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An examination of a Mach 6 turbulent shock wave-boundary-layer interaction on a

canonical flared-cone geometry is undertaken. The flow structure, surface pressure, and heat flux

along the flared cone is predicted using the Reynolds-Averaged Navier-Stokes equations, and

results are compared to experimental data and previous simulations of the same experiment. Two

Reynolds Stress Transport turbulence closures (linear-pressure strain and elliptic blending) and an

eddy-viscosity closure (Menter k-ω Shear Stress Transport) are used to close the equations.

Model predictions are compared to experimental results to quantify their error. The

eddy-viscosity model is found to outperform the Reynolds Stress Transport closures both

qualitatively and quantitatively for this specific case. The Reynolds Stress Transport models over

predict separation forward of the expected location by at least 6 cm and at most by 14 cm, while

the eddy-viscosity model separation point is accurate when qualitatively compared to

experimental results. Excessive peak heat flux and surface pressure values were found with all

model predictions ranging from 37%-200% error for heat flux and 30%-50% for surface pressure.

Analysis of the results show that the Reynolds Stress Transport models did not predict the

turbulent dissipation rate accurately enough due to the use of a k-ε model for the turbulent

dissipation rate. Shortcomings for closures in the Favré-averaged Navier-Stokes equations are

discussed and a potential solution to improve heat flux predictions is recommended.
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CHAPTER 1
INTRODUCTION

1.1 Overview

Computational fluid dynamics (CFD) is widely used in the aerospace industry to predict

flow-fields and aid in engineering design. This is especially true for flow regimes where

experiments are unfeasible or difficult to conduct, such as hypersonic flow-fields. To obtain a

reasonable prediction of the flow-field, the CFD models must be physically representative of the

true conditions. In the past decade, it has been shown that many engineering quantities, such as

surface pressure or heat flux, are not accurately predicted using the current Reynolds-averaged

Navier-Stokes (RANS) CFD models1 This work will explore the over-prediction of heat transfer

by contemporary RANS closures for high-speed flows, particularly a Mach 6 flow with a

turbulent shock-wave boundary-layer interaction (SBLI) on a flared-cone geometry. SBLI

introduce difficulties in modeling due to the intense adverse pressure gradient on the

boundary-layer which causes it to thicken or separate2.

Turbulence is an irregular condition with random fluctuations of the flow quantities in space

and time. To achieve ideal predictions, the turbulent motion should be resolved in space-time, to

avoid any modeling errors. This is achieved by direct numerical simulation (DNS) but is

impractical in time-constrained projects due to the small grid scales required to resolve all

turbulent motion1, especially for high Reynolds number flows. A reduced computational demand

may be achieved by explicitly resolving the largest scales of turbulence in large eddy simulations

(LES). In LES, the smallest scales of turbulence must be modeled with a subgrid-scale model,

where assumptions at those scales keep the modeling error small. However, at large Reynolds

numbers, even the largest turbulence scale become very small and represents a computational

burden for full-model simulations3.

A more computationally inexpensive method is the traditional way of modeling turbulence

and solving the RANS equations. In RANS CFD, only the mean flow is considered and

turbulence enters the equations through an additional term called the Reynolds stress1. The

turbulence model is used to provide a closure to the RANS equations by solving for the Reynolds

stresses. Turbulence closures that solve directly for these Reynolds stresses are called Reynolds
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Stress Transport (RST) models or second-moment closures4. This paper focuses on RST models,

specifically the linear pressure-strain closure by Launder and Shima5 and the elliptic blending

closure by Lardeau and Manceau6. In addition, an eddy-viscosity model is used to compare

against the RST model predictions. Eddy-viscosity models rely on the Boussinesq hypothesis

where it is assumed that turbulent motion is modeled as a state of flow where there is an effective

higher viscosity, called the eddy viscosity1. Through this hypothesis, only one parameter needs to

be determined and this approach greatly simplifies turbulence modeling schemes. RANS

eddy-viscosity models remain the most popular closures for CFD due to its quick convergence and

ability to perform steady simulations. The shear stress transport (SST) k-ω eddy-viscosity model

by Menter9 is used due to its ability to predict flow separation and its wide-spread use in industry.

1.2 Case Study and Methodologies

This research aims to quantify the error in heat flux and surface pressure prediction for

eddy-viscosity and RST models by comparing predictions with measurement data. The selected

case is the flared-cone geometry with experimental data at Mach 6 by Holden et al.7. See Fig. 1-1

for the general shape of the flared-cone. The shock wave-boundary-layer interaction of interest

occurs at the flare-cone intersection portion of the geometry. Due to the sharp changes in

geometry, a λ -shock interaction is generated with a separation shock intersecting a reattachment

shock. Due to the λ -shock interaction, a slip-line is expected to appear in the solution along the

flare. Additionally, a large singular separation bubble is expected to form on the cone and flare.

