atmosphere 4 is measured at Edwards Air Force
Base, where the elevation is 724.0 m. Both of these atmospheric profiles were recorded in August [50].
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Fig. 3 Measured atmospheric profiles for sonic boom propagation validation.

A sonic boom prediction validation is presented for the LM 1021 low-boom concept. The LM1021 validation
case has a flight-vehicle length of 𝐿 = 71.117 m, flies at 𝑀∞ = 1.60, and has an altitude of 16.764 km. Figure 4a
shows the near-field prediction of the under-track, where 𝜙 = 0.0 deg. and 𝑟𝐿−1 = 3.1299 (see Morgenstern [30] for
details). Figures 4b through 4d show the ground pressure signature through each of the three atmospheric profiles,
respectively. PCBoom predicts a maximum overpressure of 57.47 Pa. WPM predicts a maximum overpressure of
53.24 Pa, which is approximately 7.4% lower than PCBoom’s prediction. WPM’s prediction nearly matches the mean
peak overpressure of the NASA Sonic Boom Workshop, which is 53.20 Pa [49]. WPM predicts a minimum pressure of
−39.33 Pa at 𝑡 = 211.79 ms as compared to PCBoom’s prediction of −41.88 Pa at 𝑡 = 213.24 ms. Relative to PCBoom,
WPM predicts the amplitude to be 6% lower with a corresponding 0.68% shorter interval. Mean minimum pressure
predicted by the workshop [49] is −37.56 Pa at 209.46 ms. Overall, for this case, predictions of ground static pressure
are in relative quantitative agreement. WPM performed quantitatively better than PCBoom in predicting duration and
over-pressure relative to the NASA Sonic Boom Workshop dataset for this particular case. Note that WPM cannot
predict shock wave thickness. The hypersonic community is generally interested in duration and overpressure, and the
cost savings from using a parameter method are advantageous computationally.

We now validate the predictive capabilities of WPM and PCBoom with the axisymmetric, equivalent area configu-
ration. This configuration represents a low boom concept that was part of the 2ⁿᵈ AIAA/NASA Sonic Boom Prediction
Workshop (see Rallabhandi and Loubeau [49] for details). Figure 5a shows the near-field prediction at 𝜙 = 0.0 deg.,
𝑟𝐿−1 = 3.0, of the axisymmetric body at 𝑀∞ = 1.60 and 15.850 km altitude. The flight-vehicle length is 𝐿 = 42.98
m. Similar to the LM1021 case, the near-field is propagated through a standard atmosphere with 70% humidity and
Atmospheres 3 and 4, as previously shown in Fig. 3. Predictions of WPM for sonic boom at the ground are bench-
marked against predictions of PCBoom and the mean results of Rallabhandi and Loubeau [49]. For the case with the
standard atmospheric profile in Fig. 5b, WPM predicts maximum pressure at the ground to be 22.92 Pa at 34.28 ms. In
contrast, PCBoom predicts maximum pressure to be 24.00 Pa at 33.45 ms, and the mean prediction of Rallabhandi and
Loubeau [49] is 20.61 Pa at 37.01 ms. The WPM prediction is 4.5% lower in magnitude and 9.6% earlier in time than
the PCBoom prediction. Here, WPM’s prediction of the value of the overpressure and its time is closer to the mean
prediction than PCBoom’s by 31.9% and 23.3%, respectively. Minimum predicted 𝑝 by WPM, PCBoom, and Rallab-
handi and Loubeau [49] are −13.55 Pa at 113.64 ms, −14.18 Pa at 113.90 ms, and −11.82 Pa at 112.62, respectively.
WPM’s prediction is 4.4% lower in magnitude and 0.2% earlier in time than PCBoom’s. Like the previous benchmark,
WPM predicts the ensemble averaged waveform of the NASA Sonic Boom Prediction Workshop [49] more accurately
than PCBoom. Specifically, WPM predicts the magnitude of 𝑝 with an accuracy of 26.7% and 𝑡 with an accuracy of
20.3%, relative to PCBoom for the test dataset.
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(a) LM1021 near-field at 𝑀∞ = 1.6.
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(b) Sonic boom through a standard atmosphere.
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(c) Sonic boom through Atmosphere 1.
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(d) Sonic boom through Atmosphere 2.

Fig. 4 Sonic boom validation for the LM1021 low-boom concept.

B. Geometries Investigated
We examine three fundamental geometries to understand the physics, near-field waveforms, and sonic boom from

hypersonic flight-vehicles. They are the Sears-Haack [7] geometry, the HIFiRE-5 hypersonic test vehicle, and a power-
law waverider. These are chosen so that we can understand the effect of symmetry and lift on the near-field and sonic
boom.

