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A tornado creates infrasound that propagates over long distances. Triangulation of the

formation position via infrasound measurement will allow for early warning systems to be

developed. Infrasound propagation is altered by atmospheric turbulence, which must be

accounted for to detect tornadoes. A joint program of numerical simulation, wind tunnel

experiment, and field-test program is conducted to accurately model the alteration of infrasound

propagation. We develop a numerical prediction solver for tornadic infrasound propagation in an

inhomogeneous moving medium, which is a representative model for the effect of atmospheric

turbulence on long-range propagation. The ray tracing method and generalized Burgers’ equation

are implemented within a solver to capture the effects of nonlinearity, refraction, attenuation, and

dispersion. The geodesic element method is employed to account for the effects of the wind on

nonlinearity via a windy coefficient. We demonstrate the numerical approach with examples

consisting of tonal and broadband infrasound signals within several regions of the United States.

The turbulent scattering effects are integrated into the solver as attenuation via a newly developed

scattering coefficient, which is the major innovation of the presented approach.

To determine the turbulent scattering coefficient, a series of acoustic propagation

experiments are conducted in the University of Florida Boundary Layer Wind Tunnel. A synthetic

noise signal propagates through the UFBLWT to simulate infrasound propagation in the turbulent
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atmosphere. The wind tunnel speed and roughness elements are varied to simulate different

altitudes and terrains. The fluid dynamic and acoustic data are obtained by three Cobra probes

and an inflow microphone-speaker acoustic system, respectively. The effect of turbulent

attenuation on acoustic wave propagation is evaluated by analyzing the signal variation and

turbulent statistics. The turbulent-acoustic interaction is observed as an attenuation effect. A new

scattering model is modified based upon the experimental data and implemented into the

numerical solver, which provides the generalized Burgers’ equation solver with the capability of

capturing the turbulent scattering effects. Therefore, the solver can capture the effects of

refraction, nonlinearity, attenuation, dispersion, and turbulent scattering to precisely predict the

infrasound propagation in the atmosphere.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

As a severe weather phenomenon with powerful destructive energy, tornadoes cause huge

losses in life and property. Figure 1-1 is an aerial photo of the St. John’s Regional Medical Center

after a catastrophic tornado that struck Joplin, Missouri on May 22nd in 2011. The entire duration

of this tornado was 34 minutes long, and the highest wind speed exceeded 200 miles per hour

(mph). This deadly tornado flattened most of the city, caused 162 fatalities, 1150 injuries [1], and

$2.8 billion insured losses [2]. Along with the Joplin tornado, the tornadoes in 2011 killed 550

Figure 1-1. Aerial view of the St. John’s Regional Medical Center campus; Photo courtesy of
U.S. National Oceanic and Atmospheric Administration.

people and caused more than $28 billion in property damage [3]. The United States contains the

highest tornado-prone region, which is also well-known as “Tornado Alley”. The area defined by

the term “Tornado Alley” is approximately located between the Rocky and Appalachian

Mountains [4], extending from northern Texas, through Oklahoma, Kansas, Nebraska, Iowa, and

South Dakota. On average, there are 800 tornadoes occurring in the United States every year,

resulting in 80 deaths and 1500 injuries annually [5]. The state by state fatality rates are shown in

Fig. 1-2, in which the southeastern United States is also a severely affected region [5].

A similar event is called tornado outbreak, which mainly happens in the “Tornado Alley”

region. A tornado outbreak is usually caused by a synoptic scale weather system, which produces
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Figure 1-2. Annual average death rate from tornados; from U.S. National Oceanic and
Atmospheric Administration.

multiple tornadoes within a short period of time (usually less than 24 hrs) [6]. In the last 50 years,

there were more than 100 recorded tornado outbreaks that struck the United States. The following

are particular statistics of four famous outbreaks. From April 3rd to April 4th in 1974, the “super

outbreak”, generated 148 tornadoes, with 48 killer tornadoes resulting in 335 fatalities, and more

than 6000 injuries [7]; On May 3rd in 1999, the Oklahoma–Kansas tornado outbreak formed 69

tornadoes, 10 of them were supercell tornadoes [8], resulting in 46 fatalities and 665 injuries; On

April 27th in 2011, 199 tornadoes from another “super outbreak” killed 316 people and injured

more than 2700 [9]; Recently, in 2020, the “Easter tornado outbreak” struck the United States on

Easter Sunday and Monday, with a total number of 140 tornadoes hitting 10 states, which caused

32 fatalities. The statistics above demonstrate that the tornadoes or tornado outbreaks are deadly

threats to life and property of people, which necessitates the continuous study of tornadoes and

tornado prediction in the meteorology community. Recently, the acoustic characteristics of the

14



tornado caught researchers’ attention as a potential tornado detection and formation prediction

method.

1.2 Objective and Scope of Proposed Work

In this dissertation, the author presents an acoustic tornado prediction method by simulating

the tornadic infrasound propagation with techniques including acoustic ray tracing, generalized

Burgers’ equation, turbulent scattering models, and wind tunnel experiments. The ultimate goal

of the presented work is to achieve a fast-responding infrasound propagation simulation, which

includes realistic effects of turbulence, to assist the construction of a real-time tornado warning

system.

A numerical solver is developed to simulate tornadic infrasound propagation in the

turbulent atmosphere. To obtain the accurate infrasound signal at an observer, the physical effects

involving refraction, attenuation, dispersion, nonlinearity, and turbulent scattering are required to

be modeled precisely. The acoustic ray tracing method of Gainville [10] is implemented in the

numerical solver to capture the refraction effect. Atmospheric models are employed to simulate

realistic temperature and wind profiles in atmosphere. To capture the effects of nonlinearity,

attenuation, and dispersion, the generalized Burgers’ equation is employed in the numerical

solver.

To capture the turbulent scattering effect, an improved generalized Burgers’ equation

propagation method with an modified turbulent scattering model is developed, which is validated

by a series of wind tunnel experiments. The turbulent-acoustic interaction is observed as an

attenuation effect in the wind tunnel experiments. The turbulent statistics of the wind tunnel are

measured and analyzed to modify the turbulent scattering attenuation model.

In this dissertation, both the numerical solver and the wind tunnel experiments are

discussed. The major objectives are:

• Improved Turbulent Scattering Model: Introducing the turbulent effect into the
generalized Burgers’ equation is the major innovation of the solver. To capture the turbulent
effects of the infrasound propagation, a new turbulent scattering model is improved from
Ostashev’s scattering model [11]. By bridging the scattering model with a turbulent
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refraction model (see Section 2.4), the new model is developed and validated by the wind
tunnel experiments.

• Acoustic Ray Tracing with Meteorology Data Portal: To capture the ray path connecting
the tornado infrasound source and the observer, the acoustic ray tracing method is adapted
from Gainville [10]. The computational domain of the acoustic ray tracing solver is capable
of importing weather information, which allows the solver to read real-time temperature,
humidity, and wind velocity data as input arguments. The grid system of this computational
domain is demonstrated in Section 2.2.2, and two atmospheric models (HWM93 [12] and
NRLMSISE-00 [13]) are employed to generate atmospheric parameters.

• Modified Generalized Burgers’ Equation Solver: The generalized Burgers’ equation is
used to capture the effects of the nonlinearity, attenuation, and dispersion of the tornadic
infrasound propagation. The generalized Burgers’ equation solver is modified from Miller’s
[14] work. The turbulent scattering model is treated as attenuation and integrated into the
generalized Burgers’ equation (detailed derivation see Subsection 2.2.3).

• Experimental Validation and Modification: While there are many theories and models
about the turbulent scattering effect [15, 16, 17, 18, 19], for long-range infrasound
propagation, additional experiments are required to validate and modify our newly
developed model and previous models. A unique acoustic propagation experiment is
conducted at the University of Florida Boundary Layer Wind Tunnel (UFBLWT). Collected
data is employed to validate and modify the turbulent scattering attenuation model. The
experimental data is presented in Chapter 4.

The first three objectives listed above are integrated as a propagation solver for noise

propagation from a tornado. By reading the real-time meteorology data, the solver is capable of

calculating the arrival tornadic infrasonic waveform at monitor stations, which can be used as a

tornado-formation evidence for the early warning system. Furthermore, the solver is capable of

predicting other general acoustic propagation in turbulent medium, such as explosion infrasound

and sonic boom propagation.

In the remaining portion of this chapter, related background information is introduced as

follows. Section 1.3 is an introduction about current tornado damage rating and warning systems.

Section 1.4 presents investigations about tornado infrasound. Section 1.5 introduces the physical

effects during infrasound propagation. Section 1.6 discusses the numerical propagation models.

Section 1.7 is a summary of atmospheric models. Section 1.8 outlines the structure of this

dissertation and presents overviews about the content for each chapter.
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1.3 Current Tornado Damage Rating and Warning System

To analyze the damage caused by a tornado, a damage rating system is required. In 1971,

Dr. Tetsuya T. Fujita invented the Fujita scale rating system based on the peak wind speed of a

tornado [20], which is also known as the F scale. The original F scale related the wind speed to

the actual structural damage. For the F0 category, the peak wind speed is in the range from 40 to

72 mph, while the tornado-related damage is slight, such as broken tree branches and damaged

sign boards. The F1 and F2 category tornadoes are capable of damaging the houses’ structure

with the peak wind speed in the range of 73 to 112 mph and 113 to 157 mph, respectively. When

the F scale reaches F3, the tornado is considered severe. When the peak wind speed ranges from

158 to 206 mph, an F3 category tornado can tear off the roofs and some walls of a

well-constructed house. The F4 category tornado can cause devastating damage with wind

speed’s range from 207 to 260 mph. Well-constructed houses can be leveled and cars can be lifted

from the ground by an F4 tornado. The F5 category is the most intensive tornado within the F

scale. With 261 to 318 mph winds, the F5 tornado can lift off house foundations and carry them

for considerable distances. The F scale is widely used in the United States after Dr. Fujita

invented it. However, there is an uncertain description: the well-constructed house. To make the

rating system more accurate, the Fujita Scale Enhancement Project was conducted during 2000 to

2004 at the Wind Science and Engineering Research Center at Texas Tech. University [21], and

officially released and implemented in the United States in 2007 [22]. Relative to the original

Fujita scale, the Enhanced Fujita scale is constructed with a series of empirical investigations to

determine the relation between the wind speed and the actual damage. Figure 1-3 is a virtual

demonstration of the different EF scale’s damage. During the super outbreak on April 27th in

2011, there were 19 EF3 (136–165 mph) tornadoes, 11 EF4 (166–200 mph) tornadoes, and 4 EF5

(> 200 mph) tornadoes. To avoid the damage by these devastating tornadoes, the timely tornado

prediction is demanded by the public. This resulted in the investigation on the new method to

forecast tornadoes since 1948 [23].

The tornado warning system is a complex chain of events [24] [25]. The complete
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Figure 1-3. Gradations of damage ranging from EF0 (in upper-left corner) to EF5 (in lower-right
corner). EF-scale ratings have been assigned to select one- and two-family houses;
image courtesy of T. Marshall.

sequential steps of the entire warning system is started with tornado formation prediction,

followed by detection, warning decision, dissemination, and public warning [26]. The prediction

and detection play essential roles and initialize the reaction of the warning system.

Modeling with observational data is the mainstream method to predict tornado formation.

With observational analysis and mesoscale numerical simulations, Egentowich et al. [27]

successfully identified a series of dynamic precursors with 6 to 84 hours prior to a major tornado

outbreak. As the computational technology advanced rapidly, high-resolution forecasts improved

the prediction of severe weather [28]. With increasing frequency of tornado reports and data,

machine learning technology is also used to forecast tornado formation [29].