See Fig. 1-2 for the SBLI structure of interest and the labels of the main features.
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M = 6

Cone Flare

Figure 1-1. Flared cone of Holden et al.7.
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Figure 1-2. SBLI structure and dominant features.

The computation is completed using a commercial CFD solver, STAR-CCM+ by Siemens.

The discretization methods and important scheme selection is presented in the paper.

Additionally, a grid convergence study is completed alongside adaptive meshing. The normalized

pressure gradient algorithm by Cross and West8 for the adaptive mesh is explained with

recommended parameters for successful shock-capturing meshing. The grid convergence study
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examines the initial grid based on conditions far from the SBLI, with the goal to establish initial

grid convergence suitable to perform adaptive refinement on. The numerical methods and grid are

checked with data of Cross and West6, where the authors used the same eddy-viscosity model,

numerics, boundary conditions, and adaptive meshing technique for a CFD simulation of the

same flared-cone geometry.

1.3 Outcomes

It is hypothesized that RST closures should have the potential to out-perform the

eddy-viscosity models because they do not rely on the Boussinesq hypothesis. However, since

eddy-viscosity models are popular in industry, the coefficients tend to be calibrated to a wide

range of flow-regimes. In addition, the RST models used in this work rely on the k-ε formulation

and thus are not expected to perform as well as the k-ω SST model in adverse pressure gradients1.

This is important as the model performance in adverse pressure gradients impacts the separation

location. Accurate modeling of the separation and reattachment is important because the

downstream features depend on the location and length of the separation bubble. The

re-attachment point is where the peak heat flux occurs. To properly compare heat flux predictions

to experimental measurements, the reattachment point must be close to that observed in the

experiment. By quantifying the error in heat flux and surface pressure when compared to

experimental data, this study will aid in finding which of the three selected closures are more

applicable to high-speed SBLI.
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CHAPTER 2
GOVERNING EQUATIONS

2.1 Favré-Averaged Navier-Stokes Equations

The Favré-averaged Navier-Stokes (FANS) equations are used to solve for the fluid

flow-field. Simple averages φ are indicated by an overbar while mass weight averages φ̃ = ρ/φρ

are indicated by a tilde. Einstein notation is used. The Favré-averaged Navier-Stokes and energy

equations are
∂ρ

∂ t
+

∂

∂xk

(
ρŨk

)
= 0, (2-1)

∂
(
ρŨi
)

∂ t
+

∂

∂xk

(
ρŨiŨk

)
+

∂

∂xk

(
ρR̃ik

)
=− ∂ p

∂xi
+

∂τ ik

∂xk
, (2-2)

and,
∂
(
ρẼ
)

∂ t
+

∂

∂xk

(
ρH̃Ũk

)
+

∂

∂xk

(
ρR̃ikŨi

)
=

∂τ ikŨi

∂xk
+ρDk̃ − ∂qk

∂xx
−

∂qt
k

∂xx
. (2-3)

The equations are further simplified by using the axisymmetric formulation of the continuity,

momentum, energy, and density equations. A real gas model (equilibrium air) is used with the

assumption that the time scale of molecular dissociation, internal energy excitation, and

ionization effects are much shorter than the time scale of the flow. In this case, the properties of

the flow, such as the density, specific heat, and transport properties, become expressions of two

thermodynamic variables. These expressions take the form of curve fits from the work of

Gupta10. This model provides the compressibility factor as a field function from which density

can be found as

Z(T,P) =
M0

M
=

ρ0

ρ
. (2-4)

With the equilibrium air real gas model, gas material properties (viscosity, thermal conductivity,

specific heat, and speed of sound) are automatically computed as functions of temperature and

pressure. Thermal conductivity and dynamic viscosity utilize Sutherland’s laws,

µ

µ0
=

(
T
T0

)3/2(T0 +S
T +S

)
(2-5)

and
k
k0

=

(
T
T0

)3/2(T0 +S
T +S

)
, (2-6)
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where the Sutherland constant used is S = 111 K for air. Energy and enthalpy are found as

E = H − p
ρ

(2-7)

and

H = h+
|v|2

2
. (2-8)

Closure equations and terms are required for the RANS equations. Reynolds-averaging

introduces a Reynolds stress term,

ρŨk = ρu′′i u′′k , (2-9)

in the momentum equation with components that describe the velocity fluctuations.