The equation that defines the Sears-Haack geometry is

𝑟 (𝑥) = 𝑟max

[
4𝑥
𝑙

(
1 − 𝑥

𝑙

)] 3
4

, (14)

where 𝑟 (𝑥) is the geometry surface radius, which depends on position, 𝑥, body length, 𝑙, and maximum body radius,
𝑟max. The Sears-Haack geometry parameters are chosen to match the study of Bantle [51], where the body length,
𝑙 = 0.762 m, the maximum radius is 𝑟max = 0.0261 m, and the near-field source cylinder is 𝑟𝐿−1 = 0.3937.

The HIFiRE-5 is a hypersonic flight-test vehicle on which three-dimensional aerothermodynamic effects were tested.
All parameters of the HIFiRE-5 geometry examined in this study are identical to that of Juliano et al. [52], with the
exception of a sharp leading edge and a trailing tail of −3.20 deg. from 𝑥 = 1.81 to 𝑥 = 3.62 m. After which,
the geometry terminates and a trailing shock wave radiates. These slight modifications of the geometry are made to
conform to requirements of the parabolized solver.

The third major geometry examined is the variable wedge angle (VWA) power-law waverider. A VWA waverider
uses three governing power-law equations presented by Starkey and Lewis [9], which define the forebody of the wa-
verider. Three equations define the VWA geometry and are
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(a) Axisymmetric equivalent area near-field.
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(b) Sonic boom through a standard atmosphere.
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(c) Sonic boom through atmosphere 3.
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(d) Sonic boom through atmosphere 4.

Fig. 5 Sonic boom validation for the axisymmetric equivalent area concept.

𝑧LE = 𝐴𝑥𝑛, (15)

𝑧FS = 𝐵𝑧𝑛, (16)

and

𝑧LS = 𝐴
𝑧 − 𝑥 tan 𝜃

tan 𝛽 − tan 𝜃
, (17)

where 𝑧LE, 𝑧FS, and 𝑧LS represent the 𝑧-coordinates for the leading edge, the freestream surface, and the lower surface,
respectively. For this study, we set 𝐴 = 0.66, 𝑛 = 0.50, 𝜃 = 7.0 deg., and 𝛽 = 7.0 deg. The after-body converges to a
cylindrical cross-section at −2.0 deg. from 0.50 to 1.20 m. In the original study of Starkey and Lewis [9], the forebody
of the vehicle is 50.0 m long. We scale the geometry by a factor of 10−2 with to the original parameters [9]. This
scaling is chosen so that the leading geometry is on the same order of magnitude as contemporary waveriders.

C. Grid Independence
A grid independence study for the Sears-Haack [7] geometry is performed. Five radial mesh sizes are considered

consisting of: 201, 401, 801, 1101, and 2001 points. Hypersonic near-field studies conducted by King and Miller [6]
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showed grid independence with 801 radial grid points for propagation to source cylinder 𝑟𝐿−1 = 0.20. Therefore, a
maximum number of 2001 grid points are used for comparison for propagation up to 𝑟𝐿−1 = 0.3937 in the present study.
The parabolized solver determines the appropriate number of downstream planes for a solution [4] algorithmically.
We limit the maximum streamwise marching step-size to Δ𝑥 = 0.001 m to ensure high-fidelity near-field signature
resolution.

The stiffest numerical case with the farthest downstream radiating wave in the near-field is chosen for this study. This
case corresponds to 𝑀∞ = 15.0 with including viscous terms and non-equilibrium reacting flow effects. Freestream
static density and temperature are 𝜌∞ = 0.1948 kg/m3 and 𝑇∞ = 217.0 K, respectively. These conditions require the
highest grid resolution. Figure 6 shows the near-field waveform of 𝑀∞ = 15.0, with viscous, reacting flow over the
Sears-Haack geometry. The near-field is extracted at 𝑟𝐿−1 = 0.3937, which is within the acceptable range noted by
Loubeau and Coulouvrat [38]. Maximum relative difference in predicted overpressure for the computational grid with
1101 radial grid points is 0.53%. This is acceptable due to a percent difference less than unity. Based on this study, we
use 1101 grid points in the the radial direction for all cases examined.
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(b) Sears-Haack near-field relative error.

Fig. 6 Grid independence study for Sears-Haack geometry at 𝑀∞ = 15.0.