Although numerical models [27, 28, 29] can predict a tornado in advance by approximately

24 hours, we still need to know when a tornado is initiated. The second step of the tornado
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warning sequence, tornado detection, discovers the formation of the tornado by observing

real-time meteorology information. Fortunately, with the development of the Doppler radar

system, the tornado detection techniques have been developed significantly in the last century

[25]. Certain characteristics of tornadoes were discovered with this new technology. In 1953,

Stout and Huff [30] discovered the hook echoes, a tornadic-associated phenomenon, for the first

time in their radar observation during an Illinois tornado outbreak. These hook echoes and

associated rear-flank downdrafts were numerically simulated by Markowski [31]. Other features

like horizontal wind shear also can be used as an early indicator of tornado formation [32]. To

improve the radar coverage across the United States, the Weather Surveillance Radar-1988

Doppler network (WSR-88D) was constructed [33, 34]. Tornado detection algorithms based on

WSR-88D were developed, like the WSR-88D mesocyclone detection algorithm (MDA) [35] and

tornado detection algorithm (TDA) [36]. The MDA’s performance for vortex detection and

location were promising, while the TDA improved the probability of detection from 3% to 43%.

Besides radar detection, reports from individuals in the field can be timely and critical. Programs

like SKYWARN used trained “storm spotters” in the mid-1960s [23]. Similar programs have

been useful for the tornado warning system, especially in the era of the Internet.

The tornado warning system has been greatly improved through the development of

prediction models and detection techniques. The probability of detection has reached 90% [37]

with current detection algorithms. However, there are some challenges for the current warning

system. Prediction models rely on numerical simulations, where their consistency depends on the

discretization technique and grid point spacing. For the prediction model, the computational

domain and time-step size are directly related to the quality of the numerical simulation. To fully

resolve the subgrid turbulence, the grid size must be within the order of 100 m [38], which is a

liberal estimate as the smallest scale structures can be much smaller at lower altitudes. This

implies an extremely expensive computational cost to model state-wide regional forecasts. Since

most of the prediction models are designed for tornado outbreak forecast, there are few models

for single tornado events, which make the accurate prediction of a single tornado hard to achieve.
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Although current detection technology can provide the public with real-time tornado

observations, the public still needs an earlier warning system to get prepared. By considering

current challenges and public demand, the concept of the “warn on forecast” is invented by

Stensrud et al. [39]. The goal of the “warn on forecast” system is to provide a zero-to-three-hours

short-term warning system based on observational detection and real-time numerical models. To

meet the requirements of the “warn on forecast,” perhaps acoustic features of tornado formation

are the solutions to fill the blank of the final 3-hour warning in the system. The discovery of

tornadic infrasound by Georges [40] is promising for the infrasound tornado prediction system.

As a result of multiple findings in tornadic infrasound (see Section 1.4 for details), the Physical

Sciences Division of the Earth Systems Laboratory and the National Weather Service Forecast

Offices of the National Oceanic and Atmospheric Administration (NOAA) are working on an

Infrasonic Network (IS Net) program to test the infrasound prediction method

[41, 42, 43, 44, 45, 46]. With this IS Net, a potential warning system with the author’s prediction

solver is feasible for this ”warn on forecast” system.

1.4 Tornado Infrasound

In 1960s, the Geoacoustics Group of NOAA’s Wave Propagation Laboratory started

investigating traveling low-frequency pressure variations related to thunderstorms and severe

weather [47]. In 1968, Bowman [48] discovered the relation between a class of slow-traveling

low-frequency barometric-pressure waves and severe weather phenomena, and he also concluded

that those waves were associated with some strong convectional severe weather in Washington

DC. Bowman and Bedard [47] successfully measured the infrasonic pressure variations at the

Earth’s surface using microphone arrays located at thousands of kilometres from the

severe-weather disturbance in 1971. In 1973, Georges [40] reviewed previous research and

confirmed the infrasound-severe weather relation with a case study of one storm, which was

observed with both Doppler radar and an infrasonic microphone array.

In the 2000s, more evidence was discovered related to tornado infrasound. Akhalkatsi and

Gogoberidze [49] characterized the tornadic infrasound through an equivalent source by using
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Lighthill’s acoustic analogy [50]. Schecter et al. [51] conducted numerical simulations of the

adiabatic generation of infrasound by tornadoes, and Akhalkatsi and Gogoberidze [52] analyzed

the spectrum of simulated infrasound sources related to a tornado. Besides numerical simulation

of tornadic infrasound, acoustic observations of tornadoes (such as Elbing et al. [53] and Bedard

[54]) presents more evidences regards to predicting tornadoes via acoustic detection. Based on

recorded tornado noise, a mathematical model to represent the tornadic sound pattern was

developed by Frazier et al. [55]. This mathematical model [55], and Markowski’s [31] numerical

simulation are employed by the author to generate the tornadic infrasound source signal.

1.5 Physical Effects in Acoustic Propagation

Once the tornado infrasound source is determined, the physical effects during noise

propagation must be studied and modeled to predict the final received infrasound signal. The

physical effects of long-range infrasound propagation are nonlinearity, attenuation, dispersion,

refraction, and turbulent scattering. These effects are discussed in the following subsections.

1.5.1 Nonlinearity

The nonlinear effect is a phenomenon where the amplitude or the frequency of the pressure

disturbances is high enough to affect the steepening of the disturbances [56]. Due to the

nonlinearity, instead of the constant local speed of sound c, the propagation speed becomes

dx
dt

= c±βu, (1-1)

where dx
dt is the total speed of the wave, x is the location of the wave front, c is the local speed of

sound, u is the perturbation speed, β is the nonlinear coefficient, and is equal to γ−1
2 +1, where γ

is the heat capacity ratio of the medium. The nonlinear coefficient, β , is dependent on the local

heating and convection effects [57].

Due to the local convective effect, the acoustic wave is carried by fluid flows, which are

already in motion caused by acoustic wave. The actual propagation speed is c ∝ u. The local

heating effect is shown in Fig. 1-4. The local temperature perturbation caused by the sine wave is

shown as the black line. Since the speed of sound c ∝
√

T , and the gas at the peak of the waves is
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Figure 1-4. Nonlinearity caused by the local heating effect.

compressed and warmer than the ambient air, the speed of sound at the peak is the highest.

Conversely, the speed of sound at a trough is the minimum. If the nonlinearity accumulates along

the propagation path, the discontinuities will eventually be generated, which is also known as a

shock wave as shown as the red dash line in Fig. 1-4. As a consequence of the nonlinear effects, a

shock wave, or a “N” wave can be understood from the spectrum point of view as the generation

of harmonics. The energy of the original frequency is transported into the harmonics, which

makes the nonlinear distortion influence the amplitude of the “N” wave [10]. Besides the direct

amplitude drop by distortion, an indirect attenuation is caused by the nonlinear effect because the

higher frequency has stronger attenuation [58].

Nonlinear propagation is difficult to model because of the discontinuity. Direct Numerical

Simulation (DNS) can model shock propagation by numerically solving the Navier-Stokes
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equations with a shock capturing scheme. However, these techniques are extremely expensive in

terms of computational resources. Sabatini et al. [59] simulated infrasound propagation with a

three dimensional DNS with a grid point spacing of 90 m, and the calculation of a 200 km cubic

domain cost 1600 s with 144 Nvidia M2090 T20A GPUs. To make the simulation faster, there are

two mainstream approaches : nonlinear dominated strong shock theory and nonlinear corrected

weak shock theory. The strong shock is validated for the cases with p′/p∞ > 1 while the weak

shock is validated for the cases with p′/p∞ << 1, where the p′ is the acoustic perturbation and p∞

is the environmental pressure [56]. With the strong shock approach, Besset and Blanc [60]

showed shock wave refraction due to the increasing stratospheric temperature, which were not

captured by the linear acoustic theory. Baskar and Prasad [61] proposed an approach combining

the strong shock and weak shock techniques to investigate sonic boom propagation. The strong

shock approach mainly focuses on nonlinear refraction. However, for long-range infrasound

propagation, the weak shock assumption is made and the nonlinear diffraction is ignored because

of the geometric spreading. For weak shock propagation, the generalized Burgers’ equation is

able to accurately predict the propagation with effects of nonlinearity (See Section 1.5.1),

absorption and dispersion (See Subsection 1.5.2), and geometric spreading. Besides the

generalized Burgers’ equation, the parabolic equation is also capable of capturing the nonlinear

and diffraction effects [62]. A classic nonlinear parabolic propagation equation is the

Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation [63]. More details of the KZK are discussed

in Section 1.6. The nonlinear infrasound research is often conducted for powerful explosion

investigations [64, 65]. In Blanc and Rickel’s [66] study, significant nonlinearities have been

observed by a pulsed sounding experiment 38 km from a 4800-kg ammonium nitrate and fuel oil

(ANFO) explosion.

For infrasound propagation, there are three major reasons to include the nonlinear effect in

modeling. The first, the sources of the infrasound are usually powerful. The infrasonic sources in

the atmosphere are always associated with the events such as nuclear explosions, powerful

chemical explosions, volcanic eruptions, and supercell tornadoes. The acoustic power generated
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by a tornado can reach the level of 107 watts [67]. The second, the propagation distance of the

infrasound are long, usually in order of 100 km. As the nonlinear effects are cumulative with the

propagation distance, the final received signal can be distorted heavily by the nonlinearity.

Finally, the third, when the acoustic wave travels to high altitude regions, the density of air drops

significantly, which amplifies the nonlinear effect, since u/c is larger with decreasing c [60].

1.5.2 Atmospheric Attenuation and Dispersion

Attenuation and dispersion are two key features that occur during infrasound propagation.

Attenuation also can be modeled as atmospheric absorption, and changes both the energy and

waveform of the infrasound. There are three mechanisms of atmospheric attenuation: classical

absorption, molecular relaxation, and diffusion [68]. The classical absorption is caused by energy

transfer from the kinetic energy of molecules in the sound wave to the random kinetic energy of

the molecules in environment [68]. The relaxation is associated with the redistribution of

translational or internal energy of the molecules. The relaxation can be divided into two

absorption mechanisms: rotational absorption and vibrational absorption. The rotational

absorption reflects the imbalance between rotational movements and translational movements,

while the vibrational absorption is associated with the internal vibrations of the molecules [69].

The diffusion is caused by the mass and thermal diffusion, which generally is too small to be

observed in measured data [68]. Sutherland and Bass [68] proposed a state-of-the-art model by

integrating all the absorption mechanisms mentioned above. With this empirical model, the

attenuation coefficient can be obtained up to an altitude of 160 km. As shown in Fig. 1-5, the

absorption coefficient increases exponentially with rising altitude. In some extreme cases, the

absorption difference in the stratosphere and thermosphere can lead to a mismatch between the

simulated and observed results [71].

Besides absorption, dispersion is another physical phenomenon that occurs during acoustic

propagation. Dispersion alters the propagation speed via the signal’s frequency. This is unlikely

to happen for lower (< 100 km) altitude atmospheric propagation with low frequency (< 10 Hz).

However, when the frequency of the signal is high, and the molecular mean free path length is
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Figure 1-5. Example of total absorption coefficient at 0.4 Hz, with contributions from individual
loss mechanisms shown separately [70].

large enough to make the Knudsen number approach 0.1, the dispersion mechanisms starts to

increase the speed of the waves [58]. Figure 1-6 illustrates these altitude-dependent dispersion

effects for different frequencies.

The absorption and dispersion mechanisms affect the wave form of the signal significantly,

so a representative model of these mechanisms are essential to investigate the infraound

propagation. Currently, the influence of dispersion on observed thermospheric signals is still an

open research issue [70]. When dealing with high altitude acoustic propagation, the most popular

and widely accepted choice to model these mechanisms is the Sutherland and Bass [68] model,

which is employed in the present research.
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Figure 1-6. Static sound speed profiles that include the effects of dispersion over a range of
frequencies.

1.5.3 Refraction and Shadow Zone

In geometric acoustics, a shadow zone is a well-known concept that defines regions where

no acoustic ray passes [70]. The formation of the shadow zone is caused by refraction effects,

which change the direction of the propagating wave front.