Reynolds-averaging the energy equation also introduces the turbulent heat flux vector,

qt
k = ρh′′u′′k , (2-10)

that represents the relationship between velocity and temperature fluctuations, and the diffusion of

specific turbulent kinetic energy term,

ρDk̃ =
∂

∂xk

(
−1

2
ρu′′i u′′i u′′k + τiku′′i

)
. (2-11)

A Reynolds stress transport equation is derived from the momentum equation

∂ (ρR̃i j)

∂ t
+

∂

∂xk
(ρR̃i jŨk) = ρPi j +ρΠi j −ρεi j +ρDi j +ρMi j, (2-12)

where five new terms need to be solved for to close the RANS equations. The terms are the

production term,

ρPi j =−ρ ik
∂ j

∂xk
−ρR̃ jk

∂i

∂xk
(2-13)

the pressure-strain correlation,

ρΠi j = p′
(

∂u′′i
∂x j

+
∂u′′j
∂xi

)
(2-14)
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the dissipation term,

ρεi j = τ ′ik
∂u′′i
∂x j

+ τ ′jk
∂u′′j
∂xk

(2-15)

the diffusion term,

ρDi j =− ∂

∂xk

[
ρu′′i u′′j u

′′
k

]
+

∂

∂xk

[
ρτ ′iku′′j +ρτ ′jku′′i

]
− ∂

∂xk

[
ρ p′u′′i δ jk +ρ p′u′′j δik

]
(2-16)

and finally the compressibility effects term,

ρMi j =
1
2
(ρTii +ρDν

ii) . (2-17)

The diffusion term is modeled with an isotropic form of the turbulent diffusion term adopted from

Lien11

ρDi j =
∂

∂xk

(
µ +

µt

σk

)
∂ R̃i j

∂xl
, (2-18)

where the turbulent viscosity µt is computed

µt = ρCµ

k2

ε
(2-19)

with the model coefficient Cµ and the turbulent kinetic energy k.

The dissipation term is modeled with an isotropic turbulent dissipation term and the

dilatation dissipation rate as

ρεi j =
2
3

ρε +
2
3

γm. (2-20)

The dilatation dissipation is modeled in the same way as in the k-ε model by Sarkar et al.12,

γm =
ρCmkε

c2 . (2-21)

The turbulent dissipation rate is also modeled by solving a transport equation analogous to the k-ε

model using the production tensors

∂

∂ t
(ρε)+

∂

∂xk
(ρεv) =

∂

∂xk

[(
µ +

µt

σε

)
∂ε

∂xk

]
+

ε

k

[
Cε1

(
ρPkk

2
− Cε3ρGkk

2

)
−Cε2ρε

]
. (2-22)

The pressure-strain term, the most difficult to model, is found using two different models: the
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linear pressure-strain two-layer model and the elliptic blending model.

2.2 Linear Pressure-Strain Two-Layer Model

The linear pressure-strain model assumes that the mean and turbulent strains influence the

pressure fluctuations5. Additionally, the rigid walls create “echo” effects that further influence

pressure fluctuations13. The pressure-strain term takes the form of the summation of four terms,

Πi j = Πi j,1 +Πi j,2 +Π
w
i j,1 +Π

w
i j,2, (2-23)

where each term is defined as

Πi j,1 =−c1εai j, (2-24)

Πi j,2 =−c2

(
Pi j −

2
3

δi jPkk

)
, (2-25)

Π
w
i j,1 = cw

1

(
ε

k

)[
ukumnknmδi j −

3
2

ukuinkni −
3
2

uku jnkn j

]
f , (2-26)

Π
w
i j,2 = cw

2

[
Πkm2nknmδi j −

3
2

Πik2nkni −
3
2

Π jk2nkn j

]
f , (2-27)

and,

f = 0.4
k3/2

εx
. (2-28)

The two-layer formulation modifies the coefficients5 as

c1 = 1+2.58AA1/4
2 (1− exp(−0.0067Ret2)), (2-29)

c2 = 0.75
√

A, (2-30)

cw
1 =

−2
3

c1 +1.67, (2-31)
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and,

cw
2 = max[(

2
3

c2 −
1
6
)/c2,0]. (2-32)

2.3 Elliptic Blending Model

The elliptic blending model utilized is that of Lardeau and Manceau6. This is a

low-Reynolds number model based on an inhomogeneous near-wall formulation of the

quasi-linear quadratic pressure-strain term. A blending function is used to blend the viscous

sub-layer with the log-layer formulation for the pressure-strain term and dissipation term,

Πi j − εi j = (1−α
3)(Πw

i j − ε
w
i j)+α

3(Πh
i j − ε

h
i j). (2-33)

The solution to the elliptic equation is the blending parameter,

α −L2
∇

2
α = 1. (2-34)

The length scale is defined as

L =Clmax

(
k3/2

ε
,Cη

ν3/4

ε1/4

)
. (2-35)

The quasi-linear Speziale-Sarkar-Gatski (SSG) model by Speziale et al.14 is used to model the

pressure-strain term in the outer-region,

Π
h
i j =−

(
C1 +C∗

2
P
ε

)
εai j +(C3 −C∗

3
√

aklakl)kSi j

+C4k
(

aikS jk +a jkSik −
2
3

almSlmδi j

)
+C5k(aikWjk +a jkWik).

