Analysis of Noise Reduction Method for Supersonic Jets in the Sideline and Upstream Directions

Trushant K. Patel and Steven A. E. Miller trushant@ufl.edu

Theoretical Fluid Dynamics and Turbulence Group Department of Mechanical and Aerospace Engineering University of Florida

December 10, 2020

Acknowledgements

This work is supported by the Office of Naval Research Grant N00014-17-1-2583

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Office of Naval Research

Outline

- Motivation
- 2 Identification of Source Terms
- Statistical Prediction Models
- Moise Reduction Technique
- Summary

Motivation

- More than 107,000 sailors are living and working aboard US Navy ships
- Over a billion dollars were spent each year by US Department of Veterans Affairs for hearing loss disability benefits in the last decade¹

US Navy Public Release Photo: 180123-N-GP724-1102

Source: https://www.public.navy.mil/navsafecen/Pages/acquisition/noise_control.aspx

¹Doychak J., "Department of Navy Jet Noise Reduction Project Overview," 15th Annual Partners in Environmental Technical Symposium and Workshop, Washington D.C., 2010.

Components of Jet Noise

UF FLORIDA

- Two main components of jet noise turbulent mixing noise and shock-associated noise
- Broadband shock-associated noise is generated due to coherent interaction of large-scale structures with the shock-cell structure
- Fine-scale mixing noise is relatively spatially incoherent
- Mainly dominant in the sideline and upstream direction

Noise spectra at different observer locations²

²Brown, C., and Bridges, J. E., "Small Hot Jet Acoustic Rig Validation," NASA/TM-2006-214234, 2006.

Prediction Model³

UF FLORIDA

- We start with the Navier-Stokes equations as the governing equations
- The *field-variables* such as density, velocity, pressure, and temperature are decomposed into base flow (\overline{q}) , aerodynamic fluctuations $(\overline{q} \text{ and } \widehat{q})$, and acoustic fluctuations (q' and q'')
- The aerodynamic turbulent fluctuations (sources) are brought to the right-hand side
- The radiating acoustic components (propagators) are brought on the left-hand side
- The spectral density of the radiating components is obtained by *convolving* the vector Green's function with the source terms present on the right-hand side

Time Averaged Navier-Stokes equations Isotropic turbulenc Decomposition of field variables Anisotropic turbulence Bring sources to RHS Radiating terms Linearize LHS Use vector Green's function and convolution integral

³Miller, S. A. E., "Noise from Isotropic Turbulence," AIAA Journal, Vol. 55, No. 3, 2017.

Spectral Density of Pressure

After some simplifications⁴, we obtain the spectral density of the field variable as

$$S_k^{\perp}(\mathbf{x},\omega) = \int\limits_{-\infty}^{\infty} \cdots \int\limits_{-\infty}^{\infty} \sum\limits_{m=0}^{4} \sum\limits_{n=0}^{4} q_{g,k}^{*\perp,m}(\mathbf{x};\mathbf{y},\omega) q_{g,k}^{\perp,n}(\mathbf{x};\mathbf{y}+\eta,\omega) R_{m,n}^{\perp}(\mathbf{y},\eta,\tau) e^{i\omega\tau} d\tau d\eta d\mathbf{y},$$

where

$$R_{m,n}^{\perp}(\mathbf{y}, \mathbf{\eta}, \tau) = \langle \Theta_{m}(\mathbf{y}, \tau) \Theta_{n}(\mathbf{y} + \mathbf{\eta}, \tau + \Delta \tau) \rangle = \int_{-\infty}^{\infty} \Theta_{m}(\mathbf{y}, \tau) \Theta_{n}(\mathbf{y} + \mathbf{\eta}, \tau + \Delta \tau) d\Delta \tau$$

Substituting k=4 to find the spectral density of pressure, we obtain

$$S_4^{\perp}(\mathbf{x},\omega) = \int\limits_{-\infty}^{\infty} \cdots \int\limits_{-\infty}^{\infty} \sum\limits_{m=0}^{4} \sum\limits_{n=0}^{4} p_g^{*\perp,m}(\mathbf{x};\mathbf{y},\omega) p_g^{\perp,n}(\mathbf{x};\mathbf{y}+\eta,\omega) R_{m,n}^{\perp}(\mathbf{y},\eta,\tau) e^{i\omega\tau} d\tau d\eta d\mathbf{y}$$

⁴Patel T. K., and Miller, S. A. E., "Statistical sources for broadband shock-associated noise using the Navier-Stokes equations," *The Journal of the Acoustical Society of America*, Vol. 146, No. 6, 2019.

