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We present a semi-empirical long-range low-frequency acoustic propagation model, which accounts for
atmospheric turbulence. Ostashev and Wilson’s scattering model is combined with a ray-theory based
refraction model to account for turbulent scattering and refraction via a turbulent absorption coefficient.
The coefficient is ascertained via integration of scattered energy. The model is formulated, calibrated, and
validated via corresponding experiments conducted within the National Science Foundation Boundary
Layer Wind Tunnel. The predictions of the newly proposed ‘bridging model’ match the wind tunnel
experimental data with an average error of 11.9%. Example predictions are shown to quantify the effect
of turbulent kinetic energy and turbulent integral length scale on long-range infrasound propagation. To
demonstrate the approach, we present predictions of the propagation of noise from a tornado and a non-
linear wave.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic waves are scattered by turbulence. This effect must be
accounted for to make accurate predictions of long-range acoustic
propagation in the atmosphere [1]. This is especially true at lower
altitudes in the atmosphere [2]. Ostashev and Wilson [3] devel-
oped a model to account for the scattering of acoustic waves
through an inhomogeneous anisotropic turbulent field, which
includes fluctuations of velocity and temperature. We introduce a
modification of Ostashev and Wilson[3]’s model. This modification
focuses on the effects of large-scale turbulent structures in the for-
ward scattering direction within the altitude range of 0 to 20 km.

Investigators have studied turbulent scattering using different
approaches, including parabolic equation methods and statistical
scattering models. The parabolic equation method for wave propa-
gation, such as Khokhlov Zabolotskaya Kuznetsov (KZK) equation
[4,5], is a classic approach to capture turbulent effects. Blanc-
Benon et al. [6] implemented a model numerically with the KZK
propagation equation and analyzed their results with experimental
data. Experimental data is also employed to analyze the turbulent
effects on sonic boom propagation. Lipkens [7] validated the statis-
tical model of Pierce [8] with sonic boom experiments by compar-
ing the rise time of the mean waveform to the rise time altered by
turbulence. The plane-wave assumption is employed for sonic
boom propagation, especially near the ground, and the scattered
waves exhibit ‘folding’ effects. Piacsek [9] investigated and vali-
dated the folding and focusing effect of the turbulence on sonic
boom propagation. Stout et al. [10] showed how turbulence could
affect an N-wave by analyzing the perceived level (PL), and the tur-
bulent effects on indoor sonic boom annoyance predictor metrics
[11]. For long-range propagation, the plane wave assumption is
not valid. The performance of these statistical models for long-
range low-frequency propagation is not as satisfactory as for sonic
boom propagation. The model of Goldreich and Kumar [12] simpli-
fied the turbulent scattering model by using the mass and velocity
fluctuations of the turbulent structures to evaluate the turbulent
scattering effect. Brown and Clifford [13] developed a turbulent
scattering attenuation model by using the sound beam approach,
which also relates the scattering intensity to the turbulent kinetic
energy and turbulent length scale.

Besides the parabolic equation methods and statistical models,
the coefficient predicted by Lighthill’s model [14] revealed that
acoustic-turbulent attenuation can be related to turbulent kinetic
energy and integral length scale. In 1967, Tatarski [15] presented
his turbulent scattering model, which was able to predict the direc-
tional scattering via a turbulence spectrum. Later, Ostashev and
Wilson [3] improved the Tatarski [15]’s model by correcting the
coefficient and included the effect of humidity. However, in Osta-
shev and Wilson [3], the predicted cross-section for the near-zero
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scattering angle is invalid because of the appearance of a singular-
ity. To overcome this, Muhsin et al. [16] numerically investigated
the small-angle scattering effects via a finite-difference time-
domain approach. With the inhomogeneity of temperature, [16]
obtained a non-zero cross-section for the zero-degree scattering
angle. Our model leverages Ostashev and Wilson [3]’s model and
incorporates a turbulent refraction model to account for the
large-scale turbulent effects.

The present model is based on Ostashev andWilson [3]’s model,
and the new model is modified to account for turbulent scattering
and refraction in a simplified way. The refraction caused by the
large-scale turbulence is included in the new model using classic
refraction ray theory and a decomposed turbulent field. We per-
formed acoustic propagation experiments within the University
of Florida Boundary Layer Wind Tunnel (UFBLWT). The new model
is validated with this unique dataset.

The generalized Burgers’ equation [17,18] can capture the
effects of absorption, dispersion, and nonlinearity. If coupled with
acoustic ray tracing, the refraction can also be included in this
propagation method. This weakly nonlinear propagation method
is widely used in long-range propagation prediction, such as the
Misty Picture study by Scott et al. [19]. However, the generalized
Burgers’ equation is unable to predict turbulent effects due to its
spatially one-dimensional nature. By implementing the presently
proposed turbulent scattering model into a validated generalized
Burgers’ equation solver, we provide a new propagation method
with an ability to capture scattering of turbulence. We also inves-
tigate turbulent attenuation effects for two broadband signals, and
numerically investigate the model’s behavior by varying the turbu-
lent kinetic energy (TKE) and length scale, Lv . This new model also
has potential applications for propagating volcano eruption infra-
sound, explosion infrasound, and aircraft take-off noise.