(2-36)

The near wall pressure strain is modeled as,

Π
w
i j =−5

ε

k

[
uiukn jnk +u juknink −

1
2

ukulnknl(nin jδi j)

]
, (2-37)

using the vector normal from the wall which is found with the elliptic blending parameter,

nk =
∂α/∂xk√

∂α

∂xl

∂α

∂xl

. (2-38)
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Similarly, the dissipation rate tensor is modeled separately for the outer and near-wall region as

ε
w
i j =

uiu j

k
ε (2-39)

and

ε
h
i j =

2
3

εδi j. (2-40)

For the elliptic blending model, the eddy viscosity µt is redefined as

µt = ρCµkT, (2-41)

based on the turbulent time-scale T,

T = max
(

k
ε
,Ct

√
ν

ε

)
. (2-42)

An additional term is added to the model of the dissipation rate term to improve performance in

the near-wall region,

E = A1νukulnknl
k
ε
(1−α

3)

(
∂ ||Si jni||nk

∂xk

)2

. (2-43)
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CHAPTER 3
NUMERICAL METHODS

The commercial CFD code, STAR CCM+ by Siemens, is used as the numerical solver for

the governing equations outlined in Chapter 2. STAR CCM+ is a finite-volume solver that

discretizes the governing equations in space and time and then solves the resulting linear

equations with an algebraic multigrid solver. Steady-state simulations are performed. The

conservation equations are written in the form of a general transport equation, which is then

integrated over a control volume. Applying Gauss’s Theorem yields a form of an integral

transport equation that is easily discretizable,

d
dt

∫
V

ρφdV +
∫

A
ρvφ ·a =

∫
A

Γ∇φa+
∫

V
Sφ dV. (3-1)

Surface integrals are evaluated using quadrature approximations and expressed in terms of

variables on the cell face. A second-order midpoint rule is employed,

∫
A

Jφ ·da ≈ ∑
f

Jφ

f ·a f . (3-2)

The volume integrals are approximated by the product of the mean value of the source term at the

cell center and the volume of the cell. To make this approximation second-order accurate, the cell

face center is the weight area center and the cell center is the volume center,

∫
V

Sφ dV ≈ Sφ0V0 (3-3)

and
d
dt
(ρφV0)+∑

f
[ρφ(v ·a)] f = ∑

f
(Γ∇φ ·a) f +(SφV )0. (3-4)

The convective flux term in the discretized volume integral can be rearranged in terms of the mass

flow rate and fluid property at the cell face,

ρφ(v ·a) f = ṁ f φ f . (3-5)

It is noted that the scheme selected for finding the fluid property at the face has a large impact on

numerical stability. The convective flux scheme used is the hybrid monotonic upstream-centered

scheme for conservation laws (MUSCL) 3rd-order/central-differencing scheme where a
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first-order upwind differencing scheme is used in regions of non-smooth flows (shocks),

(ṁ f φ) =


ṁφFOU ξ < 0 or ξ > 1

ṁ(σMUSCLφMUSCL +(1−σMUSCL)φCD3) 0 < ξ < 1.
(3-6)

In addition, the inviscid fluxes are evaluated using the ASUM+ flux-vector splitting scheme. The

use of the AUSM+ scheme is required for numerical stability. The inviscid fluxes are

f = f c +P = 0.5(mi + |mi|)(φ)T
0 +0.5(mi −|mi|)(φ)T

1 +Pi. (3-7)

The mass flux and pressure flux are calculated based on local flow characteristics for correct

information propagation inside the fluid for convective and acoustic processes.

3.1 Boundary Conditions

Boundary conditions were selected based on free-stream values from run 33 of Holden et

al.7. Boundary conditions at the walls are set with the no-slip condition and are isothermal. The

outlet was set as a pressure outlet with static pressure and temperature specified, and the inflow

and far-field were set as free-stream boundary conditions with direction specified. Boundary

conditions are tabulated in Table 3-1. Fig. 3-1 specifies the dimensions of the domain in

centimeters along with labels for each boundary.

Table 3-1. Boundary Conditions.
Quantity Freestream Wall Outlet
M 6.17 0 Not Fixed
u (m/s) 931.25 0 Not Fixed
v (m/s) 0 0 Not Fixed
w (m/s) 0 0 Not Fixed
T (K) 56.4 298 56.4
P (Pa) 1418 Not Fixed 1418
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Figure 3-1. Flared cone geometry domain dimensions (cm).
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CHAPTER 4
SPATIAL DISCRETIZATION AND ADAPTATION

4.1 Initial Mesh

A triangular grid was used for the freestream spatial discretization with a prism layer used

for the boundary layer. Turbulence models require that the full boundary layer be resolved, thus

the distance from the wall to the first grid point must be approximately equal to one. A prism

layer height of 0.012 meters was used on the cone while a height of 0.005 meters was used on the

flare. This prism layer height was confirmed to capture the boundary layer height at which

velocity reached 99% local freestream velocity by examining the profile in inner coordinates.