Source Terms

• The source terms on the RHS are

$$\begin{split} \Theta_0 &= -\frac{\partial \rho}{\partial t} - \frac{\partial \underline{\rho}\underline{u}_j}{\partial x_j} \\ \Theta_i &= -\frac{\partial \rho\underline{u}_i}{\partial t} - \frac{\partial \underline{\rho}\underline{u}_i\underline{u}_j}{\partial x_j} - \frac{\partial \underline{p}}{\partial x_j} \delta_{ij} + \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial\underline{u}_i}{\partial x_j} + \frac{\partial\underline{u}_j}{\partial x_i} \right) \right] - \frac{2}{3} \frac{\partial}{\partial x_j} \left[\mu \frac{\partial\underline{u}_k}{\partial x_k} \right] \\ \Theta_4 &= -\frac{\partial\underline{p}}{\partial t} - \frac{\gamma - 1}{2} \frac{\partial\underline{\rho}\underline{u}_k\underline{u}_k}{\partial t} - \gamma \frac{\partial\underline{u}_j\underline{p}}{\partial x_j} - \frac{\gamma - 1}{2} \frac{\partial\underline{\rho}\underline{u}_j\underline{u}_k\underline{u}_k}{\partial x_j} + (\gamma - 1) \frac{\partial}{\partial x_j} \left[\frac{c_p\mu}{Pr} \frac{\partial\underline{T}}{\partial x_j} \right] \\ &+ (\gamma - 1) \frac{\partial}{\partial x_j} \left[\mu\underline{u}_i \left(\frac{\partial\underline{u}_i}{\partial x_j} + \frac{\partial\underline{u}_j}{\partial x_i} \right) \right] - \frac{2}{3} \delta_{ij} \frac{\partial}{\partial x_j} \left[\mu\underline{u}_i \frac{\partial\underline{u}_k}{\partial x_k} \right] \end{split}$$

 Different researchers^{5,6} have found that viscous terms are not important for sound generation

⁵Lighthill, M. J., "On Sound Generated Aerodynamically I. General Theory," *Proceedings of the Royal Society of London. Series A. Mathematical, Physical, and Engineering Sciences*, Vol. 211, No. 1107, 1952.

⁶ Mollö-Christensen, E., "Jet Noise and Shear Flow Instability Seen From an Experimenter's Viewpoint," Journal of Applied Mechanics, Vol. 34, No. 1, 1967.

FSMN and **BBSAN** Source Term

 The same FSMN source term proposed by Tam and Auriault⁷ is also obtained from the Navier-Stokes equations as

$$R_{\text{FSMN}} = (\gamma - 1)^2 \left\langle \frac{D\overline{\rho}^{(1)} K_s^{(1)}}{D\tau}, \frac{D\overline{\rho}^{(2)} K_s^{(2)}}{D\tau} \right\rangle \approx (\gamma - 1)^2 \frac{\overline{\rho}^2 K_s^2}{\tau_s^2} \breve{R}$$

ullet The only term that scales as eta^4 for BBSAN is the product of gradient of mean pressure and the large-scale velocity fluctuations

$$R_{\rm BBSAN} = \gamma^2 \left\langle \frac{\partial \underline{u}_{\rm j}^{(1)} \underline{p}^{(1)}}{\partial y_{\rm j}}, \frac{\partial \underline{u}_{\rm m}^{(2)} \underline{p}^{(2)}}{\partial y_{\rm m}} \right\rangle \approx \gamma^2 \frac{\partial \overline{p}^{(1)}}{\partial y_{\rm j}} \frac{\partial \overline{p}^{(2)}}{\partial y_{\rm m}} \hat{u}_{\rm j}^{(1)} \hat{u}_{\rm m}^{(2)} \hat{R}$$

⁷Tam, C. K. W., and Auriault, L., "Jet Mixing Noise from Fine-Scale Turbulence," AIAA Journal, Vol. 37, No. 2, 1999.

Statistical FSMN Model

For fine-scale noise, we use the same normalized two-point cross-correlation as Tam and Auriault as

$$\breve{R} = \exp\left(-\frac{|\xi|}{\overline{u}\tau_s} - \frac{\ln 2}{l_s^2}\left[(\xi - \overline{u}\tau)^2 + \eta^2 + \zeta^2\right]\right)$$

We obtain the spectral density as

$$S_4^{\perp}(\textbf{x},\omega) = \left(\frac{\pi}{4\ln 2}\right)^{3/2} (\gamma-1)^2 \iiint\limits_{-\infty}^{\infty} \frac{\overline{\rho}^2 K_s^2 l_s^3}{\tau_s} |p_g^{\perp 4}(\textbf{x},\textbf{y},\omega)|^2 \frac{\exp\left[-\frac{\omega^2 l_s^2}{\overline{u}^2(4\ln 2)}\right]}{\left[1+\left(1-\frac{\overline{u}}{c_\infty}\cos\theta\right)^2 \omega^2 \tau_s^2\right]} d\textbf{y}$$