Grid independence studies are also conducted for the two three-dimensional geometries. The freestream Mach
number of the HIFiRE-5 vehicle of Juliano et al. [52] is 𝑀∞ = 7.0. This 𝑀∞, along with viscous and reacting flow
effects, represents the case where the most grid points are required to resolve the flow-field. Six separate grid sizes
are studied, with a number of radial grid points ranging from 100 to 900, as shown in Fig. 7. We find that 901 grid
points is more than adequate to resolve the radiating shock wave at a distance 𝑟𝐿−1 = 0.20 from the vehicle centerline.
Maximum 𝑝∞-normalized predicted overpressure is 0.604 for the case with 801 grid points and 0.608 for the case with
901 grid points, a 0.57% difference. Thus, a relative percentage error less than unity relative to the highest density
grid shows that 800 radial grid points is acceptable for all cases. Based on this numerical grid independence study,
we use 800 grid points in the radial direction for both three-dimensional geometries studied. The maximum difference
between the two highest resolutions results in a 1.0% difference in overpressure of the leading bow shock wave in the
near-field.

D. Sears-Haack Near-Field and Sonic Boom
Figure 8 shows a numerical schlieren of the Sears-Haack geometry at 𝑀∞ = 7.0 with viscous terms enabled. Flow

moves from left to right. The contours are dark on the onset of the leading (left) and trailing (right) shock waves.
Contours tending to white represent the region of Prandtl-Meyer expansion fans between the leading and trailing shock
waves. Within approximately 0.020 m in the cross-stream direction, resides a bright colored region representing the
boundary layer. It is within this boundary layer that non-equilibrium real gas effects dominate, which have an effect
on the near-field and sonic boom. Figure 9a shows the near-field signature of the Sears-Haack body at 𝑀∞ = 7.0.
Near-field predictions are presented for inviscid ideal gas, viscous ideal gas, inviscid non-equilibrium gas, and viscous
non-equilibrium gas. An apparent difference between each of the predictions is the increase in shock wave overpressure
for the viscous cases versus the inviscid cases. For example, freestream normalized overpressure for viscous ideal gas
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Fig. 7 Near-field extraction at 𝑟𝐿−1 = 0.20 for viscous reacting flow at 𝑀∞ = 6.0.

and non-equilibrium gas is 0.092 and 0.087, respectively. For inviscid ideal gas and non-equilibrium gas, the predicted
overpressures are 0.081 and 0.076, respectively. It is noted that all viscous cases have a larger overpressure than inviscid
cases. However, the inclusion of a real non-equilibrium gas model reduces predicted overpressure relative to the ideal
gas model by 5.64%, on average for Mach 7.0 flow.

Fig. 8 Numerical schlieren, 1
𝜌∞

𝜕𝜌
𝜕𝑦 , of Sears-Haack geometry at 𝑀∞ = 7.0 for viscous flow.

Predictive capability of WPM for hypersonic 𝑀∞ must be ascertained. Figure 9 shows, side-by-side, hypersonic
near-field prediction of the Sears-Haack geometry at 𝑀∞ = 7.0 and its sonic boom signature from an altitude of 15.850
km through a quiescent atmosphere. In Figure 9a, and for succeeding near-field predictions in this paper, features
flight-vehicle length normalized distance, 𝑥𝐿−1 on the 𝑥-axis and 𝑝∞-normalized change in static pressure, 𝑝, on the
𝑦-axis. Inviscid flow prediction is shown as a solid black line, viscous flow prediction is a dashed red line, inviscid
non-equilibrium flow is a dashed-dotted blue line, and viscous non-equilibrium flow is a dotted green line.

The Sears-Haack near-field is propagated to the ground through a quiescent, standard atmosphere. The altitude is
15.850 km, and the ground reflection factor is 1.90. Figure 9b shows the sonic boom pressure time history at the ground
from the Sears-Haack body at 𝑀∞ = 7.0. Similar to the near-field predictions, there is an increase in overpressure at the
ground for cases with viscous terms enabled. Particularly, the overpressures at the ground for viscous flow are 1.709
and 1.712 Pa for an ideal gas and non-equilibrium gas, respectively. For inviscid flow, the overpressures are 1.673 and
1.612 Pa for an ideal gas and non-equilibrium gas, respectively. Accounting for non-equilibrium, reacting flow in the
near-field results in an increased duration of the sonic boom at the ground, as compared to predictions made with an
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ideal gas assumption. On average, the duration of the sonic boom at the ground increases by 4.03% with the inclusion
of real gas effects for Mach 7.0 flow.

Corresponding sonic boom signatures at the ground in Fig. 9b use the same line and color convention. However, the
𝑥-axis now shows time, 𝑡, in ms and the 𝑦-axis shows dimensional change in pressure,Δ𝑝, in Pa. PCBoom is additionally
represented as a solid purple line for viscous, non-equilibrium flow. Maximum overpressure in the sonic boom at the
ground for viscous, non-equilibrium flow, predicted by WPM is 1.712 Pa and 1.762 Pa predicted by PCBoom. This
is a relative difference to PCBoom of 2.81%. The duration of the sonic boom predicted by WPM is 4.46 ms, and the
duration predicted by PCBoom is 4.49 ms. This is a relative difference to PCBoom of 0.49%. Thus, in the hypersonic
regime, WPM predicts sonic boom overpressure and duration metrics within 3.0% of PCBoom. This shows acceptable
hypersonic sonic boom predictive capability with WPM and can be expanded to other Mach numbers within a larger
design space. Due to a lack of experimental data or analytical solution, it is not possible to definitively determine which
propagation solver is more accurate for complicated geometries and atmospheres.
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Fig. 9 Hypersonic sonic boom validation of WPM with PCBoom for the Sears-Haack geometry.