The rest of the paper is organized as follows: Section 2 intro-
duces the mathematical derivation of our model; Section 3 dis-
cusses the wind tunnel validation of the model; Section 4
presents demonstration cases of the model application for long-
range propagation. Finally, Section 5 presents the summary and
conclusion.
2. Methodology

In this section, Ostashev’s model, the bridging model, and the
model implementation in the generalized Burgers’ equation are
introduced in three subsections. To model wave turbulence inter-
action that occurs during long-range propagation, a bridging model
is proposed that combines Ostashev and Wilson’s model (Osta-
shev’s model for short) [3] and traditional linear acoustic refrac-
tion. The long-range low-frequency propagation assumption, R �
k, is made, where R is the propagation distance and k is the wave-
length of the acoustic wave. Acoustic frequencies studied are
between 0.10 Hz to 1000 Hz, which correspond to frequencies of
interest for natural phenomena within the atmosphere. A turbu-
lent attenuation coefficient, at , is generated by the bridging model,
and this coefficient is integrated into the generalized Burgers’
equation.
2.1. Ostashev and Wilson’s Turbulent Scattering Model

Before introducing a new turbulent attenuation coefficient, at ,
we examine the Ostashev and Wilson [3]’s turbulent scattering
model. Directional turbulent scattering was investigated by
Tatarski [15] and Ostashev and Wilson [3] improved Tatarski’s
model by using a Helmholtz-type equation (Eqn. 6.91 in [3]). The
scattering field is (see Eqn. 6.110 in [3])
2
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where the < Is> is the mean acoustic intensity of the scattered field,
k is the wave number of the acoustic wave, coordinates’ origin is
located at the scattering location, n is the direction of the scattered
wave, I0 is the intensity of the incident acoustic wave, R is the dis-
tance from the scattering location to the observer, b and g are the
construction parameters defined by Eqn. 6.67 of [3], h is the scatter-
ing angle, q is the scattering vector, and UT ;UCT ;UC , and Uij are the
spectra of temperature, humidity-temperature, humidity, and
velocity fluctuations, respectively. Then Eqn. 1 can be simplified
and represented by the cross-section r as
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where r hð Þ is the scattering cross-section and is

r hð Þ ¼ Is hð ÞR2

I0V
: ð3Þ

The referenced cross-section is on a per unit volume basis. More
details about Ostashev’s model are available in Ostashev and Wil-
son [3].

The temperature and humidity fluctuations are mainly induced
by the ground fluxes, which are most prevalent below the altitude
of 100 m [3]. For our investigation, the altitude range is from 0 to
20 km, and the ground fluxes only affect a small portion (0.5%) of
the altitude range, thus the fluctuations of the first three terms
in Eqn. 2 are negligible in the rest of the model derivation. For
future development, the temperature and humidity fluctuations
may also be integrated into the propagation equation. Thus, in
the following investigation, only the fourth term on the right hand
side is retained to account for the velocity inhomogeneity, and this
term is named the turbulent cross-section rE as

rE hð Þ ¼ 2pk4
cos2 hcot2 hð ÞE 2k sin h

2

� �
16pk2c2

" #
; ð4Þ

where E jð Þ is the turbulent velocity spectrum. Here, the von
Kármán spectrum is used as it is commonly adapted for long-
range prediction. The velocity spectrum is modeled as

E jð Þ ¼ 55C 5=6ð Þ
9p1

2C 1=3ð Þ
r2
vj4L5v

1þ j2L2v
� �17=6 ; ð5Þ

where j ¼ 2k sin h
2 is the scattering wave number, C is the gamma

function, and rv is the variance of the fluctuating velocity. Because
our goal is to predict the scattered acoustic energy, the total scatter-
ing cross-section is needed. It is found from the integration of the
entire turbulent sphere of scattering as

rE;tot ¼
Z 2p

0

Z p

0
rE hð Þ sin hð Þdhd/; ð6Þ

where subscript tot denotes total. In the following section, we will
describe the approach to obtain the scattering energy loss by using
the total cross section.

2.2. Turbulent Refraction and Bridging Model

In the previous model formulation, small values of h may cause
a singularity and invalidate the predicted cross-section. As h
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approaches zero, j ¼ 2k sin h
2 also reaches zero, indicating that the

scattering near the forward propagation direction is caused by
large (or extremely large) scale turbulence. However, when the
turbulent length scale is larger than the acoustic wavelength, tur-
bulence is believed to contribute to acoustic-turbulent interaction
instead of scattering in terms of wave length. Here, we treat turbu-
lent refraction as a statistical concept, which is different from the
traditional acoustic refraction concept. A detailed definition of tur-
bulent refraction is presented in the following discussion as a new
acoustic-turbulent interaction model.

The new model is presented via Fig. 1. In Fig. 1, a right-running
incident wave arrives with the condition R � k (where R is
assumed larger than 10 km), and the wave is represented by the
incident ray tubes at t. Acoustic-turbulent interaction occurs dur-
ing the time span between t and t þ dt. The blue sphere represents
a turbulent eddy. Hs is the scattering angle, Kr is the turbulent
refraction wave vector, and Hr is the turbulent refraction angle.
drE is the turbulent scattering cross-section discussed in the previ-
ous subsection. The other parameters will be presented next.