4.2 Adaptive Mesh

To reduce the manual work of placing refinement sections for shocks in the grid, a

semi-automated process was developed using a grid adaptation technique known as normalized

pressure gradient refinement8. This method of refinement calculates regions of high-pressure

gradients and marks the cells for refinement, which are then re-sized and stored as a table in

STAR CCM+. Fig. 4-1 is an example of the marking of the cells, where the blue is for coarsening,

yellow stays the same size, and brown cells are refined.

With a new set of cell sizes specified, the mesh is re-generated with the table-based

refinement enabled and the process is repeated until sufficient shock refinement is attained. The

pressure gradient is normalized by the absolute pressure and scaled by the cell length. Cell length

was used as the scaling factor because it was found to be a more appropriate characterization of

the cell size as opposed to cell area. Cell length is the longest dimension of the cell and thus

further scaled the pressure gradient for highly anisotropic cells, like prism layers. The method for

calculating cell length for axisymmetric simulations was taken from Cross and West8. In addition,

a condition was added to stop refinement near the wall and avoid excessive refinement of the

prism layer. Cells were refined or coarsened by a factor of two after their selection. Fig. 4-2

shows the flow of information and various constraints in the normalized pressure gradient

adaptive method, where P is the pressure, CL is the cell length, RT and CT are the refinement and

coarsening threshold for the pressure gradient, CR is the cell refinement flag, and CS is the cell

size. Maximum and minimum cell size thresholds are indicated by the subscripts min and max for
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the CS variable.

Figure 4-1. Close-up of the refinement field for adaptive meshing near the flared portion of the
geometry.

Figure 4-2. Algorithm flow chart for adaptive meshing technique.
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CHAPTER 5
RESULTS

5.1 Overview

Grid convergence and adaptive meshing results are discussed below along with notes on the

meshing method. The results from the Menter k-ω SST, RST elliptic blending, and linear

pressure-strain two-layer closures are also discussed and compared to each other. Simulation

results are compared to experimental results of Holden et al.7 and errors are quantified. In

addition the limits of the two RST models are discussed.

5.1.1 Grid Independence Study

As stated by Warren et al.15, convergence for an adaptive grid relies on a reasonable initial

grid on which to complete the adaptation on, otherwise important features may not be flagged for

refinement. All features must be adequately modeled so that converged smooth solutions are

obtained on the initial grid and do not impact the adaptive meshing process. Therefore, it was

deemed important to establish convergence of conditions before and after the shocks on the initial

grid.

Three points were selected, one underneath the oblique shock from the tip (200, 24) cm,

one in the expected separation zone over the cone but before the flare (240, 28) cm, and one over

the flare past all the shock interactions (255, 40) cm. These points were chosen so that they are

sufficiently far from the regions where the adaptive meshing is expected to take place (shocks) but

also near all the dominant flow features. The adaptive mesh would be used to resolve fine features

near the shock, such as the SBLI itself. Three initial grids of varying size were generated by

halving the base size in the automated mesher (Fig. 5-1 through 5-3). Pressure and temperature

were used as the error indicators as both properties are related to the surface pressure and heat

flux on the surface of the flared-cone. Adequate convergence of temperature and pressure

translates to convergence in the variables being studied and thus are the only properties recorded

for the grid convergence study.

Grid convergence was established once the asymptotic range of convergence was

approximately equal to one. In addition, a Richardson extrapolation was performed to determine

the results, accounting for error due to discretization (Fig. 5-8). Refinement in the adaptive grid
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was achieved with the technique described in Chapter 4. The parameters recorded once grid

convergence was achieved were the surface pressure and heat flux. Important grid convergence

parameters include a pressure gradient refinement threshold of 0.06 and coarsening threshold of

3×10−5. The refinement threshold is based on the smallest cells in the prism layer and the

coarsening threshold based on recommendations by Cross and West8. The aspect ratio limit to

stop excessive prism layer refinement was set to 0.5 based on recommendations from Cross and

West8.

Figure 5-1. Coarse initial grid.
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Figure 5-2. Medium initial grid.

Figure 5-3. Fine initial grid.
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Figure 5-4. Close-up of initial grid.

]

Figure 5-5. Close-up of the first adaptive refinement.

26



Figure 5-6. Close-up of the second adaptive refinement.

Figure 5-7. Close-up of the final adaptive refinement.
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Figure 5-8. Fine, medium, and coarse peak value results with Richardson extrapolate.