1. Prediction of Hypersonic Near-Field and Sonic Boom for an Extended Mach Number Range
We predict the near-field signature and sonic boom of the Sears-Haack geometry for freestream Mach numbers:

𝑀∞ = 4.0, 5.0, 6.0, 7.0, 7.5, 8.0, 8.5, 9.0, 10.0, 12.0, and 15.0. Atmospheric conditions are 𝜌∞ = 0.1948 kg/m3 and
𝑇∞ = 217.0 K. Figures 10 through 12 show Sears-Haack near-field predictions on the left and corresponding sonic boom
ground signatures on the right. Solid black lines denote an inviscid ideal gas flow, dashed red lines denote a viscous
ideal gas flow, dashed-dotted blue lines denote an inviscid non-equilibrium flow, and dotted green lines indicate a
viscous non-equilibrium flow. Trends are extracted for near-field overpressure, sonic boom overpressure, and sonic
boom duration. The average, 𝑝∞ normalized, near-field overpressure over the 𝑀∞ range studied is 0.0927 for inviscid
flow, 0.1056 for viscous flow, 0.0888 for inviscid reacting flow, and 0.1027 for viscous reacting flow. It is clear that
inclusion of the viscous stress tensor is the most influential factor for near-field prediction, which increases predicted
overpressure by 13.9% for an ideal gas and 15.7% for a real gas. These trends are apparent in Fig. 13a, which show near-
field overpressure normalized as 𝑐𝑝 , where 𝑐𝑝 = 2(𝑝 − 𝑝∞)(𝛾𝑝∞𝑀2

∞)−1. The dotted lines are exponential equations
of best fit. The decrease in maximum 𝑐𝑝 as a function of 𝑀∞ shows a log-linear relationship with a rate of −0.158 for
inviscid flow, −0.149 for viscous flow, −0.154 for inviscid reacting flow, and −0.144 for viscous reacting flow. The
effect of reacting flow is also considered. Across the 𝑀∞ range studied, accounting for real gas and reacting flow effects
decreases the near-field predicted overpressure of inviscid and viscous flow by 4.25% and 2.75%, respectively.

The effect of viscosity and non-equilibrium air chemistry influences the characteristics of sonic boom at the ground.
For the Sears-Haack geometry, inclusion of viscous effects in the near-field increases the predicted sonic boom overpres-
sure by 7.28% for an ideal gas and 8.49% for a non-equilibrium gas. The inclusion of non-equilibrium air chemistry in
the near-field decreases the predicted sonic boom overpressure by 3.01% for inviscid flow and 1.90% for viscous flow.
Figure 13b shows sonic boom overpressure at the ground against 𝑀∞. The importance of viscous terms is apparent with
higher hypersonic 𝑀∞. The discrepancy of predicted overpressure at the ground for 𝑀∞ = 4.0 for inviscid and viscous
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flow are within 0.10 Pa of each other. This difference triples as 𝑀∞ approaches 15.0. For all cases, including viscous
terms increases the predicted sonic boom overpressure at the ground. The reason for viscosity increasing overpressure
is explained in King and Miller [6], where the existence of the boundary layer distributes Prandtl-Meyer expansion fans
over a greater distance, thus, lowering attenuation of the leading shock wave. A similar trend is observed in the sonic
boom duration at the ground. Including viscous terms increases the sonic boom duration at the ground by 7.89% for
an ideal gas assumption and 5.22% for a non-equilibrium gas. Overall, these predictions over the range 𝑀∞ = 4.0 to
15.0 show that viscosity and non-equilibrium real gas effects must be accounted for in hypersonic flow for the purpose
of sonic boom prediction.