In ocean acoustics, acoustic refraction is investigated widely with the ray tracing method

[72]. The refraction is caused by the vertical variation of the speed of sound, which is modeled by

Snell’s law [73]. In the 1990s, Dushaw et al. [74] discovered the shadow zone between a depth of

500 to 1000 m in the North Pacific, with a source located on Pioneer Seamount off the coast of

California. Later in 2004, Uffelen et al. [75] confirmed the existence of the North Pacific shadow

zone at ranges of 500 km and 1000 km from the source.
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Sonic boom refraction and shadow zone studies started as early as in World War I, with the

sonic boom generated by the gun shell [76]. As the supersonic aircraft was developed, the shock

wave propagation in the atmosphere caught more attention. Guiraud [77] developed a model of

the “N” wave propagation, which incorporates refraction in account with a moving nonuniform

medium. With Guiraud’s [77] study, Hayes and Runyan [78] successfully implemented the model

within a numerical solver. Friedman et al. [79] proposed a model to simulate the sonic boom

atmospheric propagation with consideration of the refraction effect. In 1966, Maglieri et al. [80]

investigated the atmospheric refraction effects on sonic boom propagation with experiments.

Coulouvrat [81] proposed a nonlinear geometrical theory of diffraction to predict the sonic boom

propagation in shadow zone. Today, the refraction and shadow zone research is a mature study,

and multiple numerical solvers are able to capture these effect (see [82, 83, 84] as examples).

1.5.4 Turbulent Scattering

Similar to an acoustic wave, turbulence is another type of disturbance in fluids. The

difference between these two disturbances is that the noise is a propagating compressive wave,

while the turbulence is a rotational disturbance [85]. When the acoustic wave encounters

turbulence, the spatial fluctuations of the speed of sound and the variation of the convection speed

can refract the acoustic wave in other directions, which statistically, is the scattering phenomenon

[86].

Ostashev and Wilson [15] developed an analytical model to simulate the propagation

through an inhomogeneous anisotropic turbulent field with temperature and velocity fluctuations.

Blanc-Benon et al. [16] implemented the model numerically with the KZK propagation equation

and analyzed their results with experimental data. Lipkens [46] validated the model of Pierce [17]

with sonic boom experiments by comparing the rise time of the mean waveform. Piacsek [87]

investigated and validated the folding and focusing effect of the turbulence on sonic boom

propagation by using Pierce [17]’s model. For sonic boom propagation, the distance of

propagation is approximately 10 to 50 km, which is much smaller compared with the typical

infrasound propagation distances. The performance of these models for long-range infrasound
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propagation are not as satisfactory as for sonic boom propagation. The model of Goldreich and

Kumar [18] simplified the turbulent scattering by using the mass and velocity of the turbulent

structures to evaluate the turbulent scattering effect. Brown and Clifford [19] developed a

turbulent scattering attenuation model by using the sound beam method. In the present model, the

turbulent scattering is modeled by improving the Ostashev and Wilson’s [11] model (see details in

Section 2.3). The coefficient predicted by Lighthill’s model [85] revealed that the

acoustic-turbulent attenuation can be related to turbulent kinetic energy and length scale. In 1967,

Tatarski [88] presented his turbulent scattering model, which was able to predict the directional

scattering via a turbulent wavenumber spectrum. Ostashev and Wilson [11] improved Tatarski

[88]’s model, which provided the model with the ability to capture the effect of inhomogeneous

humidity. Our model leverages Ostashev and Wilson [11]’s model and incorporates a turbulent

refraction model to account for the large-scale turbulent effects. Techniques from scattering

theory [89] are employed to capture the dispersion coefficient.

1.6 Numerical Propagation Models

Long-range propagation of acoustic waves can be modeled via two major approaches, the

parabolic equation method and the generalized Burgers’ equation combined with acoustic ray

tracing [70]. In this section, these two numerical techniques are introduced and compared.

One popular parabolic approach uses the KZK equation [90]. Blanc-Benon et al. [16]

numerically evaluated the KZK equation to analyze the nonlinear distortion caused by the

turbulence in the atmosphere. They found that high intensity turbulence can sufficiently enhance

the nonlinear distortion. Stout et al. [91] showed how turbulence can affect an N-wave by

analyzing the perceived level (PL) and the indoor sonic boom annoyance predictor metrics [92].

Aver’yanov et al. [93] investigated propagation in moving inhomogeneous media by using an

extended KZK solver, which accounts for diffraction, nonlinearity, absorption, and scalar

inhomogeneities. The parabolic equation method can capture phenomena caused by turbulence

by solving the governing equation in the entire domain.

However, parabolic equation methods have some significant drawbacks. To resolve
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turbulent effects, a computational domain with many grid points is required, which has

considerable computational expense. Compared with the parabolic equation, the generalized

Burgers’ equation solves for the propagation along a one-dimensional ray path, which requires

relatively less computational resources and can be applied to three-dimensional domains with the

ray tracing [70]. Crighton [94] and Blackstock [95] described the generalized Burgers’ equation,

and how it is used to model nonlinear acoustic propagation. One successful numerical solver was

developed by Saxena et al. [96] to solve the generalized Burgers’ equation in the frequency

domain. Lee et al. [97] improved the solver of Saxena et al. [96] by applying a Lanczos filter to

eliminate the Gibbs’ phenomenon. With this numerical generalized Burgers’ equation solver,

Miller [14] investigated nonlinear effects of propagating waves in the context of an acoustic

analogy. In the present approach, the generalized Burgers’ equation is modified with a turbulent

scattering attenuation coefficient developed from Ostashev’s [11] model. The detailed derivation

is shown in the Chapter 2.

Acoustic ray tracing is widely used in underwater [98], architectural, and atmospheric

acoustics. The wind speed in the atmosphere at high altitude can easily reach 80 m/s. This alters

the propagation characteristics of the infrasound from tornadoes relative to a quiescent

atmosphere. The effect is non-negligible for weather detection. Thus, a numerical ray tracing

method in the moving medium was developed by Hallberg et al. [82]. A general expression of

ray-acoustic intensity is derived by Thompson [83, 84]. In PCBoom, the ray tracing method was

implemented to successfully capture atmospheric effects on noise propagation by Plotkin et al.

[99].

Prediction of sound propagation through the atmosphere is highly dependent on the choice

of the atmospheric model. Refraction, attenuation, dispersion, and diffraction are considered as

major atmospheric effects for acoustic propagation [70]. By treating the atmosphere as a

multilayer medium, Pierces and Rad [100] showed that stratified wind and temperature causes

refraction. Attenuation and dispersion can be captured by employing atmospheric models such as

Sutherland and Bass [68] and Bass et al. [101]. The nonlinear and attenuation effects at high
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altitude were studied by Lonzaga et al. [102]. Averiyanov et al. [103] investigated diffraction with

a two-dimensional generalized KZK solver. Their results showed that the turbulent-related

diffraction phenomenon increases the mean shock rise time by almost 100%. Other factors such

as ground effects must be incorporated within the solver. We use the approach of Aumann et al.

[104] to integrate ground effects within the solver.

1.7 Atmospheric Models

1.7.0.1 Atmospheric Profiles

To analyze the atmospheric effects on the propagation, the profiles of the atmospheric

parameters, like wind speed, temperature, density, humidity, and volume fraction of the air

components, are necessary for the modelling of the nonlinearity, refraction, attenuation, and

dispersion effects. Drob et al. [12] developed the Horizontal Wind Model (HWM) that can

represent the mean horizontal wind speed at any location on Earth, which includes the velocity

vector. To obtain the local speed of sound along the ray path, local temperature and density are

required. NRLMSISE-00 model of Picone et al [13] is capable of simulating the density and

temperature of the atmosphere. Both HWM93 [12] and NRLMSISE-00 [13] models are

employed in present approach to generate the weather information in the propagation domain.

1.7.0.2 Turbulence in the Atmosphere

As the scattering caused by turbulence will be modeled as an attenuation effect for long

range acoustic propagation, it is necessary to investigate the distribution of turbulence within the

atmosphere. Methodologically, the atmosphere consists of the troposphere, stratosphere,

mesosphere, and thermosphere. For acoustic propagation, we focus on the altitudes under 160

km, where the turbulence distributions can be considered within four different regions: 0 - 5 km,

5 - 10 km, 10 - 20 km, and above 20 km. We will discuss these regions separately. At the end of

this section, the turbulent model used in the present approach is introduced.

Below the altitude of 5 km is the region called the atmospheric boundary layer (ABL),

which is widely studied in the meteorology and atmospheric science fields. The depth of the ABL

varies depending on terrains. Usually, the ceiling of the ABL is approximately one to two
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kilometers high [105]. At extreme conditions, such as a mid-summer day in the desert, the height

of the ABL can be 5 km [106]. At the top of the ABL is the inertial layer where the flow is

considered as a free-stream. The thickness of the inertial layer is around 20 – 50% of the mean

depth of the ABL [105]. Under the inertial layer, the characteristics of the boundary layer flow

shifts between the daytime and the night time. During the daytime, the sun-heated ground

generates a convective boundary layer (CBL). There is significant vertical velocity inside the

CBL, which contributes to entrainment that cannot be ignored when analysing the CBL

turbulence. As the consumption of the turbulent kinetic energy (TKE) due to the CBL

entrainment should be a fixed portion of the production of the TKE due to CBL entrainment.

VanZanten et al. [107] conducted a parameterization study to ascertain the TKE

consumption-production ratio by using a large eddy simulation (LES). Their results show that the

mean ratios of the consumption to production of TKE for the clear, smoked, and cloud-topped

CBL are identical, and the ratio is 0.43. After sunset, a thin nocturnal boundary layer named the

Neutral Boundary Layer (NBL) replace the CBL between altitudes of 0 to 400 m. Deardorff [108]

investigated the NBL stability and heat flux to analyze the turbulence characterization. The “eddy

tilts,” defined as the inclination from the vertical of the locations of the maximum turbulent

velocity isotachs’ curvature are observed. The horizontal component eddies were seen tilting

about 80o relative to the vertical direction, while the vertical component eddies tilted 60o on

average from the near ground to the top of the NBL.

Within the altitude interval of 5 km - 10 km, the turbulence is considered as the free

troposphere turbulence. Methods like flight measurements [109][110], radar techniques [111],

and even stellar scintillation [112] are used to characterize the turbulence within this region. A

milestone of flight measurements called the turbulent air motion measurement system (TAMMS),

was reached in 1996 by Barrick et al. [109]. The TAMMS was integrated into a Lockheed 188

Electra airplane (designated NASA 429) and calibrated with the tower flyby method and remote

flight maneuvers. Later in 2003, with a TAMMS instrumented P-3B airplane platform, Cho et al.

[110] collected and analyzed a dataset for the troposphere turbulence above the Pacific ocean area
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from 15oN to 45oN, with altitudes up to 8 km. They found that in the free troposphere, the ratio of

shear-produced turbulence to convective turbulence increased from roughly 2:1 for weak

turbulence to 3:1 for strong turbulence, while the ratio is about 1:1 for weak turbulence and 2:1

for strong turbulence in the CBL. Cohn [111] studied the turbulent eddy dissipation rate with two

independent radar measurements, and similar shapes and profiles of the dissipation rate were

found. The mean dissipation rate decreases exponentially from approximately 1 m2/s3 at 4 km to

the order of 10−4 m2/s3 at 8 km, while a slight increment to approximately 10−3 m2/s3 appeared

when the altitude increases from 8 km to 10 km. The method of Azouit and Vernin [112] is

another interesting technique that employed stellar scintillation data to analyze the turbulence.

They conducted a two-dimensional analysis on the turbulence strength relation to a double-star

scintillation. A turbulent layer observed at approximately 9 km high is considered as a

Kelvin-Helmholtz billow with the crest-trough amplitude about 600 m.