5.1.2 Shock Wave-Boundary-Layer Interaction Structure

Although a schlieren image of the interaction is provided by Holden et al.7, no quantitative

information was found in regards to the physical location of the interaction, such as the location

of the separation shock. Therefore, the prediction of the three turbulence closures that is most

similar to the experimental schlieren is selected as a benchmark for quantitive physical

comparison of the shock structure. The k-ω SST model correlated well with the experimental

schlieren image7, although a slight increase in separation length was noted along with an earlier

separation point, see Fig. 5-9. The k-ω SST predictions is selected as the benchmark to compare

with the RST model predictions. This model predicted a separation length of 12 cm and an initial

SBLI location at x = 232 cm from the inlet boundary. The RST LPS model had the least accurate

prediction of the flow structure, with a nearly muted response to the adverse pressure gradient at

the initial SBLI, see Fig. 5-10. This consequentially resulted in poor prediction of the separation
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length (18.5 cm) and initial SBLI location (x = 226 cm). In addition, multiple flow separation

eddies formed in the solution and caused multiple oblique shocks and expansions to form

(Fig. 5-13). This radically changed the shock-shock interaction and thus impacted the

downstream solutions significantly by creating multiple shock-shock interactions and slip lines.

The RST elliptic blending closure predicted the separation shock location at x = 218 cm and the

separation length as 36 cm, 3 times the length of the k-ω SST model predictions. This also led to

an incorrect re-attachment point far downstream, which resulted in incorrect heat flux predictions

both location and magnitude wise. Since the initial SBLI was shifted forward, the shock-shock

interaction was moved far downstream where the post SBLI region would be located outside the

computational domain, see Fig. 5-11. Although the separation shock location was too far forward,

the RST elliptic blending closure did predict the correct flow structure, with one large eddy

(Fig. 5-14) in the separation zone as seen in the experiment. A single λ shock was observed along

with part of the resulting slip line.

ȇ ܌

Figure 5-9. Numerical Schlieren of the SST predictions with color bar representing density
gradient ∇ρ .
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Figure 5-10. Numerical Schlieren of the RST LPS predictions with color bar representing density
gradient ∇ρ .

ȇ ܌

Figure 5-11. Numerical Schlieren of the RST elliptic blending predictions with color bar
representing density gradient ∇ρ .
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Figure 5-12. Line integral convolution of velocity for the SST predictions.

Figure 5-13. Line integral convolution of velocity for the RST LPS predictions.
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Figure 5-14. Line integral convolution of velocity for the RST elliptic blending predictions.

5.1.3 Boundary Layer Results

Two locations were checked for boundary layer profiles: at a point on the cone, 185 cm

from the tip, and on the flare, 245 cm from the tip. The first point was used to check CFD results

against theory in a fully turbulent boundary layer. The point was located 30 cm in front of the

furthest separation point in all three cases with the aim to be sufficiently far from the transition

point. The second point was to check the boundary layer prediction past the SBLI and near the

slip line. This point was located far enough along the flare so that it was past all interactions in all

three turbulence model simulations. For the law of the wall, the von kármán constant used was

0.41 and the coefficient C+ was 5.5. Results are shown in Fig. 5-15. At the x = 185 cm, both the

k-ω SST and RST elliptic blending results predict reasonable boundary layer profiles, indicating

proper prism layer refinement. The RST LPS model exhibits a fully laminar boundary-layer at

this location This shows that the RST LPS closure does not model transition well enough to

predict its correct location. In fact, the boundary layer remains laminar until the first SBLI. Only

after this disturbance, does the profile change (flow separates). Further results with the RST LPS

model are not expected to correlate well with the two other models and the experimental data as
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we are focusing on a turbulent shock wave-boundary-layer interaction, thus the phenomena

occurring based on the RST LPS closure is not of interest to this work. Near the shear layer, both

the eddy-viscosity and RST LPS models perform well and follow the composite law of the wall

profile with a max error of 10% for the RST LPS predictions and 4% for the eddy-viscosity

closure. The elliptic blending model exhibits a decrease in U+ in the log layer, resulting in a

maximum error of 25%. The cause for this is unclear.
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Figure 5-15. Boundary layer profiles at various locations on the body.

5.1.4 Surface Pressure Results

Surface pressure results depend highly on the SBLI structure. Therefore, it is expected that

both RST models will have less-accurate results compared to the k-ω SST closure. This is
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apparent in Fig. 5-16. The RST elliptic blending model over-predicts the peak surface pressure by

37% while the RST LPS over-predicts by 51%. The magnitude and location error of the surface

pressures for the RST models is attributed to poor separation modeling. The presented predictions

with the k-ω SST model tend to align with experimental data more closely than both RST

predictions and the results of Cross and West8 with the same two-equation model. The k-ω SST

model predictions have the peak heat flux 1.5 cm behind the experimental peak while the RST

LPS and elliptic blending predictions is 3 cm forward and 7 cm behind, respectively. This model

is the most accurate of the three in regards to the peak surface pressure location as well as the

initial jump at the x = 232 cm in the surface pressure where the SBLI begins.
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Figure 5-16. Surface pressure along the SBLI region as predicted by RST and eddy-viscosity
models. Experimental data from Holden et al.7 and results from Cross and West8

shown for comparison.