To capture the refraction caused by the turbulence, the geodisc
elements technique of ray theory [17,20] is employed to represent
the ray tube and to construct the convective volume. The govern-
ing equation [21] for the geodisc element Xpi

is

dXpi
dt ¼ @

@pi
c X; tð ÞNþ v0 X; tð Þð Þ

¼ c @N
@pi

þ Xpi
� rc

� �
Nþ Xpi

� r� �
v0;

ð7Þ

where c is the time-averaged speed of sound, v0 is the mean atmo-
spheric wind speed, and the subscript pi represents the local coor-
dinate system at the wave front.

The first step is the decomposition of the velocity field as
v0 ¼ v0 þ v0

0, where v0 is the mean velocity and v0
0 is the fluctuat-

ing component. Then the governing equation for geodisc elements
Xpi

are

dXpi
dt ¼ dXpi

dt þ dX0
pi

dt

¼ c @N
@pi

þ Xpi
� rc

� �
Nþ Xpi

� r� �
v0 þ v0

0

� �
:

ð8Þ

The additional Xpi � r
� �

v0
0 term is the fluctuating geodisc element

generated by the turbulent refraction. Unlike the governing equa-
Fig. 1. Concept of the

3

tion of the geodisc element Xpi
in Eqn. 7, the X0

pi
is generated along

the ray path and is independent relative to the value at previous

times. Thus, the term
dX0

pi
dt can be interpreted as the generation rate

of a turbulent-refraction geodisc element. In Gainville [21]’s
research, the convection volume is defined as

m ¼ jX1 ^ X2j
jKj ¼ jX1 ^ X2j � k

2p
; ð9Þ

where X1 and X2 are corresponding geodisc elements, which are
perpendicular to the wave vector. The geodisc elements X1 and X2

are presented in Fig. 1 in the incident ray tube at t. Since the mag-
nitude of the wave vector Kr is the same as the incident wave vector
K, the turbulent refracted convective volume is

m0 ¼ jX0
1 ^ X0

2j
jKrj ¼ jX0

1 ^ X0
2j

jKj ¼ jX0
1 ^ X0

2j � k
2p

: ð10Þ

The m0 is also represented in Fig. 1 by the sub ray tube in the right
lower corner. The sub ray tube is produced by the generation of
X0

1 and X0
2. If the field is represented by locally isotropic turbulence,

the direction of the refracted wave vector Kr deviates from the
mean incident wave vector K.

The turbulent refracted convective volume m0 is required to
ascertain the intensity of refracted waves. In Eqn. 10, X0

1 and X0
2

represent the value of dX0
1

dt and dX0
2

dt , respectively, which are the gen-
eration rates of the geodisc elements for the sub ray tube. The gov-
erning equation of X0

i is obtained from Eqn. 8 as

X0
i ¼

dX0
pi

dt
¼ Xpi

� r� �
v0
0: ð11Þ

Because the magnitude of the incident wave vector is identical to
the refracted wave vector, its influence on the value of the convec-
tive volume can be ignored. Thus Eqn. 11 can be expanded as

X0
1;j ¼ 1

2X1;i
@v 0

0;i
@pj

þ @v 0
0;j

@pi

� �
;

X0
2;j ¼ 1

2X2;i
@v 0

0;i
@pj

þ @v 0
0;j

@pi

� �
:

ð12Þ

Then the refracted convective volume is obtained by inserting Eqn.
12 into Eqn. 10 as
bridging model.
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8pX1;iX2;i sijsij cos X1;X2ð Þ:

ð13Þ

To ascertain the cross-section from the refracted convective vol-
ume, the turbulent refraction cross-section rr is defined as

rr ¼ m0

m
¼ sijsij

4
� r2

v

k2T
; ð14Þ

where the rr is defined as the ratio of refracted convective volume
to the mean convective volume, the term sijsij represents fluctuating
strain rate, rv is the turbulent velocity variance, and kT is the Taylor
microscale [22]. Therefore, the relation between the turbulent wave
number and the fluctuating strain rate is employed [23] as

sijsij ¼ �
2m

¼
Z 1

0
k2E kð Þdk: ð15Þ

For low-frequency waves, the large-scale turbulence has the great-
est effect on turbulent refraction. Thus, only the turbulence with
length scale larger than Lv is used within sijsij, then rr is

rr ¼ m0

m
� r2

v

k2T

R 2p=Lv
0 k2E kð ÞdkR1
0 k2E kð Þdk

: ð16Þ

Here, we define the variable CE as
R 2p=Lv
0 k2E kð Þdk

� �
=

R1
0 k2E kð Þdk

� �
,

which ranges from approximately 10�6 to 10�4 within the von
Kármán spectrum. Thus, rr can also be represented as
rr ¼ CFr2

v=L
2
v , where CF ¼ L2vCE=k

2
T . Now the rr is expressed as a

function of the turbulent kinetic energy and integral length scale,
with a variable CE. The ratio between the Taylor length scale and

integral length is 151=2Re�0:5
l .