We present spectral comparisons for the sonic boom signature of the Sears-Haack geometry at 𝑀∞ = 6.0, 7.0, and
10.0 in Fig. 14. Figure 14a shows SPL for the sonic boom signature of the Sears-Haack geometry at 𝑀∞ = 6.0 from
an altitude of 15.850 km. The reference pressure is 𝑝ref = 20.0 𝜇Pa. The maximum SPL is 82.57 dB at 254.87 Hz
for inviscid flow, 82.32 dB at 240.46 Hz for viscous flow, 83.36 dB at 239.96 Hz for non-equilibrium inviscid flow,
and 83.90 dB at 230.29 Hz for non-equilibrium viscous flow. Figure 14b shows SPL per unit Hz for the sonic boom
signature of the Sears-Haack geometry at 𝑀∞ = 7.0. The maximum SPL is 82.93 dB at 248.73 Hz for inviscid flow,
83.95 dB at 230.46 Hz for viscous flow, 83.62 dB at 236.04 Hz for non-equilibrium inviscid flow, and 84.31 dB at
223.83 Hz for non-equilibrium viscous flow. Figure 14c shows SPL per unit Hz for the sonic boom signature of the
Sears-Haack geometry at 𝑀∞ = 10.0. The maximum SPL is 82.93 dB at 231.93 Hz for inviscid flow, 85.17 dB at
210.73 Hz for viscous flow, 84.34 dB at 224.75 Hz for non-equilibrium inviscid flow, and 85.25 dB at 209.50 Hz for
non-equilibrium viscous flow. Overall, the most influential parameter in SPL at the ground is viscosity, increasing peak
SPL by 0.78% for 𝑀∞ = 6.0, 1.03% for 𝑀∞ = 7.0, and 1.28% for 𝑀∞ = 10.0. There is a negative frequency shift
in peak SPL of approximately 20 Hz for each peak in the sound spectrum due to the lengthening of the sonic boom
duration at the ground.

We observe from the predicted hypersonic near-field and sonic boom that viscosity is the most influential factor
relative to overpressure. We also note that the difference in inviscid and viscous predictions diverge with an increase
in 𝑀∞. Figure 15 shows numerical schlierens of the Sears-Haack geometry for viscous flow at 𝑀∞ = 4.0 and 15.0,
respectively. It is noted that near the surface of the vehicle, the developing laminar boundary layer is much thicker for the
𝑀∞ = 15.0 case than the 𝑀∞ = 4.0 case. This is also observed in Fig. 16, which shows the velocity profiles extracted
at 𝑥 = 0.20, 0.40, and 0.60 m for both freestream Mach numbers. Predictions and derived quantities are presented
dimensionally to illustrate the difference between the two cases. At 𝑥 = 0.60 m, the boundary layer displacement
thickness is 0.005 m for 𝑀∞ = 4.0 flow and 0.0099 m for 𝑀∞ = 15.0 flow. The displacement thickness for 𝑀∞ = 15.0
flow is larger than 𝑀∞ = 4.0 flow by a factor of approximately 1.9 spanning over the vehicle.

The displacement thickness, 𝛿∗ =
´ ∞

0
(
1 − 𝜌𝑢(𝜌𝑒𝑢𝑒)−1) 𝑑𝑦, grows with 𝑠𝑙 , where 𝑠𝑙 is the streamwise position

measured on the surface from the leading edge. If 𝑀∞ >> 1 and 𝑀∞𝑑𝛿∗/𝑑𝑠𝑙 << 1, then the boundary layer edge
pressure ratio, 𝑝𝑒/𝑝∞, becomes

𝑝𝑒
𝑝∞

= 1 + 𝛾𝑀∞
𝑑𝛿∗

𝑑𝑠𝑙
+ 𝛾(𝛾 + 1)

4

(
𝑀∞

𝑑𝛿∗

𝑑𝑠𝑙

)2
. (18)

It is readily apparent that the edge pressure, 𝑝𝑒, is dependent on 𝛿∗ with increasing distance, 𝑠𝑙 . It is also apparent
that 𝑝𝑒 goes as 𝑀2

∞. This explains the divergence of near-field and sonic boom overpressure. Between viscous and
inviscid flows, Δ𝑝𝑝−1

∞ increases with 𝑀∞ because 𝛿∗ increases with 𝑀∞ and the Prandtl-Meyer expansion fan becomes
distributed over the boundary layer. Attenuation of the leading shock wave is reduced, and this causes an increase in
predicted overpressure with increasing 𝑀∞, as well as a decrease in trailing shock strength with increasing 𝑀∞.

E. HIFiRE-5 Near-Field and Sonic Boom Prediction
The HIFiRE-5 geometry was partly created to support studies of three-dimensional aerothermodynamics and tran-

sition to turbulence. We predict the flow-field of the HIFiRE-5 hypersonic test vehicle for 𝑀∞ = 5.0, 6.0, and 7.0. The
atmospheric conditions in each case are 𝜌∞ = 0.1948 kg/m3 and 𝑇∞ = 217.0 K. Sonic boom is propagated from an
altitude of 15.850 km through a quiescent standard atmosphere. We focus on predictions that include viscous effects,
similar to the study by Juliano et al. [52].