For the altitude range of 10 to 20 km, the gravity waves become a source of the turbulent

motion residing in the upper troposphere and lower stratosphere zone. Lindgren et al. [113]

studied the seasonal lower stratosphere gravity wave for different latitudinal regions with high

altitude balloons. The annual variation of gravity waves induced TKE is obtained at 75 hPa

pressure altitude. For the zero degree latitude, the maximum velocity oscillation is 5×10−5

m2s−2/(cycles/day) for 5-mins records and 3×10−2 m2s−2/(cycles/day) for 3-hrs records.

Bacmeister et al. [114] investigates the turbulence near at an altitude of 20 km with 73 ER-2

airplane flights. The velocity and temperature spectrum were obtained with the wavelength range

from 100 m to 1 km. The results show that for a wave length smaller than 3 km, the steeper

spectra with -3 power law was found rather than the standard -5/3 power law. Lilly and Lester

[115] also investigated the turbulence at an altitude from 13 km to 20 km with two instrumented

RB-57F airplanes. Their measurements of velocity and temperature variations and covariances

agreed with preliminary predictions of gravity wave theory. They also observed

mountainous-terrain-generated gravity waves, which are observed with wave length between

twenty and thirty kilometers.
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Studies of turbulence above 20 km heavily rely on radar data. The turbulence within the

upper-stratosphere and mesosphere is not continuously distributed in the vertical direction.

Instead, the turbulent layer is the major form of the turbulence in this region. Woodman and

Guillen [116] investigated the turbulent layers at altitude ranges of 10 to 35 km and 50 to 85 km

with their real time Droppler radar observations. By analysing the power level and spectral width,

they concluded that the turbulent layer thickness is of the order of 100 m. The velocity

fluctuations induced by the gravity waves are approximately 10 m/s for the horizontal component

and approximately 1 m/s for the vertical component. Large scale research on high altitude

turbulence is also discussed by Gage and Balsley [117], using the

mesosphere-stratosphere-troposphere (MST) radar technique. Through their investigation, the

Kolmogorov scale is observed to increase from 0.1 m to 1 km with the altitudes from 20 km to 50

km.

At an altitude of 50 km, the Kolmogorov scale of turbulence reaches 1 km [117], so the

effect of turbulence on acoustic propagation is mainly through refraction effects rather than

scattering effects. Thus, we will not account for turbulence and its effect on the acoustic

propagation above an altitude of 50 km. From a long range acoustic propagation perspective, the

detailed ABL model with CBL and NBL is hard to implement at a large scale., while the

turbulence in the upper-troposphere and lower-stratosphere zones are significant for the

infrasound propagation and considerably simple to be modeled. As the frequency of the gravity

wave is significantly lower than the acoustic wave, the effect of the gravity wave on acoustic

propagation is negligible. With the conditions and assumptions discussed above, we use an

atmospheric turbulent model from Lukin [118] to simulate turbulence for altitudes from 0 to 20

km. From 20 km to 50 km, the turbulence can be modeled as a sparse scattered layer with

approximately 100 m thickness. Therefore, we use exponential decay models to represent the

turbulence in this region. The detailed turbulence model in the present approach is discussed in

Section 2.4.
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1.8 Structure of the Dissertation

Chapter II: Methodology: In this chapter, the derivation and implementation of the

acoustic ray tracing model, generalized Burgers’ equation, and the turbulent scattering models are

introduced. Acoustic ray tracing is combined with two atmospheric models (HWM [12] and

NRLMSISE [13]). The generalized Burgers’ equation is solved via the Fourier Galerkin method

in the frequency domain. To account for the geometric effect on the nonlinearity, a geodisc

element coefficient is applied to the nonlinear term in the generalized Burgers’ equation. The

Lighthill’s turbulent scattering attenuation model is introduced in the Section 2.3, along with the

modification based on the directional study of Ostashev and Wilson [15]. Finally, the

experimental techniques employed in the UFBLWT test are presented.

Chapter III: Preliminary Results the Numerical Solver: The preliminary numerical

results of the prediction solver are presented in Chapter 3.2. The validation of the numerical

propagation solver is conducted to ascertain the effects of refraction, nonlinearity, and

attenuation. Infrasonic propagation simulations are presented with both harmonic wave and

broadband tornadic infrasound source signals.

Chapter IV: Experimental Results: For the wind tunnel experiments, the acoustic

characterization of the wind tunnel is demonstrated, along with the source signal design. The

acoustic propagation test results are demonstrated, along with post processing methods. Turbulent

statistics are collected in the UFBLWT and analyzed to validate the turbulent scattering

attenuation model. Finally, the preliminary results of the turbulent-acoustic interaction are

presented based on the UFBLWT experiments.

Chapter V: Validation, Sensitivity, Numerical Analysis of the Bridging Model: The

newly developed bridging model is validated by the UFBLWT experiments and investigated by a

series of numerical tests. The model’s sensitivity and model-embedded solver’s sensitivity are

analyzed in this chapter. A tornadic infrasound signal is employed for the study of the model on

the overall sound pressure level. The application of the solver with a realistic atmosphere is also

presented.
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Chapter VI: Conclusion and Summary This chapter summarizes the content of

dissertation and presents the conclusion of the research.
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CHAPTER 2
NUMERICAL AND EXPERIMENTAL TECHNIQUES

In this chapter, three major techniques employed in the propagation solver development are

introduced: the acoustic ray tracing, the generalized Burgers’ equation with modified coefficients,

and the turbulent scattering models. The flowchart of the the entire numerical solver is shown in

Fig. 2-1, along with the techniques employed in the solver development. In Fig. 2-1, the column

Figure 2-1. Flowchart of the numerical solver and techniques used in the solver.

with blue color on the left is the acoustic ray tracing solver, while column with red color on the

right is the generalized Burgers’ equation solver.

The acoustic ray tracing method from Gainville [10] is employed to find all ray paths
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connecting the source and observer. These rays represent a series of one-dimensional propagation

paths through the three-dimensional atmosphere. The atmosphere is modeled by the HWM93

[12] and NRLMSISE-00 [13] to construct a computational domain for the ray tracing solver. We

then apply the geodisc element method [10] as a bridge to connect the ray tracing solver and

generalized Burgers’ equation solver. The results of the geodisc elements solver are arguments of

the generalized Burgers’ equation solver as a function along each ray path. We then superimpose

all solutions of the generalized Burgers’ equation to predict the total acoustic signal at the

observer.

Along with the generalized Burgers’ equation propagation solver, an improved turbulent

scattering model is also employed to account for the acoustic-turbulent interaction. Because of

the long propagation distance, the scattered acoustic waves are no longer significant to the final

received signal. Therefore, we treat the effect of the turbulence as a type of attenuation. By

collecting the path-dependent turbulent statistics (length scale and turbulent kinetic energy

(TKE)) along the ray path, the propagation solver is capable of capturing the turbulent scattering

attenuation. We also introduce the Tartaski’s turbulent scattering model [88] (improved by

Ostashev and Wilson [15]) and Lighthill’s [85] model in this chapter. Both models are discussed

in this chapter with detailed derivation. By bridging the turbulent refraction and scattering, a new

model is developed with a correction coefficient (see Section 2.6 for detail).

Experimental techniques are also used to modify and validate the newly developed turbulent

scattering model. A series of turbulent boundary layer wind tunnel experiments are conducted to

analyze the turbulent effect on the acoustic propagation and to modify the turbulent scattering

models. The experimental setup of these tests are introduced in Chapter 4.

With all these techniques, a propagation solver based on the generalized Burgers’ equation

and turbulent scattering models is developed to predict the infrasound propagation in the turbulent

atmospheric boundary layer. The solver is also capable of simulating other acoustic propagation

problems like sonic boom and explosion infrasound propagation.
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2.1 Acoustic Ray Tracing

In this section, the equations for the numerical ray tracing solver are introduced. In most

situations, the ray tracing method is only valid for high frequency (small wave length) problems

[98]. However, in our case, the propagation length (more than 100 km) is long relative to the

acoustic wavelength (in order of 100 m), thus ray theory is appropriate for the long-range

infrasound propagation [70]. We use an infinite number of rays to represent the propagation path

of the acoustic waves, and we track the rays to ascertain their propagation path. We find multiple

trajectories generated by advancing wave fronts, and these trajectories are the rays used by the

propagation solver. These equations are developed through use of differential geometry [119].

The first is the equation that describes the wave front location X [10]

dX
dt

= c ·N+u = cg, (2-1)

where c is local speed of sound, N is the unity normal vector of the wave front and is equal to

KK−1, K is the wave vector, t is time, and u is local wind speed. Our objective is to predict how

refraction alters the wave vector. We take the material derivative of the wave vector and find

dK
dt

=
∂K
∂ t

+(cg ·∇)K. (2-2)

We then use the dispersion relation [86] to find the local derivative,

∂K
∂ t

=−∇(cg ·K) =−∇(cg) ·K− (∇K) · cg. (2-3)

The last term in Eqn. 2-3 is expanded as

(∇K) · cg = (cg ·∇)K+ cg ∧∇∧k = ∇(cg) ·K, (2-4)

where ∧ is the cross product. Simplifying Eqns. 2-2 by applying Eqns. 2-3 and 2-4, we find,

dK
dt

=−∇cg ·K =−K∇c−∇u ·K. (2-5)
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Finally, we use the relation K = K ·N to obtain the wave front

dN
dt

=
1
K

(
dK
dt

−
(

N · dK
dt

)
N
)
. (2-6)

Equations 2-1, 2-5, and 2-6 are the governing equations for the acoustic ray tracing solver.

For our problem, cg varies due to the variation of the speed of sound, c, and wind speed, u, which

is the horizontal component of wind velocity and causes refraction.

2.2 Propagation Models and Scheme

2.2.1 Geodisc Elements and Convective Volume

The volume dependent parameters of the rays are non-existent because we reduced our

propagation problem to one dimension. In this section, we introduce the geodisc element method

and convective volume to overcome this limitation (see Gainville [10] for detail). First, we

introduce the concept of the ray tube. A ray tube is formed by a central ray’s surrounding rays.

The shape of ray tubes are influenced by the wind condition and local speed of sound. The effects

of winds in the atmosphere twist and bend the ray tubes. One example of a ray tube is shown in

Fig. 2-2, where the cross-section of a ray tube is constructed by vectors X1 and X2. These three

Central Ray

x
K

x

1

2

Figure 2-2. Ray tube and convective volume.

vectors (X1, X2 and K) construct the convective volume, which is defined as

ν =
|X1 ∧X2|

|K|
=

|X1 ∧X2| ·λ
2π

, (2-7)

39



where ν is convective volume and λ is wave length. The shadowed section in Fig. 2-2 is an

example of a convective volume. Xi is governed by

dXi
dt

= (Xi ·∇c)N+(Xi ·∇)u+ cNi, (2-8)

and
dNi
dt

= (N ·Vr)Ni +(Ni ·Vr)N−
(
Vri −

(
N ·Vpi

)
N
)
, (2-9)

where Vr and Vri are

Vr = ∇c+∇ ·N, (2-10)

and

Vri = ∇u ·Ni +Xi ·∇∇u ·N+Xi ·∇∇c. (2-11)

The subscript of Xi and Ni denotes the local coordinate system of the convective volume. We

calculate the convective volume using Eqns. 2-8 and 2-9.

2.2.2 Discrete System and Atmosphere Model

We use a discrete grid system to store weather conditions within the propagation solver.

The data storage system is shown in Fig. 2-3. The blue dashed lines represent the grid, and all

atmospheric data is located at the red nodes. The black dot within the black cell is an example

location of the current wave front. The green data nodes are used for the wave vector calculation.

The X , Y , and Z are the local coordinates of current wave front. We obtain the wave front point

via its coordinates, which are dependent on the local cell. By using a second order b-spline

interpolation, we obtain the interpolated wind speed, local speed of sound, and temperature at the

wave front. Then we apply these parameters to the governing equations (Eqns. 2-8 and 2-9) to

obtain the convective volume.