Unlike the scattering term of Eqn. 3, rr is no longer a function
with respect to the scattering angle because of the integration of

k2E kð Þ from 0 to 2p=Lv in Eqn. 16. Thus, we require a model func-
tion to bridge the refraction cross-section, rr , with the directional
scattering cross-section, rE. Since the refraction model is only valid
at low scattering angles (where k sin h=2ð Þ < 2p=Lv ), a sine function
is selected with rr as

reff hð Þ ¼ max rE hð Þ½ � � A
rr

sin
pkrLv
2

� p
2

� �
� 1

� 	
; ð17Þ

where A is a constant coefficient to be determined, kr ¼ 2k sin h
2, and

kr 2 0; 2pLv

� �
. By applying this bridging function (inspired by Black-

stock [24]), the turbulent refraction can be represented by the area
below the sine curve and can be adjusted by the parameters in Eqn.
17. Finally, we obtain the expression for the effective total cross-
section as

rtot ¼ reff þ
Z 2p

0

Z p

2 arcsin p
kLv

� � rE hð Þ sin hð Þdhd/; ð18Þ

An example plot of the bridging model is shown in Fig. 2. In this fig-
ure, the acoustic signal is a 10 Hz plane wave impacting on a turbu-
lent structure with TKE of 0.2 m2=s2, while the Lv varies as 2 m,
16 m, and 96 m.

Fig. 2 shows the difference between the new model and Osta-
shev [3]’s model. Turbulent refraction is considered in the new
model to account for the acoustic-turbulent interaction near zero
scattering angle.

To implement the bridging model into the generalized Burgers’
propagation equation, we transfer the total cross-section into a
turbulent attenuation coefficient. The total cross-section is the
4

ratio of the scattered energy to the incident energy, which can be
expressed as

rtot ¼ Is
I0

¼ p2
s

p2
0

¼ 1� p2
t

p2
0

; ð19Þ

where ps is the scattering acoustic pressure and pt is the transmitted
acoustic pressure. Since the turbulent attenuation coefficient is
acting similarly to the atmospheric absorption coefficient, we
introduce the atmospheric absorption first. By assuming a time-
harmonic waveform, the wave equation solution can be expressed
as Blackstock [25]

p xð Þ ¼ p0e
�a xð Þrej xt�b xð Þrð Þ; ð20Þ

where r is the propagation distance, b is the wavenumber, a is the
atmospheric absorption coefficient, and x is the frequency. For
the turbulent attenuation, we have

pt xð Þ
po xð Þ ¼ e�at xð Þrej xt�b xð Þrð Þ: ð21Þ

We now have the relation between the total cross-section and the
attenuation coefficient as

at ¼ �1
r
ln

pt

p0

� 	
¼ 1

r
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rtot

p
: ð22Þ

The unit of obtained at is nepers/m, which can be translate to the
dB/m by a scale factor of 8.686.

2.3. Modified Burgers’ Equation Propagation Model

We now examine how the modified model is integrated with
Burgers’ equation. The governing equation of the acoustic pressure
is (see [21])

@p
@t

¼ d
@2p

@n2
þ Bp

@p
@n

þ
X
f

Dcð Þf
@pf

@n
; ð23Þ

where p is the acoustic pressure, K is the wave number, n is the
length along the ray, d is the thermal viscosity, and Dcf is the differ-
ence of the speed of sound between component f and the ambient
speed of sound. The nonlinear coefficient B is

B ¼ 1þ c
2

� �
1

q0c0

� �
: ð24Þ

Eq. (23) is a one-dimensional propagation equation. The term on the
left hand side is the partial time derivative of the acoustic pressure.
The terms on the right hand side are attenuation, nonlinearity, and
dispersion, respectively. By using the Fourier-Galkerin spectral
method, we solve Eqn. (23) in the frequency domain while march-
ing the acoustic pressure along the rays (propagation paths pre-
dicted by ray tracing method). Our final propagation equation is

@~p
@t

¼ �C~pþ i
K
2
B ~pð Þ2; ð25Þ

where ~p is the pressure in frequency domain. We assemble attenu-
ation and dispersion terms. The combined coefficient C is

C ¼ dK2q2 þ iKq
X
f

Dcfð Þ
1� iKqsfc

; ð26Þ

where the q is the Fourier transfer coefficient for different frequen-
cies and the sf represents the relaxation time for different compo-
nents. The generalized Burgers’ equation is applied to the ray path
with path-dependent attenuation and dispersion coefficients
obtained from the Sutherland and Bass [26] model. To introduce
turbulent scattering into the generalized Burgers’ equation, we
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modified the coefficient C with the newly-developed turbulent
attenuation coefficient at from the previous subsection. Thus, the
newly combined coefficient is

Ct ¼ dK2q2 þ iKq
X
f

Dcfð Þ
1� iKqsfc

þ at : ð27Þ

Finally, we obtain our governing equation for the propagation as

@~p
@t

¼ �Ct~pþ i
K
2
B ~pð Þ2; ð28Þ

which is capable of capturing the effects of nonlinearity, turbulent
attenuation, and atmospheric absorption and dispersion.
-2 -1 0 1 2 3 4 5 6 7 8
-3.5
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-2
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Fig. 3. Output single cycle signals at 2 m from speaker. [27].
3. Wind Tunnel Experiments Validation

A series of boundary layer wind tunnel propagation experi-
ments were conducted in the UFBLWT to validate the turbulent
attenuation coefficient developed in the previous section. The
detailed experimental procedure and calibration of the UFBLWT
propagation experiments were recently published by Zhang et al.
[27]. The experimental data was made publicly available through
the DesignSafe cyberinfrastructure by Zhang et al. [28]. In this sec-
tion, we introduce the setup, discuss steps of the test procedure,
and discuss the results of the experiments. Then the validation of
the turbulent attenuation coefficient is presented via comparisons
of our predictions with our measurements.
3.1. UFBLWT Experiments Setup

Three objectives of the experiment are critical for model valida-
tion. The first involves careful construction of the source acoustic
signal within the tunnel. The second involves careful measure-
ments and characterization of the turbulence statistics within the
5

tunnel. The third involves measuring the acoustic signal altered
by the turbulence.

