

Jet Noise Modeling and Prediction using Steady RANS Solutions

Candidato:

Francesco Rosano

Matricola:

A15000513

Relatori:

Prof. Giuseppe Pezzella

Prof. Antonio Viviani

Prof. Steven Miller

Correlatori:

Ing. Mattia Barbarino

Ing. Francesco Petrosino

Target

Implement a computational procedure to evaluate the noise disturbance caused by aircraft's jets using high order models

Jet Noise Description

Acoustic Analogy Model

Model Features

- Acoustic analogy model based on the linearized Euler equations (LEE)
- Ability to separate source terms from propagation terms
- Full compatibility with both components of 'noise' considered
 - Mixing noise
 - BBSAN

Working Assumptions

- Observer far from the jet
- Absence of a mean flow field
- Proudman hypothesis for isotropic turbulence

Model governing equations

$$\frac{\partial \pi'}{\partial t} + \overline{u}_j \frac{\partial \pi'}{\partial x_j} + \frac{\partial u_i'}{\partial x_i} = \theta$$

$$\frac{\partial u_i'}{\partial t} + \overline{u}_j \frac{\partial u_i'}{\partial x_j} + u_j' \frac{\partial \overline{u}_i}{\partial x_j} + \overline{a}^2 \frac{\partial \pi'}{\partial x_i} = f_i$$

Acoustic Analogy Model: Final Equations

Mixing Noise

$$S(\mathbf{x}, \omega) = \rho_{\infty}^{2} a_{\infty}^{4} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{2\pi^{3/2} a_{\infty}^{2} l_{x} l_{y} l_{z} x^{2} \tau_{s}}{a_{\infty}^{2} x^{2} + (a_{\infty} x + \bar{u} x_{1} + \bar{v} x_{2} + \bar{w} x_{3})^{2} \tau_{s}^{2} \omega^{2}} \left\{ \left[\pi_{g}^{*0}(\mathbf{x}, \mathbf{y}, \omega) \pi_{g}^{0}(\mathbf{x}, \mathbf{y}, \omega) A_{s}^{2} \frac{(u_{s}/a_{\infty})^{4}}{\tau_{s}^{2}} \right] + \sum_{n=1}^{3} \sum_{m=1}^{3} \pi_{g}^{*n}(\mathbf{x}, \mathbf{y}, \omega) \pi_{g}^{m}(\mathbf{x}, \mathbf{y}, \omega) B_{s}^{2} \frac{(u_{s}/a_{\infty})^{2} u_{s}^{2}}{l_{x}^{2}} \right\} \exp \left[-\frac{\omega^{2} (l_{x}^{2} x_{1}^{2} + l_{y}^{2} x_{2}^{2} + l_{z}^{2} x_{3}^{2})}{4a_{\infty}^{2} x^{2}} \right] d\mathbf{y}$$

Broad-Band Shock-Associated Noise

$$S(\mathbf{x},\omega) = \pi^{1/2} \rho_{\infty}^{2} a_{\infty}^{4} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \left\{ \sum_{n=1}^{3} \sum_{m=1}^{3} \pi_{g}^{*n}(\mathbf{x}, \mathbf{y}, \omega) \pi_{g}^{m}(\mathbf{x}, \mathbf{y}, \omega) \frac{x^{2}}{x_{n} x_{m}} \frac{2K(\mathbf{y}) l_{y} l_{z} \tau_{s}}{3 \bar{\rho}^{2} \bar{u}^{2} l_{x}} p_{s}(\mathbf{y}) \tilde{p}_{s}(k_{1}, y_{2}, y_{3}) \right\} \times \frac{1}{\left[1 + \left(1 - \frac{\bar{u}}{a_{\infty}} \cos \theta + \frac{\bar{u} k_{1}}{\omega}\right)^{2} \omega^{2} \tau_{s}^{2}\right]} \exp \left[-\frac{l_{x}^{2}}{4} \left(\frac{\omega}{a_{\infty}} \cos \theta - k_{1}\right)^{2} - \frac{\omega^{2} l_{y} l_{z}}{4 a_{\infty}^{2}} \sin^{2} \theta\right] dk_{1} d\mathbf{y}$$

Green's Function

$$\pi_g^n(\mathbf{x}, \mathbf{y}, \omega) = \frac{i\omega x_n}{4\pi a_\infty^3 x^2} \exp\left[\frac{-i\omega x}{a_\infty}\right] \delta_{in} + \frac{i\omega}{4\pi a_\infty^2 x} \exp\left[\frac{-i\omega x}{a_\infty}\right] \delta_{0n}$$

Overview of the Process

Definition of Geometry: SMC000 Nozzle

Definition of the Computational Domain

Dimensions:

- $L_{x} = 100 \cdot D_{2}$
- $L_y = 50 \cdot D_2$

Boundary Conditions:

- Inlet
- Far-Field
- Axis of symmetry
- Nozzle Walls
- Outlet

Test Case and Computational Grid

Type of Simulation

Steady RANS with k — ω SST closure model

Operating Conditions

- $M_i = 1.47$
- $M_d = 1.00$
- TTR = 1.00

Free-stream Conditions

- $p_{\infty} = 101325 \text{ Pa}$
- $T_{\infty} = 293.15 \text{ K}$

Grid Convergence Study

Generation of a first try mesh

Comparison of solutions of different meshes

Generation of increasingly refined mesh

Choice of the best computational grid

Grid Convergence Study

CFD Solution Validation

Reference solution performed with

FUN3D

- Turbulence closure model: $k \omega$ SST
- With compressibility correction

CFD simulations performed with

Ansys Fluent

- Turbulence closure model: $k \omega$ SST
- With compressibility correction
- Without compressibility correction

SU2

- Turbulence closure model: $k \omega$ SST
- Without compressibility correction

Operating Conditions

$$M_i = 1.47; \quad M_d = 1.00; \quad TTR = 1.00$$

Operating Conditions

- $M_i = 1.24$
- $M_{\rm d} = 1.00$
- TTR = 3.20

Operating Conditions

- $M_j = 1.00$
- $M_{\rm d} = 1.00$
- TTR = 2.70

Conclusions

- Study of different aeroacoustics models
- Implementation of the acoustic model based on LEE
- Calculation of CFD solutions to be provided to the acoustic solver
- Comparison of the fluid dynamics solution with reference data
- Validation of the acoustic solver on experimental test cases

Future Developments

- Develop a solver for calculating more complex Green's functions of linearized Euler equations
- Test different closure models for the turbulence equations
- Test different compressibility correction models related to the turbulence closure equations
- Integrate into the solver different source models
- Optimize the acoustic solver to improve computation time
- Use this tool to optimize nozzle geometry

Reference Acoustic Models

- •Tam and Auriault. Jet mixing noise from fine-scale turbulence. 1999.
- •Morris and Farassat. Acoustic analogy and alternative theories for jet noise prediction. 2002.
- •Bridges and Brown. Validation of the small hot jet acoustic rig for aeroacoustics research. 2005.
- •Morris and Miller. The prediction of broadband shock-associated noise using RANS CFD. 2010.
- •Morris and Boluriaan. The prediction of jet noise from CFD Data. 2012.
- •Morris and Miller. The prediction of broadband shock-associated noise including propagation effects. 2012.
- •Miller. Towards a comprehensive model of jet noise using an acoustic analogy and steady RANS solutions. 2014.

Thank you for your attention