We model the atmosphere as an ideal gas and use the models HWM93 [120] and

NRLMSISE-00 [121] for horizontal wind and temperature variations. These models are useful for

the prediction of wind velocities and temperature variation in areas relevant to infrasound

propagation from tornadoes. One example of the modeled wind and temperature profiles are
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Figure 2-3. Grid system and interpolation method.

shown in Fig. 2-4. The profiles are obtained at longitude: -82.3248262◦ W and latitude:

29.6516344◦ N. The the westward latitude wind and northward longitude wind are captured for

this location.

2.2.3 Generalized Burgers’ Equation

By performing an asymptotic analysis on the Navier-Stokes equation (see details in the

work of Scott et al. [122]), the density perturbation about the mean turbulent atmosphere within

ray tubes is

(
ρ

c

) 1
2
(

∂

∂ t
+ cg ·∇

)(
c
ρ

) 1
2

ρ
′+

1
2
(∇ · cg +n · (n ·∇)cg)ρ

′

=− c
ρ

kφ

(
1+ γ

2

)
ρ
′∂ρ ′

η
+ ε

−2
δk2

φ

∂ 2ρ ′

∂η2 +
kφ

2cT
∂ p
∂ s

∣∣∣∣
0
∑
α

ε
−1cvα

∂T ′
α1

∂η
,

(2-12)

where ρ ′ is the acoustic density perturbation, kφ is the gradient of velocity potential, η is the

scaled length variable (η = ξ

ε
), ε is the magnitude scale factor, ξ is the length along the ray, δ is

thermal viscosity, subscript α represents components of the air, cvα is constant volume specific
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Figure 2-4. Wind speed and temperature profiles at longitude: -82.3248262◦ W and latitude:
29.6516344◦ N.

heat capacity of the component α , T is local temperature, and T ′
α is the temperature perturbation

of the component α . The left hand-side terms represent the propagation of the density

perturbation in a moving temperature-varying medium. The first term on the right hand-side is the

nonlinear effect, the second term is the absorption effect, and the third term is the dispersion

effect.

To simplify Eqn. 2-12, Scott et al. [122] normalize the density perturbation ρ ′ as an

acoustic pressure perturbation p =
(

Kρ

νc

) 1
2

ερ ′, which we informally call the term
(

Kρ

νc

) 1
2 the

“windy-coefficient,” which is
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W =

(
Kρ

νc

) 1
2

. (2-13)

We simplify Eqn. 2-12 with the acoustic pressure perturbation and obtain

∂ p
∂ t

= δK2 ∂ 2 p
∂ξ 2 +BK p

∂ p
∂ξ

+K ∑
α

(∆c)
α

∂ pα

∂ξ
, (2-14)

where ∆cα is the difference of the speed of sound between component α and the ambient speed of

sound. The nonlinear coefficient B is

B = W

(
1+ γ

2

)
. (2-15)

Equation 2-14 is one-dimensional propagation equation. The term on the left hand side is

the partial time derivative of the acoustic pressure signal. The terms on the right hand side are

attenuation, nonlinearity, and dispersion, respectively. By using the Fourier Galkerin spectral

method (see Blackburn and Sherwin [123] for details), we solve Eqn. 2-14 in the frequency

domain while matching points along the previously predicted rays for a time marching scheme.

φn (ξ ) = e2πinξ/Ξ, (2-16)

where Ξ is wave length. Then we obtain an approximation equation with variable pM as

pM (ξ , t) =

M
2 −1

∑
n=−M

2

p̃n (t)φn (ξ ) , M = 0,±1,±2.... (2-17)

By implementing Eqn. 2-17 into the Eqn. 2-14, the integral over the wavelength is

1
Ξ

ˆ
Ξ

0

(
∂ pM

∂ t
−δK2 ∂ 2 pM

∂ξ 2 +K
B
2

∂
(

pM)2

∂ξ
+K ∑

α

(∆c)
α

∂ pα

∂ξ

)
φn(ξ )dξ = 0, M = 0,±1,±2....

(2-18)

then the Eqn. 2-18 can be solved on frequency domain as

∂ p̃
∂ t

=−Γ p̃+ i
1
2

B(p̃)2 , (2-19)
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where we assemble attenuation and dispersion terms with the combined coefficient Γ as

Γ = δK2q2 + iKq∑
α

(∆cα)

1− iKqταc
. (2-20)

Currently we use the model of Sutherland and Bass [68] to generate the dispersion and

attenuation coefficients. With the RK2 time marching scheme, the wind conditions and

temperature distribution, and the convective volume from the geodisc elements method, we

predict the acoustic propagation by applying the generalized Burgers’ equation along each ray

from source to observer.

Although the generalized Burgers’ equation and acoustic ray tracing are able to capture the

nonlinearity, attenuation, dispersion, and refraction, there is another important effect for

long-range propagation, which is the effect of atmospheric turbulence. In the following section,

this turbulent effect is discussed by analyzing scattering by turbulent structures.

2.3 Lighthill’s Scattering Models

The interaction between the acoustic wave and turbulence causes some radiated waves at an

angle relative to the incident wave, which is known as scattering. Lighthill [85] studied the

scattering effect with his acoustic analogy [50]. By combining the incident wave with the fluid

field, the first approximation to the turbulent-acoustic coupled instantaneous quadrupole with

strength per unit volume is

ρ (vi +Vi)
(
v j +Vj

)
= ρviv j +ρViVj +ρ

(
viVj + v j +Vi

)
, (2-21)

where ρ is the local density, V is the incident wave speed, and v is the instantaneous flow-field

that the sound wave incident upon. In Eqn. 2-21, the three terms on the right-hand-side represent

different mechanisms of quadrupoles, respectively: the first term represents the quadrupole of the

sound already generated by the turbulence regardless to the incident wave; the second term is

responsible for the wave form deformation due to the incident wave’s finite amplitude; the third

term, also known as the scattering quadrupole, is responsible for the interaction between the

incident wave and the turbulent structure.
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By dividing the instantaneous velocity v into mean velocity and turbulent velocity, the

scattering quadrupole is split into two parts: the refraction wave by the mean flow as

ρ0
(
viVj + v jVi

)
and the turbulent scattering part as ρ0

(
v′iVj + v′jVi

)
. For a plane harmonic

incident wave, the Vi is

Vi = A0ccos[κ(x1 − ct)]δi1, (2-22)

where A0 is the amplitude of the incident wave, κ is the wave number, and x1 is the propagation

direction. By applying Eqn. 2-22 into ρ

(
v′iVj + v′jVi

)
, the quadrupole due to turbulent velocity’s

fluctuation is

ρ0A0ccos[κ(xt − ct)](v′iδ j1 + v′jδi1). (2-23)

On a unit volume basis, we apply this quadrupole into the Lighthill’s [50] acoustic analogy given

by

ρ −ρ0 ∼
1

4πc4
xix j

x3

ˆ
∂ 2

∂ t2 Ti j

(
y, t − | x−y |

c

)
dy, (2-24)

then the equation becomes

ρ −ρ0 ∼
ρ0A0κ2

2πc
xix j

x3

ˆ
∂ 2

∂ t2 cos [κ (y1+ | x−y | −ct)]v′i

(
y, t − | x−y |

c

)
dy. (2-25)

By multiplying the factor c3/ρ0 with the mean square of the Eqn. 2-25, we obtain the intensity of

the scattered wave, Is, as

Is ∼
ρ0A2

0κ4c
4π

xix jx2
1

x6

ˆ ˆ
cos [κ (y1+ | x−y | −ct)]cos [κ (z1+ | x− z | −ct)]

× v′i

(
y, t − | x−y |

c

)
v′j

(
z, t − | x− z |

c

)
dydz.

(2-26)

When x is large compared to | y− z |, the product of the cosines in Eqn. 2-26 is 1
2 cos(k · (y− z)),

where ki = κ
(xi

x −δi1
)
. So the intensity of the scattered wave becomes

Is ∼
ρ0A2

0κ4c
4π

xix jx2
1

x6 Fi j(k), (2-27)
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where Fi j(k) can be considered as the spectrum respected to the wave vector as

Fi j(k) =
1

8π3

ˆ ˆ
v′i(y)v′j(y)dy. (2-28)

By integrating over a sphere in k space with the center at (κ,0,0) and the radius of κ , along with

multiplying a factor x2/κ2, the scattered energy Ps is obtained from Eqn. 2-27 and Eqn. 2-26 as

Ps ∼
2πIκ2

c2

ˆ (
δi1 +

ki

κ

)(
δ j1 +

k j

κ

)(
1+

k1

κ

)2

Fi j(k)dS, (2-29)

over the k space sphere, where I is the intensity of the incident wave.

Because Fi j(k) is only significant when the k/κ is small, which makes the integrating

sphere as small as well. This near-center-point condition leads to simplification that makes the

scattered energy as

Ps ∼
2πIκ2

c2

ˆ
∞

−∞

ˆ
∞

−∞

F11(0,k2,k3)dk2dk3

=
Iκ2

c2

ˆ
dy
ˆ

∞

−∞

v′1(y1,y2,y3)v′1(y1 +w,y2,y3)dw.
(2-30)

For a unit volume of turbulence, the integral resulting from Eqn. 2-30 gives the scattered energy

per unit volume, ps, as

ps ∼ 2Iκ
2L1

v′21
c2 , (2-31)

where L1 is the macro-scale of turbulence.

Finally, the scattered energy can be calculated by integrating the ps over the volume of the

turbulent structure, the turbulent scattering attenuation coefficient αt is extracted as

αt =
8π2L1

Λ2 I
v′21
c2 , (2-32)

where Λ is the wave length of the incident wave.

Lighthill’s scattering model is well developed and fits the infrasound propagation properly,

however, the scattering wave’s propagating direction is not considered when we calculate the

scattered intensity in Eqn. 2-25. The scattered wave can be in the same direction with the incident

wave, which means a portion of the scattered energy can be recycled back into the incident wave.
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Therefore, the Lighthill’s scattering model may over-predict the attenuation caused by the

turbulent scattering.

2.4 Tartaski’s Scattering Model

To solve the overestimated attenuation of Lighthill’s [50] model, we employ a directional

scattering model to modify αt by recycling part of the scattered energy back into the incident

wave. The Tartarski’s model [88] is a well-developed theory to account for the directionality of

the scattering effect. The model uses the wave equation in moving media

∆P− 1
c2

(
∂

∂ t
+ui

∂

∂xi

)2

P = 0, (2-33)

where P is the potential of sound wave and ui is the velocity of the motion of moving media. We

assume that the mean velocity is zero, therefore ui = u′i. By expanding the square of the

operator ∂

∂ t +ui
∂

∂xi
, we obtain

∆P− 1
c2

∂P2

∂ t2 =
1
c2

∂u′i
∂ t

·∇ P+
2
c2 u′i ·∇

∂P
∂ t

, (2-34)

We only take the accuracy to the order of u′/c, so the first term on the righthand side is

neglected. Then Eqn. 2-34 becomes

∆P− 1
c2

∂P2

∂ t2 =
2
c2 u′i ·∇

∂P
∂ t

, (2-35)

By applying the ideal gas assumption, we obtain the relation

c(T ) = c
(
T
)(

1+
T ′

2T

)
. (2-36)

In the atmosphere, the quantity T ′/T is of the same order of u′/c. Then Eqn. 2-36 becomes

∆P− 1
c2

∂P2

∂ t2 =
2
c2 u′i ·∇

∂P
∂ t

+
1
c2

T ′

T
∂P2

∂ t2 . (2-37)

For a harmonic incident sound wave, we assume the solution takes the form P = Πe−iωt , then

Eqn. 2-37 becomes

∆Π− k2
Π =−2ik

u
c
·∇ Π+ k2 T ′

T
Π. (2-38)
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We write the solution of Eqn. 2-38 as a series solution, Π = Π0 +Π1 +Π2 . . ., which results in