The acoustic source signal is synthesized via a small speaker
placed within the wind tunnel. Fig. 3 shows 36-ensemble averages
of the measured acoustic wave from the source speaker, and these
signals are considered as the baseline source signal. The Matlab-
generated acoustic source signal of 800 Hz is shown as the blue-
dash line in the figure inset. Source signals are created as 800 Hz,
1250 Hz, 1600 Hz, and 2000 Hz pulses. For the first crests of each
acoustic source signal, the over-pressure amplitudes are 2 Pa. By
comparing with the acoustic source signal’s trough, the impulse
responses are observed at the troughs for all four signals since
the amplitudes of the troughs are �3.393 Pa, �3.136 Pa, �2.857
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Pa, and �2.657 Pa for 800 Hz, 1250 Hz, 1600 Hz, and 2000 Hz,
respectively [27]. The 800 Hz pulse has the most intense response
since its trough has the highest magnitude of 3.393 Pa.

Turbulence statistics are measured within the tunnel using a
high-frequency Cobra probe that is mounted on a mechatronic
gantry system. Via this approach, both mean flow and turbulence
statistics are measured through the turbulent boundary layer.
Probes are moved downstream and in the cross-stream direction
at multiple locations. Boundary layer roughness is varied via indi-
vidually computer-controlled roughness elements. In this way, our
predictions and experiments encompass a wide range of realistic
atmospheric conditions with varying turbulence statistics, ground
roughness, and mean flow velocities.

Finally, we measure the turbulent-distorted acoustic signal,
which is obtained by a G.R.A.S. [29] microphone system. Tempera-
ture, humidity, static pressure, and turbulence measurements are
available to the reader via DesignSafe [28].

The experimental setup is shown in Fig. 4. The source signal is
generated by a speaker located near the inlet of the wind tunnel,
and the microphone is located near the wind tunnel exit. The x
coordinate is aligned with the ground center line of the tunnel,
and the z direction points to the ceiling. The total propagation dis-
tance is 22 m for the acoustic tests. Both the microphone and
speaker have adjustable height so that their elevation height (EL)
can vary. The meanflow and turbulence measurement system is
not present during acoustic tests, so that they do not scatter the
acoustic wave. We set the ground element height (EH) at the iden-
tical height to the floor and identical angle to the flow.

Reflections of the source signal on the tunnel walls and the
background tunnel noise reduce the quality of our measurements.
To reduce these effects, we implemented an ensemble averaging
technique and a linear reflection wave prediction to reduce and
remove these disturbances, respectively. By taking the ensemble
average of the 36 repeated single cycles for each frequency, the
broadband turbulent noise can be efficiently removed, and the
signal-to-noise ratio is improved to 8.9 dB and higher for acoustic
measurements. We isolated the portion of the received signal that
resulted from reflection from the tunnel walls by combining the
single-cycle signal design and linear wave propagation prediction.
The time delay between the incident wave and reflected wave
allows us to use linear acoustic theory to remove the reflected
waves. The reflection surfaces are the ceiling, two sidewalls, and
the ground. The ceiling and side walls are made of painted ply-
wood, and the ground is made of phenolic plywood. For the ceiling
and sidewalls of the tunnel, the surfaces are considered as reflec-
tive boundaries since the acoustic impedance is 1:5� 106 Pa � s/
m, which is much larger than the air’s acoustic impedance (approx-
imately 400 Pa � s/m) [30]. For the ground reflection, the angle of
incidence is between 85.3 to 89.1 degrees (varying due to increas-
ing EL), which causes a grazing [31] effect. Thus, the ground reflec-
� � � �

�

��

Fig. 4. Experimental schematic from the UF
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tion is not included due to the roughness elements, which scatter
the incident wave and prevent its energy from reaching the
microphone.

3.2. Predictions Compared to UFBLWT Measurements

Here, we present our predictions and compare them with our
wind tunnel measurements. Tunnel measurements of velocities,
turbulent kinetic energy (TKE), and length scales are used directly
within the propagation solver. Fig. 5 shows four example compar-
isons from the UFBLWT. The black lines are the experimental mea-
surements, the dash-dot red lines are the predictions from the
nonlinear propagation solver, the blue dot lines are the results of
the linear wave prediction, and the bars represent the uncertainty
of the experiment. To emphasize the time of arrival of reflected
waves, we have placed vertical dashed blue lines. The detailed
EH; EL, TKE, and Lv of 24 validation cases are listed in the Table 1.
Tests 1, 2, and 3 are measured at the same EL of 170 mm with
the mean wind speed of 5.16 m/s, 6.86 m/s, and 8.64 m/s, while
Test 10 is measured at the EL of 900 mm with the wind speed of
5.16 m/s. The EH of these four cases is set at 30 mm. More cases
are accessible via the DesignSafe data depot [28]. The linear wave
prediction successfully captures the reflections as the waveform of
the prediction matches the experimental data. From the experi-
mental results in Test 10, we can clearly see that the ceiling
reflected wave created a 0.36 Pa crest at + 1.2 ms, along with
the impulse response (crest at + 0.85 ms) of the test signal. The
two sidewalls reflected waves produce another crest at + 2.4 ms
of 0.4 Pa, which doubles the amplitude compared with the direct
wave at t ¼ 0.