Figure 17 shows contour slices of 𝑝∞-normalized change in pressure, Δ𝑝, at four downstream locations: 𝑥 = 0.50,
0.75, 1.25, and 1.50 m. Light blue color represents the freestream condition when Δ𝑝𝑝−1

∞ = 0.0. Contours are white
for values Δ𝑝𝑝−1

∞ < 0.050. Maximum pressure occurs when the azimuthal angle approaches the sideline, 𝜙 = 90.0
deg. This is presented as the white region.
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(a) Near-field at 𝑀∞ = 5.0 and 𝑟𝐿−1 = 0.3937.
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(b) Sonic boom at the ground at 𝑀∞ = 5.0.
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(c) Near-field at 𝑀∞ = 6.0 and 𝑟𝐿−1 = 0.3937.
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(d) Sonic boom at the ground at 𝑀∞ = 6.0.
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(e) Near-field at 𝑀∞ = 7.0 and 𝑟𝐿−1 = 0.3937.
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(f) Sonic boom at the ground at 𝑀∞ = 7.0.

Fig. 10 Near-field predictions (left) and sonic boom predictions (right) for the Sears-Haack geometry.
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(a) Near-field at 𝑀∞ = 7.5 and 𝑟𝐿−1 = 0.3937.
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(b) Sonic boom at the ground at 𝑀∞ = 7.5.
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(c) Near-field at 𝑀∞ = 8.0 and 𝑟𝐿−1 = 0.3937.
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(d) Sonic boom at the ground at 𝑀∞ = 8.0.
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(e) Near-field at 𝑀∞ = 8.5 and 𝑟𝐿−1 = 0.3937.
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(f) Sonic boom at the ground at 𝑀∞ = 8.5.

Fig. 11 Near-field predictions (left) and sonic boom predictions (right) for the Sears-Haack geometry.
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(a) Near-field at 𝑀∞ = 9.0 and 𝑟𝐿−1 = 0.3937.
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(b) Sonic boom at the ground at 𝑀∞ = 9.0.
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(c) Near-field at 𝑀∞ = 12.0 and 𝑟𝐿−1 = 0.3937.
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(d) Sonic boom at the ground at 𝑀∞ = 12.0.
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(e) Near-field at 𝑀∞ = 15.0 and 𝑟𝐿−1 = 0.3937.
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(f) Sonic boom at the ground at 𝑀∞ = 15.0.

Fig. 12 Near-field predictions (left) and sonic boom predictions (right) for the Sears-Haack geometry.
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(b) Sonic boom overpressures.
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(c) Sonic boom durations for the Sears-Haack geometry.

Fig. 13 Hypersonic near-field (𝑟𝐿−1 = 0.3937) and sonic boom trends for the Sears-Haack geometry.

For inviscid and non-equilibrium flow at 𝑀∞ = 5.0, near-field, 𝑝∞-normalized predicted overpressure is 0.508 and
0.496, respectively. Assuming an ideal gas, there is an increased relative difference in overpressure by 2.36%. For
𝑀∞ = 6.0 flow, the predicted overpressures is 0.551 and 0.554, respectively, which is a 0.54% relative difference. At
𝑀∞ = 7.0 flow, predicted overpressure is 0.605 and 0.583, respectively. This is a relative difference of 3.64%.

Near-field signatures are propagated to the ground to predict sonic boom. For inviscid and non-equilibrium flow at
𝑀∞ = 5.0, sonic boom predicted overpressure is 9.951 and 9.947 Pa, respectively. Assuming an ideal gas, there is a
decrease in relative overpressure of 0.04%. At 𝑀∞ = 6.0, predicted overpressures are 10.07 and 10.03 Pa, respectively.
This is a relative difference of 0.40%. At 𝑀∞ = 7.0, predicted overpressures are 10.80 and 10.73 Pa, respectively. This
is a relative difference of 0.65%. Overall, the relative differences in near-field overpressure between an ideal gas flow
and a non-equilibrium flow decrease as the waves propagate to the ground. For instance, at 𝑀∞ = 5.0, an initial relative
difference of 2.96% in near-field overpressure decreases to 0.42% at the ground.

Although the relative difference between predicted overpressure for an ideal gas and a non-equilibrium gas are
smaller than one percent at the ground, there are noticeable differences in the ground spectra. The main differences in
ground signature are shown in Figs. 18b, 18d, and 18f, where the duration is longer for non-equilibrium cases. For
example, for 𝑀∞ = 7.0 of Fig. 18f, the sonic boom duration for the ideal gas case is 9.91 ms. The duration for the
non-equilibrium case is 10.3 ms, which is a 3.9% difference. The increase in sonic boom duration has an effect on the
ground spectra. Figure 22 shows the SPL at the ground for each predicted sonic boom signature. For the same case
at 𝑀∞ = 7.0, peak SPL is 92.42 dB at 91.5 Hz for inviscid flow and 94.82 dB at 69.3 Hz. The sonic boom duration
increases by 3.9% for non-equilibrium flow and decreases the peak SPL frequency by 24.3%.