5.1.5 Heat Flux Results

Heat flux predictions showed a similar trend to the surface pressure predictions: the

eddy-viscosity model out-performed the RST models in terms of peak magnitude location, see

Fig. 5-17. The k-ω SST peak prediction was 1.5 cm behind the experimental peak while the RST
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LPS was 2.5 cm in front and the elliptic blending was 7.5 cm behind. The RST elliptic blending

over-predicts peak heat flux by 37% while the RST LPS over-predicts by 198%. The k-ω SST

model over-predicted by 85%. As evidenced, all the RANS models tested in this work tend to

over-predict the peak heat flux. This is because turbulence models typically focus on predicting

accurate momentum transfer as opposed to heat transfer. Turbulent momentum and heat transfer

are fundamentally different processes. The largest eddies determine the Reynolds stresses while

heat transfer occurs on a much smaller scale and is less directly related to the large eddies1.
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Figure 5-17. Heat flux along the SBLI region as predicted by RST and eddy-viscosity models.
Experimental data from Holden et al.7 and results from Cross and West8 shown for
comparison.

5.1.6 Discrepancy Between Published Results

Efforts were made to replicate the results of Cross and West8 using the same solver settings

and turbulence model (k-ω SST) to double check correct model selection and grid quality. It is

noted that the location of the peak values predicted by Cross and West8 are further aft, predicting

the peak for surface pressure 4 cm behind the experimental data and 3.5 cm behind for the peak

heat flux. The results from this study with the same model only predicted the peak 1.5 cm behind
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the experimental data for both pressure and heat flux. Additionally, the initial jump at the

separation shock in both results is missing entirely. This was replicated by allowing the results to

converge fully on an initial grid that was too coarse before the next refinement was performed in

the set of adaptive mesh refinements. Allowing full convergence on a coarse grid tended to

dissipate results and thus did not capture the large gradients that led to jumps in the surface

variables. The grid convergence study also displayed that the peak surface pressure and heat flux

location prediction moved rearward as the grid became coarser. Therefore, it is believed that full

convergence was reached between refinement steps and dissipated the results of Cross and West8.

This explains the smoothing of the initial jump and rearward max pressure and heat flux location.

5.1.7 Separation in Reynolds Stress Transport Closures

The predictions of the RST closures are quite different from the k-ω SST predictions. The

most significant difference is the location of the separation on the cone portion of the flared-cone

geometry, see Fig. 5-9 through 5-11. One the contributing factors to the poor separation

prediction with the RST models is the use of a k-ε closure for the turbulent dissipation rate. The

k-ε model is known for poor performance in adverse pressure gradients, which is the cause of the

flow separation1. The underlying issue is the k-ε model fails to respond in a physically realistic

manner to the adverse pressure gradient on the rear-end surface, where the skin friction prediction

is too high. This means the vorticity at the surface is too large and diffuses from the surface. This

vorticity is swept into the main flow and too strong a vortex forms when the flow separates. This,

in turn, reduces the base pressure and distorts the entire flow-field1. The results in Fig. 5-18 show

that this indeed happens with both RST models. The results in Fig. 5-18 are the skin friction

coefficients at the base of the separation shock for all three models. Note that the longitudinal

position of the separation shock is different for each model, thus Fig. 5-18 only shows a 2 cm

range near the base of each of the respective separation shock locations. No large increase in skin

friction coefficient is predicted with k-ω SST model; rather an initial drop by 100 units in skin

friction is experienced with a rise to a steady value 63 units smaller than pre-SBLI. The results of

the RST elliptic blending model show a similar trend except that the skin friction coefficient
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spikes immediately after the large adverse pressure gradient of the SBLI to skin friction coefficent

43 units larger than pre-SBLI. The RST LPS model also predicts an increase in skin friction

coefficient by 27 units, rearward of the SBLI, but the response is small compared to that of the

two other models. No initial drop in skin friction is experienced like the two other models. This is

because the LPS model predictions never transitioned to a fully turbulent boundary layer until

after the separation shock, so the increase is due to the boundary changing from laminar to

turbulent.
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Figure 5-18. Skin friction coefficient at the initial SBLI for the three turbulence model results.