The source signals are those shown in Fig. 3. Predictions are
shown in Fig. 5 and are compared with the ensemble-averaged
measurement without reflections. The solver captures the turbu-
lent attenuation effect as the predicted amplitudes of the first crest
in Test 1, 2, and 3 are 0.18 Pa, 0.11 Pa, and 0.09 Pa, which are all
located in the uncertainty range of the experimental results. A
0.09 Pa amplitude decrease is observed with increasing mean
TKE from 0.27 m2=s2 to 0.75 m2=s2. The turbulent length scale of
Test 1 and Test 10 are 1.89 m and 2.06 m, respectively, while the
TKE of Test 1 and Test 10 are 0.27 m2=s2 and 0.18 m2=s2. The
decrease in TKE and increase in length scale cause a 0.005 Pa
amplitude increase from Test 1 to Test 10.

Errors of the 24 predictions relative to experiments are shown
in Fig. 6. The black bar represents 95% uncertainty of the experi-
mental data. The dots represent the percentage error between
the prediction and experiment, and the outliers (predictions not
located within the uncertainty band) are colored as red dots and
labeled by their test number. The average error of Oshtashev’s
model is 24.32%, and the average error of the Bridging model is
22.45%. By removing the outliers from the results, the error of
� � � �

�

�
� �

�

�

BLWT acoustic propagation tests [28].
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Fig. 5. Comparison between predictions and wind tunnel measurements.

Table 1
The case list for the UFBLWT validation.

Test EH (mm) EL (mm) TKE (m2=s2) Lv (m) Test EH (mm) EL (mm) TKE (m2=s2) Lv (m)

1 0 170 0.29 1.89 13 30 170 0.35 1.78
2 0 170 0.49 2.55 14 30 170 0.64 2.40
3 0 170 0.75 3.17 15 30 170 0.96 2.98
4 0 590 0.25 2.00 16 30 590 0.27 2.01
5 0 590 0.47 2.70 17 30 590 0.51 2.70
6 0 590 0.67 3.38 18 30 590 0.68 3.40
7 0 740 0.23 2.04 19 30 740 0.23 2.05
8 0 740 0.40 2.76 20 30 740 0.41 2.78
9 0 740 0.56 3.42 21 30 740 0.60 3.44
10 0 900 0.18 2.06 22 30 900 0.19 2.08
11 0 900 0.32 2.80 23 30 900 0.33 2.81
12 0 900 0.47 3.48 24 30 900 0.47 3.49

Fig. 6. The error comparison between the bridging model (a) and Ostashev’s model (b).
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Fig. 7. Absorption coefficient with respect to TKE and acoustic frequency.
Fig. 9. Turbulent attenuation coefficient difference between the bridging model
and Ostashev’s model.
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Ostashev’s model decreases to 12.67%, while the bridging model’s
error is 11.9%. Turbulent attenuation is observed in the experimen-
tal results and is captured by the propagation solver. We note that
our predictions and experiments are dimensional, one-to-one, and
involve inhomogeneous turbulence.

4. Numerical Model Analysis and Parametric Study of the
Propagation Solver

We numerically investigate more realistic acoustic propagation
scenarios with the new bridging model to understand the model’s
behavior. In particular, we examine TKE and Lv ’s effects on the
propagation and quantify their effect on the absorption coefficient
at . Fig. 7 shows the distribution of at with frequency range of
0.25 Hz to 1024 Hz and TKE range from 0.1 to 10 m2=s2. In Fig. 7,
the x-axis is the acoustic frequency in Hz, the y-axis is the TKE in
m2=s2, and the colors represent the value of the turbulent absorp-
tion coefficient. The integral length scale Lv for this prediction is
fixed at 1.2 m. The coefficient contours are in log scale ranging
from 10�15 to 1 dB/km. The overall trend of at is increasing with
increasing TKE, as expected. Turbulent absorption shows a linear
increase with frequency, which is similar to the trend involving
the atmospheric absorption coefficient of Sutherland and Bass [26].

