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Introduction

Infrasound long-range propagation in atmosphere has
been studied for the objects like tornado and
explosion

The acoustic-turbulent interaction has been studied by
many works such as Lighthilll"l, Tartaski?!, and
Ostashev and Wilson!3!

A combination of acoustic ray tracing, generalized
Burgers’ equation, and turbulent scattering model

A series of wind tunnel tests are conducted to validate
the newly-developed model

Field tornado recording team from our TTU partner.

[1] Lighthill, M. J., “On the Energy Scattered from the Interaction of Turbulence with Sound or Shock Waves,” Mathematical Proceedings of the Cambridge Philosophical Society,Vol. 49, No. 3, 1953,
pp. 531-551
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Ostashev and Wilson Scattering Modell'!

Ostashev and Wilson’s model is derived by using the Helmholtz-type equation
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The model can capture the effects of humidity and temperature fluctuation

Obtaining scattering intensity is
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Here we introduce the cross section ¢ (0) = o(n —ny) =

The final equation for the scattering cross section is
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Brldglng Model The convective volumel! is

dog Cross Section by Scattering
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[1] Gainville, O., “Modeling of Atmospheric Propagation of Infrasound Waves by the Method of Nonlinear Ray Tracing,” Ph.D. thesis, Ecole
Centrale de Lyon, 2008.



Bridging Model
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The turbulent refraction cross-section o, is defined as -
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where A is a coefficient to be determined, here we use 1
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Experimental Validation

Ceiling
x=20m x=16m x=10m x=2m
T {} {} {} {}
Ceiling Rail
Inlet FlOW TCP supporting rake, ]
(wn) atx =20, 16, 10,2 m
o ——
o v—
=
1 Qe ——
8 2 TCP, at z, = 170, 590, 740, 900 mm for x = 2, 20 m
| — / at z, = 170, 490, 640, 800 mm for x = 10, 16 m
7 —
o S[ie;l;er = Ground Element
5 — (x=22m) (EH) Microphone
—) Total Propagation Distance =22 m (x=0) EL=170,
- -~ - - -~"-~"-—"-""-—"—""="=-"-"-"—""=-"°=~"""=""="="—"7"=°=="7"°=°= — -— == 590, 740,
— ZA]| 900 mm
Fl E Terraformer (Fetch Length = 18.3 m) o X Lo
oor [« g . 1 Origin of the
coordinates

Configuration and experimental procedure of the UFBLWT experiments

Reflections are captured by a linear wave propagation solver
Turbulent attenuation is observed in both experimental data and numerical prediction

The predictions of the propagation solver is compared with the experimental data
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Experimental Validation

120 100
100 _ bridging model 80 {16 12 Ostashev’s model

Table 2. The validation cases
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Statistics of the error with the bridging model and Ostashev’s model

The overall prediction of the two models agree with each other with
error of 22.45% and 24.32%, respectively.

By removing the outliers, the accuracy of the bridging model is 11.9
%, while the Ostashev’s model is 12.67 %.

Case | TKE L, Case | TKE L,
#_ |(m?/s?)] (m) #_ |(m?/s?)] (m)
1 0.29 | 1.89 13 035 | 1.78
2 0.49 | 2.55 14 0.64 | 2.40
3 0.75 | 3.17 15 0.96 | 2.98
4 0.25 | 2.00 16 0.27 | 2.01
5 0.47 | 2.70 17 0.51 | 2.70
6 0.67 | 3.38 18 0.68 | 3.40
7 0.23 | 2.04 19 0.23 | 2.05
8 0.40 | 2.76 20 041 | 2.78
9 0.56 | 3.42 21 0.60 | 3.44
10 0.18 | 2.06 22 0.19 | 2.08
11 0.32 | 2.80 23 033 | 281
12 0.47 | 3.48 24 0.47 | 3.49
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Sensitivity Analysis
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Sensitivity analysis of the shock wave
propagation case
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Sensitivity analysis of the tornadic
infrasound propagation case

Turbulent parameters, g, and L,,, are compared with other propagation parameters

In both analysis cases, the turbulent parameters are as sensitive as others
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Model Behavior Analysis
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Absorption Coefficient (dB/km)
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The turbulent attenuation coetticient contour with varying The turbulent attenuation coefficient contour with varying
TKE integral length scale

The turbulent attenuation coefficient increases monotonically with increasing TKE
There is a maximum turbulent attenuation which is determined by the length scale

Absorption Coefficient (dB/km)
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Model Behavior Analysis :
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Turbulent Attenuation in Realistic Atmosphere
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Fig 43. Turbulent kinetic energy and length Fig 44. Abst?rptlon coeffcllcgir}t d&StI‘lbuthl’l in
scale predicted by Apsley's model. requency and altitude.

= Arealistic atmospheric turbulent model by Apsley is employed

*  Turbulent attenuation in model atmosphere is obtained 1



Tornadic Infrasound Long-Range Propagation

1.5

Amplitude (Pa)

o
o

T T T T T T T T 70
60 r
50
N
s 40
~—
an
= 301
N—
A
N 20+
Ay
10
— — Without turbulence v i —V\_IithOL_Jt'turbuIence
[ |—— Lighthill's model T 0  |[—— Lighthill's model
== Bridging model — Bridging model
1 1 | 1 | | | | _10 L L FE S R | H H R |
0 1 2 3
0.1 015 02 025 03 035 04 045 10 10 10 10
t (s) f (Hz)
Turbulent kinetic energy and length scale Absorption coefficient distribution in frequency and
predicted by Apsley's model. altitude.

A realistic atmospheric turbulent model by Apsley is employed
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