∆Π0 + k2
Π0 = 0 (2-39)

and

∆Π1 + k2
Π1 =−2ik

u′

c
·∇ Π0 + k2 T ′

T
Π0 , (2-40)

which is based on an asymptotic expansion. Π0 represents the amplitude of acoustic wave

potential, and we set it as Π0 = A0e−ikr for spherical wave. Then we have

∆Π1 + k2
Π1 =−2k2

(
ui ·ni

c
+

T ′

2T

)
A0e−ikr. (2-41)

For a large distance from the scattering volume Vs, (λ r ≫ L2 and Vs = L3)

Π1 (⃗r) =− 1
4k

eikr

r

ˆ
2k2

(
u⃗′ (⃗r′) ·n

c
+

T ′ (⃗r′)
2T

)
A0e−ik⃗r′−ilm⃗r′dV ′

s , (2-42)

where m is the unit vector directed from the center of the scattering turbulent volume to the

observer. Thus, Π1 (⃗r) represents a spherical wave with random complex amplitude Q as

Q =−k2A0

2π

ˆ (
u⃗′ (⃗r′) · n⃗

c
+

T ′ (⃗r′)
2T

)
e−ik⃗r′(⃗n−m⃗)dV ′

s . (2-43)

The average value of the flux density vector of scattering energy is equal to

S⃗ =
ωρ

2
Im(Π∗

1∇Π1) . (2-44)

By calculating the gradient of Π1, we obtain

∇Π1 = ∇Q
e−ikr

r
= Q

(
ik

eikr

r
− eikr

r2

)
m⃗ ikQ

eikr

r
m⃗ . (2-45)

Therefore we have

S⃗ =
ωρ

2
Im
(

Q∗ e−ikr

r
ikQ

eikr

r
m⃗
)
=

ωρk
2r2 QQ∗m⃗ . (2-46)
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The mean value of the scattering energy in Eqn. 2-46 is

S⃗ =
ωρk
2r2 QQ∗m⃗ = m⃗

ρck6A2
0

8π2r2 ×
¨ [

u⃗′ (⃗r′1) · n⃗
c

+
T ′ (⃗r′1)

2T

][
u⃗′ (⃗r′2) · n⃗

c
+

T ′ (⃗r′2)
2T

]
e−ik(⃗r1−⃗r2) (⃗n−m⃗)dV1dV2.

(2-47)

Based on incompressibility, we have no correlation of u⃗′ and T⃗ ′. The correlation tensors of

velocity and temperature are

Bik (r1 − r2) = u′i (r1)u′k (r2) (2-48)

and

BT (r1 − r2) = T ′ (r1)T ′ (r2) . (2-49)

By evaluating the double integrals over the volume using Eqn. 2-47, we obtain

S⃗ = m⃗
ρck6A2

0
8π2r2

[
1
c2 nink

ˆ
Bik
(⃗
r′
)

eik(⃗n−m⃗)⃗r′dV ′+
1

4T 2

ˆ
BT
(⃗
r′
)

eik(⃗n−m⃗)⃗r′dV ′
s

]
. (2-50)

Similar to the spectrum of velocity field in the turbulent flow, we can obtain the correlation tensor

by using spectrum of energy, E (⃗k), and temperature spectrum, ΦT (⃗k). Now, Eqn. 2-48 and Eqn.

2-49 become

Bik (⃗r) =
˚ +∞

−∞

ei⃗k⃗r
(

δik −
kikk

k2

)
E
(⃗

k
)

d⃗k (2-51)

and

BT (⃗r) =
˚ +∞

−∞

ei⃗k⃗r
ΦT

(⃗
k
)

d⃗k . (2-52)

Then we integrate terms Bik (⃗r) e−i⃗k⃗r and BT (⃗r) ei⃗k⃗r in flux density Eqs. 2-50, we obtain

S⃗ = m⃗
ρck6A2

0
8π2r2

[
1
c2 nink

(
δik −

k2 (ni −mi)(nk −mk)

k2 (⃗n− m⃗) · (⃗n− m⃗)

)
E (k (⃗n− m⃗))+

1
4T 2 ΦT (k (⃗n− m⃗))

]
.

(2-53)

The double bar function F
(⃗

k
)

denotes the average of this function over the region in wave

number space of volume 8π3/Vs surrounding the point k⃗. In our case, the volume Vs is so large

that averaging the region 8π3/Vs of wave number space does not substantially change the
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averaged function, so we can simplify the term

nink

(
δik −

k2 (ni −mi)(nk −mk)

k2 (⃗n− m⃗) · (⃗n− m⃗)

)
=

1
2
(1+ n⃗ · m⃗) . (2-54)

As n⃗ · m⃗ = cosθ , we have 1
2 (1+ n⃗ · m⃗) = cos2 θ

2 . The Eqn. 2-53 becomes

S⃗ = m⃗
πρck6A2

0Vs

r2

[
1
c2 E (κ (⃗n− m⃗))cos2 θ

2
+

1
4T 2 ΦT (k (⃗n− m⃗))

]
. (2-55)

By assuming the isotropic turbulence, E
(⃗

k
)
= E (k) , Φ

(⃗
k
)
= Φ(k), we obtain

S⃗ = m⃗
πρck6A2

0Vs

r2

[
1
c2 E

(
2k sin

θ

2

)
cos2 θ

2
+

1
4T 2 ΦT (2k sin

θ

2
)

]
. (2-56)

By normalizing with the incident wave’s energy flux density, we obtain

dσ (θ) = 2πk4Vs

[
1
c2 E

(
2k sin

θ

2

)
cos2 θ

2
+

1
4T 2 ΦT (2k sin

θ

2
)

]
dΩ . (2-57)

Then we employ the spectra from Tatarski [88]

E (k) = 0.061C2
v k−

11
3 , (2-58)

and

Φ(k) = 0.033C2
T k−

11
3 , (2-59)

into Eqn. 2-57, where Cv
2 = ε2/3, and CT = a2Nε−1/3 [124], ε is the turbulence dissipation rate,

C and a are constant, and N is the temperature dissipation rate (see details in Oboukhov [124]).

Then we obtain

dσ (θ) = 0.030k
1
3V
[

C2
v

c2 cos2 θ

2
+0.13

C2
T

T 2

](
sin

θ

2

)− 11
3

dΩ . (2-60)

We introduce l (θ) = 2π

2k sin θ

2
here, and the final equation is

dσ (θ) =
V

2πl

 v2
0

3c2
0

sin2
θ

(
k2l2

1+ k2l2 sin2 θ

2

)3

+
T 2

0
T 2

(
k2l2

1+ k2l2 sin2 θ

2

)2
dΩ . (2-61)
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Equation 2-61, is a direction-dependent equation. The first term on the right hand side is the

scattering caused by the velocity fluctuation, and the second term is the scattering caused by the

temperature fluctuation.

2.5 Ostashev and Wilson’s Model

Since Tartarski developed his scattering model[88], further improvements have been

applied by Ostashev and Wilson [11]. Ostashev improved Tatarski’s model by using a

Helmholtz-type equation (Eqn. 6.91 in [11]) as

[
∇

2 + k2(1+ εa)− (∇ ln(ρ/ρ)) ·∇− 2i
ω

∂v′i
∂x j

+
∂ 2

∂xi∂x j

+
2ik
c

v′ ·∇
]

p̂ = ρ(iω −v′ ·∇)Q̂,

(2-62)

where k is the wave number of the acoustic wave, εa = c2/c2 −1, c is the speed of sound, ρ is the

instantaneous density, ω is the frequency, p̂ represents the spectrum of the acoustic wave, v′ is the

velocity fluctuation, and Q̂ is the function of the mass source. The overline represents an averaged

quantity, and the hat represents a spectrum. The scattering field is presented as (see Eqn. 6.110 of

[11]) as

⟨Is⟩=
2πk4I0n

R2

[
β 2(θ)ΦT (q)

4T 2
0

+
β (θ)η(θ)ΦCT (q)

2T0

+
η2(θ)ΦC(q)

4
+

cos2 θn0,in0, jΦi j(q)
c2

]
.

(2-63)

where the ⟨Is⟩ is the mean intensity of the scattered field, n is the direction of the scattered wave,

I0 is the intensity of the incident acoustic wave, R is the distance from the scattering location to

the observer, β and η are the construction parameters defined by Eqn. 6.67 of [11], θ is the

scattering angle, and ΦT , ΦCT , ΦC, and Φi j are the spectra of temperature, humidity-temperature,

humidity, and velocity fluctuations, respectively. Then Eqn. 2-63 can be simplified and

represented by the cross-section σ as
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[11] as

σ(θ) = σ(n−n0) = 2πk4
[

β 2(θ)ΦT (q)
4T 2

0
+

β (θ)η(θ)ΦCT (q)
2T0

+
η2(θ)ΦC(q)

4
+

cos2 θ cot2(θ/2)E(q)
16πk2c2

]
,

(2-64)

where σ(θ) is the scattering cross-section and defined as

σ(θ) =
Is(θ)R2

I0V
. (2-65)

The cross-section referenced is on a per unit volume basis. More details about Ostashev’s

model are available in Ostashev and Wilson [11].

To extend and validate the scattering model, a series of boundary layer wind tunnel tests are

conducted. However, in the boundary layer flow in the wind tunnel, the fluctuations of the first

three terms in Eqn. 2-64 are negligible. Thus, in the following investigation, only the fourth term

on the right hand side is retained to account for the velocity inhomogeneity, and this term is

named as the turbulent cross-section σE as

σE (θ) = 2πk4

(
cos2 θ cot2 (θ)E

(
2k sin θ

2

)
16πk2c2

)
, (2-66)

where E(κ) is the turbulent velocity spectrum. Here, the von Karman spectrum is used and is

E(κ) =
55Γ(5/6)

9π
1
2 Γ(1/3)

σ2
v κ4L5

v

(1+κ2L2
v)

17/6 , (2-67)

where κ = 2k sin θ

2 is the scattering wave number, Γ is the gamma function, and σv is the variance

of the fluctuating velocity. Because our goal is to predict the scattered acoustic energy, the total

scattering cross-section is

σE,tot =

ˆ 2π

0

ˆ
π

0
σE(θ)sin(θ)dθdφ , (2-68)

where subscript tot denotes total.
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2.6 Acoustic-Turbulent Interaction Bridging Model

2.6.1 Turbulent Refraction and Bridging Model

Although Ostashve’s [11] model accounts for directional scattering, small refraction angles,

θ , can invalidate the resulting cross-section calculation. As θ approaches zero, κ = 2k sin θ

2 also

reaches zero, indicating that the scattering near the forward propagation direction is caused by

large-scale (or extremely large-scale) turbulence. However, when the turbulent structure is larger

than the acoustic wavelength, turbulent refraction is believed to contribute to acoustic-turbulent

interaction instead of scattering.

A new model is developed based on the concept shown in Fig. 2-5 to bridge the turbulent

scattering and turbulent refraction.

Figure 2-5. Concept of the bridging model.

In this figure, a right-running incident wave is assumed to be a plane wave with the condition

R0 ≫ λ , where R0 is the propagation distance and λ is the wave length of the incident wave. The

incident wave is represented by the incident ray tubes at t and t +δ t. The blue sphere represents a

turbulent eddy that the acoustic wave impacts upon. Acoustic-turbulent interaction occurs during
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the time span between t and t +δ t. The turbulent scattering angle is represented by two angle, Θs

and Θr. Θs is the scattering angle, and Θr is the turbulent refraction angle. To the right side of the

turbulent structure, a ring represents the Ostashev’s scattering-cross section. dσE is the turbulent

scattering cross-section discussed in the previous subsection. The Xs are the geodisc elements.

The detailed parameters’ introduction and subray tube development will be presented in the

following discussion.

To capture the refraction caused by the turbulence, the geodesic elements technique of ray

theory [122] is employed to represent the ray tube and to construct the convective volume. The

governing equation [10] for the geodesic element is

dXpi

dt
=

∂

∂ pi
(c(X, t)N+ v0(X, t))

= c
∂N
∂ pi

+(Xpi ·∇c)N+(Xpi ·∇)v0,

(2-69)

where the subscript pi represents the local coordinate system at the wave front and the X is the

geodisc element as discussed in previous subsection.