37



CHAPTER 6
CONCLUSIONS

6.1 Future Work

The turbulence closures used in this work relied on the Morkovin Hypothesis16. The

hypothesis is the notion that at moderate Mach numbers, the essential dynamics of shear flows

follow the same patterns as incompressible flows. This means that dilatation is small and any

differences from incompressible turbulence can be accounted for by mean variations of fluid

properties. This allows the Navier-Stokes equations to be written in Favré-averaged form and a

variable density extension of incompressible turbulence models to compressible flows. Recent

studies have shown that the Morkovin hypothesis is valid for the mean field between a freestream

Mach number range of 2.24 to 10 with various wall boundary conditions17−18. The assumption

was also verified for the turbulence field on flat-plate flows19. These studies, however, did not

have the strong gradients associated with SBLI. Morkovin’s hypothesis has further implications

that impact the results in this study, namely that of the Strong Reynolds Analogy (SRA). The

SRA assumes dynamic similarity between momentum transfer and heat transfer, where the same

models for modeling the momentum transport is used for turbulent heat transport17. This in turn

allows a constant Prandtl number to be used for the closures schemes. SRA pivots on the

assumption that pressure and stagnation temperature fluctuations in the boundary layer are

small16. However, this assumption has been shown to be incorrect for high-speed flows, where

variable-Prandtl number turbulence models have shown improved heat flux, surface pressure, and

skin friction predictions20−21. Mahesh et al.22 shows the relationship between u′ and T ′ derived

from the Morkovin hypothesis, assuming temperature fluctuations are small in the linear limit,

T ′

T
=−(γ −1)M2 u′

U
. (6-1)

By using the Rankine-Hugoniout equations, it is shown that the above relationship cannot be valid

if it is assumed to hold upstream of the shock22. Additionally, the linearized energy equation,

T ‘2 +
U2u′2
Cp

=− ξt

Cp
(U1 −U2), (6-2)
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can be used to show that, based on the assumption of no temperature fluctuations in front of the

shock, that there must be temperature fluctuations past the shock, thus again, invalidating the

Morkovin hypothesis. A similar argument is used to explain why the hypothesis does not hold in

the far-field. DNS data showed that immediately behind the shock wave, significant levels of

stagnation temperature fluctuations are generated due to oscillation of the shock front. The

downstream convection of vorticity entropy fluctuations were found to be the cause of the

stagnation temperature fluctuations in the far-field of the shock wave. This leads to inapplicability

of Morkovin’s hypothesis in the far-field because, again, stagnation temperature fluctuations are

not negligible22. Future work will address this problem of non-negligible temperature fluctations

by implementing a variable-Prandtl number formulation into the turbulence closure.

6.2 Concluding Remarks

Simulations of a Mach 6 turbulent SBLI on a flared-come geometry was carried out using

an eddy-viscosity model (Menter k-ω SST), and two RST models (linear pressure-strain and

elliptic blending). Grid convergence was investigated to ensure the initial grid captured smooth

solutions and allowed the adaptive meshing algorithm to refine where needed (near the SBLI).

The grid was refined using the normalized pressure gradient technique and was found to

sufficently refine the shocks without excessively refining the prism layers.

It was hypothesized that RST models would predict the surface pressure and heat flux in the

SBLI region better than the eddy-viscosity model because of the relaxation of the Bousinessq

hypothesis, explicitly modeling of all of the Reynold stresses. However, this proved to be

incorrect. The eddy-viscosity model correlated the best with the experimental data in terms of

location of the peak values and separation. The RST LPS model predicted the peak surface

pressure and heat flux forward of the expected location while the RST elliptic blending predicted

the maximum values too far rearward. Both RST models over-predicted the separation length,

with the elliptic blending over-predicting by 200% and the LPS model by 54%. All models

over-predicted the peak heat flux by at least 37% and by at most 198%. Similar over-prediction of

the peak wall pressure resulted from all three models, with an over-prediction range of 30%-50%.
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Boundary layer statistics show that the RST LPS model was unable to predict transition from a

fully laminar to a turbulent boundary layer, and thus resulted in a laminar SBLI. The RST LPS

model also incorrectly predicted multiple separation bubbles in the SBLI region and thus multiple

oblique shocks formed. The RST elliptic blending and eddy-viscosity model correlated with the

expected SBLI structure from the experiment, with a single separation shock on the cone and a

λ -shock interaction on the flare. However, due to the k-ε model used for the turbulent dissipation

in the RST models, the response to the adverse pressure gradient was incorrect and increased the

skin friction too much directly behind the initial separation shock and thus led to a large

separation bubble. This is a common problem with the k-ε model that has been well documented

over the decades1. Possible explanations for the over-prediction of the heat flux are the use of the

Morkovin hypothesis in a high-speed flow with a large pressure gradient in the boundary-layer.

Similarly, the Reynolds analogy that allows a constant Prandtl number to be specified can fall

short, where different mechanisms exist for momentum and turbulent heat transport.
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