The resulting model is equivalent to the Tam and Auriault model

Statistical BBSAN Model

We now consider different length scales in the cross-stream directions and model the normalized two-point cross-correlation as

$$\hat{R} = \text{exp}\left[-\frac{|\tau|}{\tau_s}\right] \text{exp}\left[-\frac{(\xi - u_c \tau)^2}{l_1^2}\right] \text{exp}\left[-\frac{\eta^2}{l_2^2} - \frac{\zeta^2}{l_3^2}\right]$$

After integrating and simplifying, we obtain a closed-form prediction model as

$$\begin{split} S_4^{\perp}(\boldsymbol{x},\omega) &= \frac{\gamma^2 \omega^2}{16\pi\sqrt{\pi}c_{\infty}^4 r^2} \iiint\limits_{-\infty}^{\infty} l_1 l_2 l_3 \tau_s \exp\left[-\frac{\omega^2}{4\alpha_{\infty}^2} \sin^2\theta \left(l_2^2 \cos^2\varphi + l_3^2 \sin^2\varphi\right)\right] \frac{\partial \overline{p}}{\partial y_j}(\boldsymbol{y}) \hat{u}_j(\boldsymbol{y}) \\ & \left[\int\limits_{-\infty}^{\infty} \frac{\exp\left[-l_1^2 \left(\kappa - \frac{\omega \cos\theta}{c_{\infty}}\right)^2 / 4\right]}{\left[1 + \left(1 - M_c \cos\theta + \frac{u_c \, \kappa}{\omega}\right)^2 \omega^2 \tau_s^2\right]} \frac{\partial \overline{p}}{\partial y_m}(\kappa, y_2, y_3) d\kappa \right] \hat{u}_m(\boldsymbol{y}) d\boldsymbol{y}, \end{split}$$

However, very good prediction results are obtained using LES data with the identified source $\underline{\text{term}}$ and free-space Green's function⁸

⁸Shen, W., Patel, T. K., and Miller, S. A. E., "Extraction of Large-Scale Coherent Structures from Large Eddy Simulation of Supersonic Jets for Shock-Associated Noise," AIAA SciTech 2020 Forum, AIAA Paper No. 2020-0742, 2020.

Comparison of Different Nozzle Geometries

- The biconic and faceted nozzle contains shocks even at design conditions
- Hence, shock-associated noise is present even at design condition

Nozzle Design and Computational Grid

 The design of the fluidic injection ports is performed following Morris et al.⁹

•
$$D_{inj} = 0.05D$$
; $m_{ratio} = 2.41\%$

 Fluidic injection ports are located at 20% and 70% of the divergent section with 45° and 90° injection angles

ď									Š
	2								
	1								The State of
	0	-4	7	-2	-1	0	1	2 3 x/D	
					Noz	zle Wa	All		
N	ozzle				NOZ	zie wo	111	Elvidia :	

Noz	zzle	Injector		
NPR	TTR	IPR	ITR	
2.750	3.000	2.750	1.000	
3.100	3.000	3.100	1.000	
3.670	3.000	3.670	1.000	
4.320	3.000	4.320	1.000	
5.200	3.000	5.200	1.000	
	NPR 2.750 3.100 3.670 4.320	2.750 3.000 3.100 3.000 3.670 3.000 4.320 3.000	NPR TTR IPR 2.750 3.000 2.750 3.100 3.000 3.100 3.670 3.000 3.670 4.320 3.000 4.320	

⁹Morris, P. J., et al., "Noise Reduction in Supersonic Jets by Nozzle Fluidic Inserts," Journal of Sound and Vibration, Vol. 332, No. 17, 2013.

Results for NPR = 2.750 and TTR = 3.00

and TKF contours at different cross-sections

Results for NPR = 5.200 and TTR = 3.00

1 Oe+5

Analysis of Noise Reduction Method for Supersonic Jets

and TKE contours at different cross-sections

Acoustic Results

- BBSAN reduces at over-expanded condition and increases at under-expanded conditions
- ullet BBSAN OASPL reduces by 6 dB at NPR = 2.750 and increases by 4 dB at NPR = 5.200
- FSMN OASPL reduces by 1.75 dB at all operating conditions

Summary and Future Work

- Identified the FSMN and BBSAN source term from the Navier-Stokes equations
- Developed statistical models for FSMN and BBSAN
- Noise radiating from different nozzle geometries were compared using the identified source term
- Fluidic injection noise reduction technique was analysed using the identified source terms
- Approximately similar noise reduction is obtained in the present work when compared to the experiments of Morris et al.¹⁰
- The identified source terms can be used for quantifying noise reduction due to different noise reduction techniques in the future

¹⁰ Morris, P. J., McLaughlin, D. K., and Kuo, C.-W., "Noise Reduction in Supersonic Jets by Nozzle Fluidic Inserts," Journal of Sound and Vibration, Vol. 332, No. 17, 2013.

Thank You for your Attention! Questions?