The first step is the decomposition of the velocity field as v0 = v0 +v0
′. Then the geodisc

elements are expressed as

dXpi

dt
=

dXpi

dt
+

dXpi
′

dt

= c
∂N
∂ pi

+(Xpi ·∇c)N+(Xpi ·∇)(v0 +v′0).
(2-70)

The additional term (Xpi ·∇)v′0 is the fluctuating geodisc element generated by the turbulent

refraction. Unlike the governing equation of the geodesic element Xpi in Eqn. 2-69, the Xpi
′ is

generated along the ray path and independent relative to its values at previous times. Thus, the

term
dXpi

dt can be interpreted as the generation rate of a turbulent refraction element. In Gainville

[10]’s paper, the convection volume is defined as
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ν =
|X1 ∧X2|

|K|
=

|X1 ∧X2| ·λ
2π

, (2-71)

where X1 and X2 are corresponding geodisc elements, which are perpendicular to the wave

vector. The geodisc elements X1 and X2 are presented in Fig. 2-5 in the incident ray tube at t.

Since the magnitude of the wave vector Kr is same as the incident wave’s wave vector K, the

turbulent refracted convective volume is

ν
′ =

|X′
1 ∧X′

2|
|Kr|

=
|X′

1 ∧X′
2|

|K|
=

|X′
1 ∧X′

2| ·λ
2π

. (2-72)

This equation is also represented in Fig. 2-5 by the sub ray tube in the right lower corner.

The sub ray tube is produced by the generation of X′
1 and X′

2. If the field is represented by locally

isotropic turbulence, the direction of the refracted wave vector Kr deviates from the mean

incident wave vector K. Multiple refractions can cause the refracted wave to return to the incident

wave, however, the energy contained within multiple refracted waves is negligible compared to

the initial refracted wave as the all the scattered waves are considered as spherical waves [11].

The turbulent refracted convective volume ν ′ is required to ascertain the intensity of

refracted waves. In Eqn. 2-72, X′
1 and X′

2 represent the value of dX′
1

dt and dX′
2

dt , respectively, which

are the generation rate of the geodesic elements for he subray tube. The governing equation of X′
i

is obtained from Eqn. 2-70 as

X′
i =

dXpi
′

dt
= (Xpi ·∇)v′0. (2-73)

Because the value of the incident wave vector is identical to the refracted wave vector, its

influence on the value of the convective volume can be ignored. Thus Eqn. 2-73 can be expanded

as
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X ′
1, j =

1
2

X1,i

(
∂v′0,i
∂ p j

+
∂v′0, j
∂ pi

)
;

X ′
2, j =

1
2

X2,i

(
∂v′0,i
∂ p j

+
∂v′0, j
∂ pi

)
.

(2-74)

Then the mean convective volume is obtained by inserting Eqn. 2-74 into Eqn. 2-72 as

ν
′ =

λ

8π
X1,iX2,i

(
∂v′0,i
∂ p j

+
∂v′0, j
∂ pi

)2

cos(X1,X2)

=
λ

8π
X1,iX2,i si jsi j cos(X1,X2).

(2-75)

The turbulent refraction cross-section σr is defined as

σr =
ν ′

ν
=

si jsi j

4
∼ σ2

v

λ 2
T
, (2-76)

where the term si jsi j represents the turbulent velocity variance σv and the Taylor microscale λT

[125].

For infrasound waves, the large-scale turbulence has the greatest effect on turbulent

refraction. Therefore, the relation between the turbulent wave number and the fluctuating strain

rate is employed as [126]

si jsi j =
ε

2ν
=

ˆ
∞

0
k2E(k)dk. (2-77)

Then only the turbulence with length scale larger than Lv is used within si jsi j, then σr is

σr =
ν ′

ν
∼ σ2

v

λ 2
T

´ 2π/Lv
0 k2E(k)dk´

∞

0 k2E(k)dk
. (2-78)

Here, we define the variable CE as (
´ 2π/Lv

0 k2E(k)dk)/(
´

∞

0 k2E(k)dk), which ranges

approximately from 10−6 to 10−4 within the von Kármán spectrum. Thus, σr can also be

represent as σr =CFσ2
v /L2

v , where CF = L2
vCE/λ 2

T .
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Unlike scattering described by Eqn. 2-65, σr is no longer a function involving the scattering

angle because of the integration of the k2E(k) over the scattering angle from 0 to 2π/Lv in Eqn.

2-78. Thus, we require a model function to bridge the refraction cross-section σr with the

directional scattering cross-section σE . Since we only use a refraction model at the low scattering

angles (where k sin(θ/2)< 2π/Lv), a sine function is selected with σr as

σe f f (θ) = max(σE(θ))−
A
σr

[
sin
(

πkrLv

2
−π/2

)
−1
]
, (2-79)

where A is the constant coefficient to be determined. Here, kr = 2k sin θ

2 and kr ∈ (0, 2π

Lv
). By

applying this bridging function, the turbulent refraction is represented by the area below the sine

curve and can be adjusted the parameters in Eqn. 2-79. Finally, we obtain the expression for the

effective total cross-section as

σtot = σe f f +

ˆ 2π

0

ˆ
π

2arcsin( π

kLv )
σE(θ)sin(θ)dθdφ , (2-80)

and an example plot of the bridging model is shown in Fig. 2-6.

Figure 2-6. An example of the bridging cross-section model compared with Ostashev’s model.
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Figure 2-6 shows the difference between the proposed bridging model and Ostashev’s

model [11]. Turbulent refraction is the primary effect within the new model near scattering angles

that are small.

2.6.2 Log Amplitude and Phase Fluctuation

As the mean absorption and dispersion coefficients are obtained from the above discussion,

the fluctuation range can be also calculated by implementing the line-in-sight theory to the

Burgers’ propagation solver. The variances of amplitude and phase fluctuations [127] are

σχ,φ =
π2k2

2cos(θ)

ˆ h

0
dz
ˆ

∞

0
Φ(z,k)

[
1∓ cos

(
z(h− z)k2

khcosθ

)]
dk, (2-81)

where χ and φ represent absorption and dispersion, θ is the angle between path and vertical

direction, h is the height along the path, and Φ is the turbulent spectrum.

2.7 Summary

In this section, the techniques used in the propagation solver development are introduced

and discussed. The entire methodology consists of three major parts: the generalized Burgers’

equation solver with acoustic ray tracing, and the turbulent scattering attenuation models.

Introducing the turbulent effect into the generalized Burgers’ equation is the major innovation of

the solver. With both numerical models and experimental results, the model implemented into the

propagation solver is able to capture the turbulent effect on the infrasound propagation in the

turbulent atmospheric boundary layer.
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CHAPTER 3
RESULTS OF NUMERICAL SOLVER

In this chapter, the preliminary results of the numerical solver are demonstrated. The

numerical solver consists of two parts, the acoustic ray tracing solver and the generalized

Burgers’ equation propagation solver. In Section 3.1, the validations of the acoustic ray tracing

solver and the validations of the generalized Burgers’ equation solver are presented. The results

of the acoustic ray tracing solver are compared with a numerical acoustic ray tracing solver

developed by Hallberg et al. [82]. The effects of the nonlinearity and attenuation are validated by

comparing with the Blackstock Bridging Function (BBF) and Sutherland and Bass’s model [68],

respectively. As the satisfactory validation results are obtained for both the acoustic ray tracing

solver and propagation solver, a case study in four different regions is performed. The ray tracing

results in these regions are obtained with realistic atmospheric models (HWM93 [120] and

NRLMSISE-00 [121]). Both sinuous infrasound and broadband tornadic infrasound sources are

employed to demonstrate the propagation along the calculated ray paths. The results of the

propagation solver are demonstrated and discussed in Section 3.2.

3.1 Validation of the Numerical Solver

3.1.1 Ray Tracing Validation

The first step in the prediction process involves finding the propagation paths of the acoustic

waves. This is performed with the propagation solver. As shown in Fig. 2-1, the results of the ray

tracing solver are: the ray path data and the wind and temperature data along the rays. The ray

paths and atmospheric data are then used by the propagation solver, which marches along each

ray cast from source to observer. Therefore, an accurate acoustic ray tracing solver is the

foundation of the entire numerical solver, and the validation of the ray tracing solver is important

and necessary.

The governing equations for ray acoustics can be solved analytically with linear speed of

sound and temperature profiles (see details in Thompson [8]). As a validated ray tracing solver

with corresponding analytical solution, the solver of Hallberg et al. [82] is used to validate the

new ray tracing solver. Figure 3-1 shows a comparison of the ray tracing solver prediction and the
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two-dimensional result of Hallberg et al. [82] with identical linear wind and temperature profiles.

The sound source is located at zero altitude with X = 0 km, and the launching angle is 45 ◦
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Figure 3-1. Validation with previous two-dimensional solver of Hallberg.

relative to the X direction. The parabolic wind and temperature profiles amplify the refraction

effect. The two touch-down locations from the acoustic ray tracing solver and Hallberg’s solver

are at X = 15003.34 m and X = 15130.86 m, respectively, where the difference is 0.85%.

Because a b-spline interpolation method is employed in our ray tracing solver, the precision of the

ray tracing solver is dependent on the grid point spacing (discussed in Subsection 2.2.2), which

causes differences relative to the solver of Hallberg et al. [82]. Besides the comparison with the

previous solver, the test case of the ray tracing solver with atmospheric models is shown in Fig

3-2. This is a east propagating test at Gainesville. Three rays are launched with angles of 0◦, 15◦,
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Figure 3-2. Test cases with different vertical launching angles from -82.3248262◦ W,
29.6516344◦ N, along latitude 29.6516344◦ N.

and 30◦ along latitude 29.6516344◦ towards the east in this figure. With westward winds, a
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shadow zone appears at approximately 100 km from the source location.

The ray tracing solver’s ability to capture the refraction effect provides the generalized

Burgers’ equation solver with the capability of predicting propagation in a three-dimensional

domain. Presently, only limited validation cases are conducted for ray tracing and attenuation

predictions. Therefore, a well-designed validation procedure is necessary to guarantee the

solver’s accuracy. As a benchmark ray tracing solver, the solver of Hallberg et al. [82] will be

employed to futher validate our ray tracing solver. The governing equations of the rays in the

solver of Hallberg et al. [82] are shown as following

dx
dz

=±v(1− vk1)+ c2k1

cΩ
1
2
r

, (3-1)

dy
dz

=±ck2

Ω
1
2
r

, (3-2)

dt
dz

=±(1− vk1)

cΩ
1
2
r

, (3-3)

Ω = (1− vk1)
2 − c2(k1 + k2)

2, (3-4)

where x, y, and z are the coordinates of the wave front. k1 and k2 are ray parameters, which are

constant for each ray as

k1 =
sin µ cosθ

d
− v0

d2 + v0d sin µ cosθ
, (3-5)

and

k2 =
sin µ cosθ

d
, (3-6)

where d =
[
v2

0(sin2
µ cos2 θ −1)+ c2

0
] 1

2 , v0 = v(zs), c0 = c(zs), µ and θ are the altitude and

azimuth angles, and zs is the altitude of the sound source.

To validate our ray tracing solver, a test matrix is conducted by both the ray tracing solver

and the Hallberg’s solver as shown as Table 3-1. In this test matrix, the wind profile and the speed

of sound profile are set as three types: the linear profile, the parabolic profile, and the cubic
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Table 3-1. Ray tracing solver validation matrix and comparison with Hallbergs’ solver.