We make predictions of the hypersonic near-field and sonic boom signature at the ground for real gas and non-
equilibrium reacting flows. The hypersonic near-field is extracted at 𝑟𝐿−1 = 0.20. Figures 18a, 18c, and 18e show
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(a) 𝑀∞ = 6.0.

102 103 104
f [Hz]

40

50

60

70

80

90

SP
L 
[d
B 
re
 2
0μ

Pa
]

Inviscid
Viscous
Inviscid Non-Equilibrium
Viscous Non-Equilibrium

(b) 𝑀∞ = 7.0.
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(c) 𝑀∞ = 10.0.

Fig. 14 SPL of the Sears-Haack sonic boom signature.

these near-field predictions. Unlike predictions made for the Sears-Haack geometry in Figs. 10 through 12, including
non-equilibrium reacting effects does not have an apparent effect on near-field prediction. Maximum relative error
occurs with maximum overpressure for 𝑀∞ = 7.0 in Fig. 18e, which is approximately 3.6%.

However, the effects of non-equilibrium reacting flow have a significant effect on the sonic boom at the ground.
Figures 18b, 18d, and 18f show the sonic boom ground signature for the HIFiRE-5 at 𝑀∞ = 5.0, 6.0, and 7.0. Ideal
gas predictions are shown as a solid red line, and non-equilibrium flow are shown as a dashed blue line. The main
differences in the sonic boom signature at the ground are seen in Figs. 21b, 21d, and 21f, where the duration is often
longer for the non-equilibrium cases. For example, for 𝑀∞ = 7.0 flow in Fig. 21f, the sonic boom duration for the ideal
gas case is 25.4 ms, and the duration for the non-equilibrium case is 25.8 ms. This represents a 1.6% relative difference.
The increase in sonic boom duration has an effect on the SPL. This is shown in Fig. 19, where there is a negative shift
in the frequency of peak SPL. For the same case at 𝑀∞ = 7.0, peak SPL is 88.58 dB at 39.6 Hz for an ideal gas and
102.40 dB at 39.5 Hz. The sonic boom duration increases by 1.6% for non-equilibrium flow and decreases the peak
SPL frequency by 0.25%.

F. Power-Law Waverider Near-Field and Sonic Boom Prediction
We apply this combined parabolized approach to 𝑀∞ = 5.0, 6.0, and 7.0 for the power-law waverider. The atmo-

spheric conditions at each 𝑀∞ are 𝜌∞ = 0.1948 kg/m3, 𝑇∞ = 217.0 K, and are quiescent. The flight-vehicle altitude is
15.850 km. The flow-field of the waverider at 𝑀∞ = 7.0 is shown in Fig. 20, with 𝑥-axis slices extracted at streamwise
locations of 𝑥 = 0.20, 0.30, and 0.40 m. Light blue contours represent regions of the flow-field, where local static
pressure matches global freestream pressure. Contour colors approach orange when there is an increase in pressure.
Static pressure decreases in the streamwise direction on the surface.
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(a) 𝑀∞ = 4.0.

(b) 𝑀∞ = 15.0.

Fig. 15 Numerical schlieren , 1
𝜌∞

𝜕𝜌
𝜕𝑦 , of Sears-Haack geometry at 𝑀∞ = 4.0 (top) and 𝑀∞ = 15.0 (bottom).
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Fig. 16 Boundary layer velocity profiles of the Sears-Haack geometry at 𝑀∞ = 4.0 (solid lines) and 𝑀∞ = 15.0
(dashed lines).
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Fig. 17 Contours of 𝑝∞-normalized change in static pressure for the HIFiRE-5 geometry at 𝑀∞ = 6.0 for
inviscid flow.

For inviscid and non-equilibrium flow at 𝑀∞ = 5.0, near-field 𝑝∞-normalized predicted overpressure of 0.452
and 0.439, respectively. Assuming an ideal gas, there is an increased relative difference in overpressure by 2.96%. At
𝑀∞ = 6.0, the predicted overpressures become 0.596 and 0.652, respectively, which is a 9.45% relative difference. At
𝑀∞ = 7.0, predicted overpressure becomes 0.811 and 0.757, respectively. This is a relative difference of 6.6%.