The distribution of the turbulent absorption coefficient at in the
frequency-Lv domain is presented in Fig. 8. Unlike Fig. 7, the x-axis
Fig. 8. Absorption coefficient as a function of turbulent length scale and frequency.
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is linear to illustrate a clearer insight into the dependency between
the Lv and at . The TKE for this prediction is set at 0.2 m2=s2. The Lv ’s
range is from 0.5 to 500 m, while the frequency range is kept the
same as in Fig. 7. By using the linear x-axis, the at ’s profile for high
frequency shows a hill-like shape with increasing Lv . The Lv of the
turning point of these hill-like profiles decreases with increasing
frequency. This behavior is caused by the integration of Eqn. 18,
where Lv can alter the integrating area in wavenumber space.
Therefore, the correlation between Lv and acoustic frequency con-
tributes to the curve in Fig. 8. Similar behavior is also observed in
the predictions of Ostashev’s model, and the predicted coefficient
difference between these two models is shown in Fig. 9. Here,
the turbulence statistics are identical to those presented in Fig. 8,
and the difference is normalized by the Ostashev’s model predic-
tion. At f > 1000 Hz, the difference between these two models is
negligible. For the frequency at 20 Hz, the difference approaches
3% to 4% with varying Lv . The maximum difference (about 10%)
appears from f at 10 Hz and Lv at 0.5 m to f = 0.25 Hz and Lv at
100 m. This indicates that the effect of the bridging model is more
apparent at low frequencies. For the frequency higher than
1000 Hz, there is no obvious difference between the bridging
model and Ostashev’s model. Thus, we consider our model’s max-
imum acoustic frequency as 1000 Hz. For acoustic frequencies
lower than 1 Hz, the effect of acoustic gravity waves must be
accounted for. Since our model is not capable of physically captur-
ing the acoustic gravity wave, we set our lowest acoustic frequency
as 1 Hz and only simulate scattering attenuation for altitudes
lower than 20 km.

We implemented the turbulent scattering attenuation coeffi-
cient into the generalized Burgers’ equation for the numerical
propagation tests. Two broadband test signals are selected and
propagated along a horizontally straight-line path at the altitude
of 100 m for a distance of 50 km. The turbulence of this altitude
is generated by the atmospheric turbulent model developed by
Lukin [32], which provides the TKE and integral length scale at alti-
tude, which are 0.6 m2=s2 and 12 m, respectively. Two signals we
employed for the propagation solver are the broadband tornadic
infrasound signal and a shock wave signal. Fig. 10 shows the spec-
tra of the shock wave with and without turbulent effects. In this
figure, the source signal is a left-running ‘‘N” wave. The pressure
time history of the source signal is shown in the left-bottom corner
in Fig. 10 with an amplitude of 2 Pascal and a total time span of 1 s.
The spectrum of the source signal is shown as the black solid line
(represented by (a)), while the spectra of received signals are
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Fig. 10. Spectra of the shock wave propagation case.
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represented by the blue dash line (b) and red dot line (c) for prop-
agation with and without turbulent effect, respectively. For the
low-frequency region from 0.25 to 2 Hz, the attenuation effects
are negligible for both atmospheric attenuation and turbulent
attenuation. The turbulent attenuation appears at the frequency
of 2 Hz, where the PSD drop is about 0.22 dB. For the frequency
region higher than 20 Hz, the propagation solver loses its fidelity,
and the PSD is below 30 dB for the turbulent-altered signal. By
comparing with the spectrum without turbulence, the turbulent-
induced PSD drop is higher than 25 dB at 20 Hz. The atmospheric
attenuation obtains influence on the spectrum with the frequency
higher than 10 Hz, as shown by the red-dot line. The high-
frequency (larger than 100 Hz) energy of the shock wave is dis-
charged significantly by the atmospheric attenuation with the
PSD lower than 20 dB. In the shock wave propagation case, the tur-
bulent attenuation for the low-frequency region from 2 Hz to 20 Hz
is significantly higher than the atmospheric attenuation. Because
of the positive correlation between the attenuation and frequency,
the turbulent effect on the N-wave is a ‘‘rounding” effect like atmo-
spheric attenuation, but about five times stronger for this specific
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Fig. 11. Spectra of the broadband tornado signal propagation case.
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turbulent condition by comparing the frequency-dependent PSD
drop.

A broadband tornadic signal propagation case is conducted with
the same turbulence statistics to illustrate the approach. The
broadband tornadic signal is reconstructed via Frazier et al. [33]’s
mathematical model. Fig. 11 shows the results of these propaga-
tion cases. The black solid line (a) is the spectrum of the source sig-
nal, which is a broadband signal from 0.25 Hz to 1024 Hz. The blue-
dash line and the red-dot line are the spectra of the received sig-
nals with and without turbulent effects, respectively, following
the same manner as Fig. 10. For this case, the turbulent attenuation
of 0.25 dB PSD drop is observed at the frequency of 1 Hz, while the
atmospheric attenuation causes 0.25 dB PSD drop at 10 Hz. In
Fig. 11, we can find the interception points of the 30 dB horizontal
line with the blue and red lines located at the frequencies of 15 and
100 Hz, respectively. For the 15 Hz signal, the PSD drop caused by
atmospheric attenuation is only around 0.04 dB. Thus, the turbu-
lent attenuation at 15 Hz has a similar intensity as the atmospheric
attenuation at 100 Hz.

Fig. 12 shows the results of the OASPL difference with and with-
out turbulence. The DOASPL is the difference between the OASPL of
the propagation within a turbulent field and without, respectively.
For the first test, the TKE of the turbulent model is fixed at 0.0285
m2=s2, while the Lv varies from 2.5 to 250 m. A �5% perturbation is
applied to evaluate the sensitivity of the model. As shown in
Fig. 12, the effects of Lv on the DOASPL are linear, while the effects
of the perturbation also follows a linear variation.

