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Introduction

• The turbulence modeling community and the aeroacoustics
community generally create separate prediction models

• Turbulence modeling community goal is to predict accurate
turbulent flow statistics

• Acoustic community wishes to predict accurate radiated noise
• Outcome of both are relatable through semi-empirical means

• Usually up to acoustics community to make the connection
• Approach of LES can be used with Ffowcs-Williams and

Hawking approach
• We learn nothing about the sources of noise and the sources of

FWH are analogies of the actual source of turbulent noise
• Huge computational expense and does not make use of typical

large RANS databases available within industry
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RANS I

Reynolds-averaged Navier-Stokes equation (RANS)
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RANS I

ϵ equation is
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TKE equation of the mean motion
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− ũi
∂

∂xk

(
ϱu′

iu′
k

)
(4)

SAE Miller, University of Florida, Mechanical and Aerospace Engineering 5



Outcome of RANS CFD Simulations

Typical RANS Output
• Geometry
• Computational grid
• Mean variables
• Two-equation models

• Usually k and ω or ϵ

• Reynolds Stress Models – Reynolds stresses and ϵ or ω
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Acoustic Analogy – A Traditional Path via Lighthill
• Rearrangement of continuity

and momentum into wave
equation with unknown left
and right hand sides

• Sources are analogues of
actual sources, which is why
it is called the acoustic
analogy

∂2ρ

∂t2 − c2
∞∇2ρ = ∂2Tij

∂xi∂xj
(5)

and

Tij = ρvivj + pij − c2
∞ρδij

(6)

Figure 1: Sir James Lighthill.
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Traditional Way of Connecting Acoustic Sources to RANS

Acoustic source models depend on scales to estimate two-point
correlations

Length scale

lx(y) = clK(y)3/2/ϵ(y) (7)

Time scale

τs(y) = cτ K(y)/ϵ(y) (8)

Velocity scale

us(y) = us
√

2K(y)/3 (9)
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Connecting Lighthill’s Model to RANS
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Acoustic Prediction Models

Time-domain model for ρ, u, and p
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Exact Sources for Noise from Turbulence

Continuity
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Noise Source Terms from Small-Scale Turbulence Written
as Two-Point Correlation

Dominant sources of noise from small-scale turbulent structures
within fully developed turbulence are written as two-point
cross-correlations
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Noise Source Terms from Shockwave Shear Layer
Interaction Written as Two-Point Correlation

A rare source term in the time-domain
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Approximations of Scaling Terms for Small Scale Turbulent
Noise – Example Prediction
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Figure 2: Prediction of fine-scale mixing noise at NPR = 1.893 and TTR = 3.2.
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A More Advanced Spectral Approach

⟨̂
˜̃ui
⟩

(y, τ) =

√
2
3

 κ2∫
κ1

Eu(y, κ, τ)dκ

1/2

, (21)

⟨̂
˜̃ρ
⟩

(y, τ) =

 κ2∫
κ1

Eρ(y, κ, τ)dκ

1/2

, (22)

⟨̂
˜̃p
⟩

(y, τ) =

 κ2∫
κ1

Ep(y, κ, τ)dκ

1/2

, (23)

and, ⟨̂ ˜̃T
⟩

(y, τ) =

 κ2∫
κ1

ET(y, κ, τ)dκ

1/2

, (24)

where Eu, Eρ, Ep, and ET are the ‘energy’ spectra of the difference
functions of the field variables, and κ1 and κ2 are the limits of
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Example Prediction from DNS Turbulence
Comparison of DNS with acoustic theory (no CFD) using
wavenumber spectra from high-Re homogeneous isotropic
turbulence
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Figure 3: The power spectrum of acoustic pressure.
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Noise Model for Large-Scale Coherent Structures

• Closed form analytical models for the noise from large-scale
structures are absent and being sought after in the community.

• One such skeleton for the model might look like...
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Note appearance of typical RANS outcome and ls. Model
formulated this way on purpose to use RANS, intermitancy and
transient information is missing. Is it impossible to create a
large-scale model from steady RANS?
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Contemporary Approaches
RANS Closures versus Aeroacoustic Sources

RANS
• Typically yields q and

k − ω or ϵ

• Reynolds stresses are very
helpful as have more direct
connection with source
models (e.g. Lighthill’s
model)

Aeroacoustics
• Typically requires estimation

of two-point correlations
through model involving l
and τ

• Requires calibration of
additional empirical
coefficients beyond RANS
closure
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Desirable Characteristics
RANS Closures versus Aeroacoustic Sources

RANS
• Wavenumber spectra of

field-variables
• Two-point correlations (is

that possible?)
• Possible to form a RANS

closure that yields
aeroacoustic sources
directly?

Aeroacoustics
• Formulation of models for

various sources in time and
two-point correlation

• Formulation of a closed-form
large-scale model

• Seamless integration with
turbulence models at the
same level of LES/FWH
approach.

• Eliminate or reduce
empirical coefficients
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Thank You
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