The near-field signatures are propagated to the ground to compute the sonic boom. For an ideal gas and non-
equilibrium flow at 𝑀∞ = 5.0, sonic boom predicted overpressure is 4.37 and 4.39 Pa, respectively. Assuming an
ideal gas, there is a decreased relative difference in overpressure by 0.42%. For 𝑀∞ = 6.0, the predicted overpressures
become 4.75 and 4.60 Pa for ideal gas and non-equilibrium, respectively. At 𝑀∞ = 7.0 flow, predicted overpressure
is 4.83 and 4.81 Pa, respectively. This is a relative difference of 0.47%. Overall, the relative differences in near-field
overpressure between an ideal gas flow and a non-equilibrium flow decrease as the sonic boom propagates to the ground.
For instance, at 𝑀∞ = 5.0, an initial relative difference of 2.96% in near-field overpressure decreases to 0.42% at the
ground.

Although the relative difference between predicted overpressures for an ideal gas and a non-equilibrium gas are
smaller than one percent at the ground, there is a noticeable difference in the spectra at the ground. Important differences
in ground signature are observed in Fig. 21, where the duration is larger for the non-equilibrium cases. For example, at
𝑀∞ = 7.0 in Fig. 21f, the sonic boom duration for the ideal gas case is 9.91 ms, and the duration for the non-equilibrium
case is 10.3 ms. This is a 3.9% relative difference. The increase in sonic boom duration has an effect on the ground
spectra. Figure 22 shows SPL per unit Hz at the ground for each predicted sonic boom signature. For the same case at
𝑀∞ = 7.0, peak SPL is 92.42 dB at 91.5 Hz for inviscid flow and 94.82 at 69.3 Hz. The sonic boom duration increases
by 3.9% for non-equilibrium flow and decreases the peak SPL frequency by 24.3%.

IV. Conclusion
We present a fully-parabolized prediction approach for the hypersonic near-field and sonic boom. The entire method

is unique in that the flow-field is marched from the vehicle surface to the ground observer. The near-field is predicted
via spatially marching the PNS equations using a modified form of the UPS code of Lawrence et al. [4]. The iterative
approach of Miller et al. [42] is employed for regions of flow with upstream influence. The sonic boom ground signa-
ture is predicted via propagating the near-field pressure to the ground using WPM [5]. We validate WPM by comparing
predictions with PCBoom [19] and publicly available data [49]. Sonic boom predictions using WPM for the axisym-
metric equivalent area and LM1021 configurations are within 6.0% of PCBoom and 5.7% of the mean predictions from
the Second AIAA/NASA Sonic Boom Prediction Workshop. Including viscous effects for non-equilibrium reacting
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(a) Near-field at 𝑀∞ = 5.0 and 𝑟𝐿−1 = 0.20.
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(b) Sonic boom at the ground at 𝑀∞ = 5.0.
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(c) Near-field at 𝑀∞ = 5.0 and 𝑟𝐿−1 = 0.20.
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(d) Sonic boom at the ground at 𝑀∞ = 6.0.
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(e) Near-field at 𝑀∞ = 7.0 and 𝑟𝐿−1 = 0.20.
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(f) Sonic boom at the ground at 𝑀∞ = 7.0.

Fig. 18 Near-field predictions (left) and sonic boom predicitons (right) for HIFiRE-5 geometry.
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Fig. 19 SPL of the HIFiRE-5 sonic boom signature.

Fig. 20 Contours of 𝑝∞-normalized change in static pressure for the power-law waverider at 𝑀∞ = 7.0 for
inviscid flow.
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(a) Near-field at 𝑀∞ = 5.0 and 𝑟𝐿−1 = 0.167.
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(b) Sonic boom at the ground at 𝑀∞ = 5.0.
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(c) Near-field at 𝑀∞ = 6.0 and 𝑟𝐿−1 = 0.167.
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(d) Sonic boom at the ground at 𝑀∞ = 6.0.
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(e) Near-field at 𝑀∞ = 7.0 and 𝑟𝐿−1 = 0.167.
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(f) Sonic boom at the ground at 𝑀∞ = 7.0.

Fig. 21 Near-field predictions (left) and sonic boom predictions (right) for power-law waverider.
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Fig. 22 SPL of the power-law waverider sonic boom signature.

flow increased predicted overpressure in the near-field and sonic boom overpressure by 15.7% and 8.49% on average,
respectively. Accounting for non-equilibrium reacting effects decreases predicted overpressure by 1.90%, on average,
for viscous flow versus inviscid flow. However, accounting for non-equilibrium, reacting flow increases sonic boom
duration by 5.22% compared to an ideal gas flow on average.

We have shown the necessity for including the viscous stress tensor in the prediction of hypersonic sonic boom,
which is not essential for supersonic flow [3]. The boundary layer gives rise to a larger distribution of sources of the
Prandtl-Meyer expansion waves. This distribution leads to lowered attenuation of the leading shock wave, increasing
sonic boom overpressure, and decreases strength of the trailing shock wave. In the future, we will examine a larger
design space for waveriders and connect their geometry to the sonic boom foot print.
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