We also compared our predictions with the sonic boom propa-
gation study of Lipkens and Blackstock [34]. The experiment mod-
eled sonic boom propagation in a turbulent atmosphere by
propagating the electric-sparked N waves through a plane jet
[34]. Two hundred pressure waveforms were recorded in Lipkens
and Blackstock [34]’s experiment, providing an averaged waveform
for our statistical model to compare. We reconstructed the source
signal based upon their measurements. The statistical result of the
experiment is shown in Table 2, where s is the rise time, Dp is the
peak pressure, and T is the sonic boom duration.

The propagation distance (from the spark to the microphone) is
0.45 m, thus we use an N-wave with an 800 Pa peak pressure to
represent the source signal. Standard atmospheric conditions are
applied for the solver to obtain the received waveform without
the turbulent scattering model, and the numerical result is shown
in Fig. 13 as the solid red waveform. In Fig. 13, the blue dot-dash
waveform is the received signal with turbulent effects, and the
black dash line is the reconstructed source signal (spark generated
N wave).

The TKE is set to 2.576 m2=s2 based on the rms velocity fluctu-
ation of 2.27 m/s measured in the experiment. The measured inte-
gral length scale is in the range of 0.01 m to 0.08 m in the
experiment, and we use 0.01 m for our numerical simulation. We
present both pressure–time history (a) and spectrum (b) of the
numerical results in Fig. 13. The peak pressure of the non-
turbulent result is 643.4 Pa, which is 1.2% lower than the experi-
mental data. The difference is likely due to the unknown waveform
of the source signal. For the received signal with turbulent effects,
the peak pressure is 595.2 Pa. Thus, a 7.5% peak pressure drop is
observed in our numerical simulation, compared to the 4.8% peak
pressure decrease in the experiment. The rise time of the numeri-
cal results increases from 2.01 ls to 2.81 ls, while the rise time in
experimental data increases from 0.506 ls to 1.45 ls. The spectra
of the waveforms are also presented in Fig. 13(b). For the wave-
form without turbulent effects, we observe a broadband PSD
reduction for frequencies higher than 1 MHz, which is caused by
atmospheric absorption. The spectrum with turbulent effects
shows a higher PSD drop for frequencies higher than 2 MHz. For



Fig. 12. DOASPL of the bridging model for tornadic broadband signal propagation.

Table 2
Statistical results of the plane N waves in [34].

s (ls) D p (Pa) T (ls)

mean r mean r mean r

no turb. 0.506 0.010 651.4 6.0 10.642 0.191
turb. 1.450 1.450 620.7 228.4 11.317 1.286
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Fig. 13. Comparison with the experimental results of Lipkens and Blackstock [34] .

Fig. 14. Absorption coefficient distribution in frequency and altitude domain.
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example, a 10 dB additional PSD drop is observed at 4 MHz due to
turbulent effects. Compared to the experimental data in [34], our
numerical results show similar behaviors in peak pressure drop
and rise time increase.
10
Finally, we examine an atmosphere with varying TKE and Lv .
Variations are governed by the model of Lukin [32] in an altitude
range from 0 to 20 km. Fig. 14 shows one representative example
of the turbulent attenuation distribution from 0 to 20 km. The dark
blue line represents the maximum absorption and also represents
the height of maximum absorption for each frequency. The depen-
dency of the absorption coefficient relative to frequency is clearly
observed as the overall trend of the coefficient increases from
10�10 dB/km to 10�1 dB/km with increasing frequency from 0.2
to 1000 Hz at 2 km altitude. For f > 20 Hz, the absorption
decreases with increasing altitude monotonically. Also, at

decreases with increasing altitude monotonically. This is due to
the combined effect of increasing Lv and decreasing TKE as altitude
increases. For infrasound frequencies (less than 20 Hz), the
maximum turbulent absorption altitude increases with decreasing
frequency, and this maximum occurs near 8 km at 0.25 Hz.

5. Summary and Conclusion

In this paper, a bridging model of acoustic-turbulent interaction
for long-range propagation is introduced. A characteristic
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turbulent wave number, kl, represents the turbulent integral length
scale. For scattering wavenumbers larger than kl, the bridging
model converges to Ostashev’s scattering model. For scattering
wavenumbers smaller than kl, the refraction model replaces the
scattering model. The refracted cross-section rr is expressed by
rv ; Lv , and partial integration of the turbulence spectrum E kð Þ. A
sine function bridges the refraction model and scattering model
by matching its maximum value to the maximum cross-section.

A series of wind tunnel propagation experiments are conducted
in the NSF UFBLWT to validate the newly developed bridging
model. The experiments successfully captured the turbulent atten-
uation. The peak amplitude of the received signal varies from
0.22 Pa to 0.084 Pa, with the mean wind tunnel speed from 0 to
8.56 m/s. These results showed that both Ostashev’s and the new
model make excellent predictions. The new model successfully
accounts for inhomogeneous turbulent boundary layers with rough
terrains.

A series of numerical studies are conducted to investigate the
new model’s characteristics and its influence on the propagation
of signals. The TKE and Lv ’s effects on predictions are presented,
where the TKE primarily affects the magnitude of at , and Lv alters
at distribution in frequency. The OASPL of the received tornadic
signal is used to analyze the overall influence of the bridging
model. Both TKE and Lv contribute to a larger decrease in OASPL.
By implementing a realistic turbulent atmospheric model with
the bridging model, a maximum absorption line is observed within
the at contour.
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