Setpoint
Launching Angle

(degree) Wind Profile Speed of Sound Profile
Turning Point of RTS

(m)
Turning Point of Hallberg

(m)
1 15 linear linear 245 250
2 30 linear linear 403 415
3 45 linear linear 821 858
4 15 N/A linear 325 328
5 30 N/A linear 756 761
6 45 N/A linear 1694 1702
7 20 parabolic parabolic 236 236
8 30 parabolic parabolic 280 280
9 40 parabolic parabolic 342 344

10 50 parabolic parabolic 425 434
11 60 parabolic parabolic 543 573
12 70 parabolic parabolic 806 838
10 30 N/A parabolic 314 315
11 45 N/A parabolic 444 445
12 60 N/A parabolic 648 650
13 30 cubic cubic 235 235
14 45 cubic cubic 279 282
15 60 cubic cubic 353 370
16 30 N/A cubic 243 244
17 45 N/A cubic 293 294
18 60 N/A cubic 368 369

profiles. The linear profile of the wind can be expressed as a function of the altitude z as

vwind = 0.2z+10; the parabolic profile of the wind is vwind = 10+0.001z2; and the cubic profile

of the wind is 10+0.00001z3. The linear profile of the speed of sound can also be expressed as a

function of the altitude as 343+0.2z; the parabolic profile of the speed of sound is 343+0.001z2;

and the cubic profile of the speed of sound is 343+0.00001z3. Different ray radiation angles are

also included in the test matrix as shown as the first column in Table 3-1. To compare the ray

tracing solver and Hallberg’s solver, we use the turning point altitude Zh as the validation

parameter. The average difference between current ray tracing solver and Hallberg’s solver is

1.693%, while the case by case difference varies between 0 to 5.23%. Because the ray tracing

solver uses the wave front tracking method, a slight difference from the Snell-law-based

Hallberg’s solver is expected. Based on the results from the test matrix, the ray tracing solver

agrees well with Hallberg’s solver on the turning point.

In Hallberg’s paper [82], a case study is conducted to investigate the effect of the order of

magnitude of the governing equations. This case is repeated by our ray tracing solver, and the

results are shown in 3-3a and 3-3b. The launching angle of this case is set to 85 degree. The
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(a) Results form Hallberg’s paper (Fig. 2
in the original paper).
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(b) Results from the ray tracing solver with the
same conditions

Figure 3-3. Comparison between the ray tracing solver and Hallberg’s solver

horizontal wind profile is linear as the wind velocity vwind = 0.2z, and constant speed of sound

profile is obtained in this case. In the Fig. 3-3, the overall behavior of the ray are same in both

solvers when the value of dt/dz is amplified 1000 times. The turning point in both solvers

converges to approximately Zh = 7.6 m, where Zh represents the height where the ray begin

propagates downwards.
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Figure 3-4. Ray tracing solver validation with linear temperature and wind profiles, time step
sizes are 0.1 s, 0.05 s, and 0.01 s

Besides the solver validation, a grid independence study is also conducted. We conducted
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both time-step-size dependency and spatial mesh dependency studies for the ray tracing solver.

Fig. 3-4 shows the influence of the time step size on the ray propagation. In this figure, the linear

temperature and speed of sound profiles are implemented while the ray is launched at 45 degree

relative to the horizon. The three time step sizes are 0.1 s, 0.05 s, and 0.01 s. The 0.01 s case is set

as the benchmark case for the other two to compare with. Both x-direction and z-direction

difference of the turning point is recorded in Table 3-2. The difference in this case converges to

zero with increasing ∆ t.

Table 3-2. Turning-point location difference between time step size = 0.1 s, 0.05 s, 0.01 s
dt = 0.1s dt = 0.05s dt = 0.01s

Z-error (m) 12.619 5.642 0
X-error (m) 4.897 2.201 0

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

dz = 20 m
dz = 2 m
dz = 1m

Figure 3-5. Ray tracing solver validation with linear temperature and wind profiles, three
launching angles are 15◦, 30◦, and 45◦.

A spatial step size dependency study is also conducted with three grid step sizes in the

z-direction, and the results are shown in Fig. 3-5. The grid step sizes are set as dz = 20 m, dz = 2
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Figure 3-6. Comparison between my RTS and Hallberg’s solver

m, and dz = 1 m. As shown in Fig. 3-5, all three rays almost overlap with each other before the

first ground reflection. The grid step size cases are also compared with Hallberg’s solver as shown

in Fig. 3-6. The difference between the rays of our predictions solver and Hallberg’s ray are

13.244 m, 15.98 m, and 49.11 m for ∆Z = 1 m, ∆Z = 20 m, and ∆Z = 100 m, respectively. The

difference is also expected since the two approaches , which are the wvefront movement method

and Snell’s law.

3.1.2 Propagation Solver Validation

As discussed in Chapter 2, the generalized Burgers’ equation is capable of capturing the

nonlinearity, attenuation, and dispersion of wave propagation through the atmosphere. The

properties of nonlinearity and attenuation of the propagation solver are validated in this

subsection.

For the nonlinearity validation, the propagation solver is compared with the BBF [128]. A

plane wave, defined as p(0, t) = p0 sin2π f t, is employed as the source signal for both BBF

solution and the propagation solver, where p0 is the initial amplitude and f is the frequency of the

signal. The numerical implementation of the BBF from Miller [14] work is employed to obtain

the numerical solution with various conditions. In the solver-BBF comparison, attenuation and

65



dispersion terms are set to zero so that we may first analyze the nonlinear effects. A validation

matrix is used to investigate the various propagation conditions as shown in Table 3-3. Three

values of p0 are selected as 50 Pa, 250 Pa, and 2500 Pa, which correspond to the Sound Pressure

Level (SPL) at 124.9485 dB, 138.9279 dB, and 158.9279 dB, respectively. The frequencies of the

test signal are 10 Hz, 50 Hz, and 500 Hz. The shock formation distance is obtained by using the

equation x = (ρc3
∞)/(2βb p0π f ) for each case listed in Table 3-3, where βb = 1.2 is the nonlinear

coefficient. Besides the original signal, predicted waveforms at two non-dimensional shock

distances, σ = 1 and σ = 3, are captured to compare with the BBF solution. In Fig. 3-7, six cases

from the validation matrix are demonstrated. In each subfigure, the y-axis is the amplitude with

unit of Pascal, and the x-axis is the time. The BBF solution is constructed with twenty harmonics.

The overall performance of the prediction solver is satisfying since the predictions agree well

with the BBF solution in amplitude and phase as the average L2 norm of the error is 1.82% for

the x cases. With the Lanzcos filter applied after the time marching in the propagation solver, the

Gibbs’ phenomenon is eliminated. The Gibbs’ phenomenon is apparent in the BBF evaluation

due to the use of a limited number of harmonics.

To validate the attenuation effect of the propagation solver, we set the nonlinear term and

dispersion terms to zero for plane wave propagation. The test signal is a 2000 Hz tonal sound

wave propagating at sea level with an ambient speed of sound of 343 m/s. The results are shown

in Fig. 3-8, where y-axis is the SPL and the x-axis is the frequency. The black spectrum and red

spectrum are obtained at propagation time t = 2 s and t = 5 s, respectively. From Sutherland and

Table 3-3. Nonlinearity Validation Matrix.
po (Pa) SPL (dB) f (Hz) Shock Distance (m) σ1 σ2 σ3

50 124.9485 10 12984.105 0 1 3
50 124.9485 50 2596.821 0 1 3
50 124.9485 500 259.682 0 1 3
250 138.9279 10 259.682 0 1 3
250 138.9279 50 519.364 0 1 3
250 138.9279 500 51.936 0 1 3
500 158.9279 10 1298.411 0 1 3
500 158.9279 50 259.682 0 1 3
500 158.9279 500 25.968 0 1 3
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Figure 3-7. Nonlinear effect validation of the propagation solver by comparing with the BBF
solution at different σ .

Bass [68] model, the attenuation for this condition is 6.96 dB/km. From t = 2 s to t = 5 s, the

SPL reduction obtained from the prediction is 7.2356 dB, which is 0.074 dB higher than 7.1618
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relative to the Sutherland and Bass model. The error is less than 1.02 %, we believe that the

atmospheric attenuation model is implemented correctly.
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Figure 3-8. Absorption Coefficient Validation.

As the nonlinearity and attenuation components of the solver are validated, the propagation

solver is ready for further studies. In the next section, the preliminary results of the ray tracing

solver and related propagation solver are demonstrated.

3.2 Preliminary Results of the Numerical Solver

As the numerical solvers are validated, the assembled numerical solver is exercised with

realistic test cases. We choose four positions as example infrasound source locations, and all the

source locations are at same height of 100 m to simulate the height of a real tornadic infrasound

source. Infrasound sources reside within the entire height of the tornado (approximately 5 km),

but are dominant below 1 km. Instead of the actual source location, the initial source location of

the the propagation solver is 1 km away from the tornado to satisfy the far-field propagation

assumption. The propagation path is simulated and obtained by the ray tracing solver as

demonstrated in Subsection 3.2.1. Related signal propagation is predicted by the propagation

solver (Subsection 3.2.2). The single frequency infrasound, mathematically modeled broadband

tornadic infrasound, and the CFD simulated tornadic infrasound are employed as the source

signals.
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3.2.1 Ray Tracing Results for Propagation Test Cases

In the first step, the acoustic ray tracing solver is applied to find the acoustic ray path that

connects the source location and the observer. Four airports, Kansas City International Airport

(Kansas City, IATA: MCI), Will Rogers World Airport (Oklahoma City, IATA: OKC), Ted

Stevens Anchorage International Airport (Anchorage, IATA: ANC), and José Martı́ International

Airport (Havana, IATA: HAV), are chosen as the infrasound source locations. The OKC and MCI

are located in the Tornado Alley, while the HAV and ANC represent the tropical and sub-arctic

region. The date and time of the propagation is set to 12:00+00 on March 1st in 1990 for all the

propagation cases. In this subsection, the ray tracing results of the HAV case and MCI case are

demonstrated in Fig. 3-9 and Fig. 3-10. The x-axis is the horizontal distance from the source
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Figure 3-9. Acoustic ray tracing result of the HAV case (Up: Westward propagation, Down:
Eastward Propagation).

location, and the y-axis is the altitude. The top subfigures are the westward propagation for both

figures, while the bottom subfigures are the eastward propagation. The rays’ different colors

represent different launching angles. The launching angles are from 30 degrees to 60 degrees for

eastward propagation with one degree launching angle increments and 120 degrees to 150 degrees

for the westward propagation with one degree launching angle decrements. For the HAV region,
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Figure 3-10. Acoustic ray tracing result of the MCI case (Up: Westward propagation, Down:
Eastward Propagation).

the eastward propagation is upwind because of a northeast trade wind. At 300 km east from the

HAV source location, a shadow zone appears. The observers are located on the ground and 200

km from the source locations. Because of the stronger east trade wind in HAV than MCI, the high

launching angles rays in HAV trend to generate a larger shadow zone than MCI case. The black

ray paths are those that connect the sources and observers. The launching angles of the black rays

are 53◦, 132◦, 58◦, and 127◦ for the HAV eastward, HAV westward, MCI eastward, and MCI

westward cases. The black ray paths, related wind profiles, and temperature data are transferred

into the propagation solver as input arguments.

3.2.2 Propagation Solver Case Study without Turbulent Model

As the ray paths are obtained from the ray tracing solver, the propagation solver is now used

to predict the received waveform at the observer location. The propagation solver is tested with

four different source signals: a 3 Hz 140 dB sine wave, a 5 Hz 120 dB sine wave, a modeled

rebuild tornadic broadband infrasound signal, and a tornadic infrasound signal obtained from a

CFD simulated tornado [129]. The terms of the nonlinearity, geometric spreading, attenuation,

and dispersion are all switched on for these test cases.
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To demonstrate the nonlinear effects, we propagate an intensive 140 dB sine wave at 3 Hz in

four regions with both eastward and westward propagation, and the results are shown in Fig.

3-11. In this figure, the left column contains the westward propagation cases and the right column

contains the eastward propagation cases. For the HAV, OKC, and ANC cases, the eastward

propagation are the upwind propagation, while the westward propagation is the upwind

propagation for MCI case. The red dash line represents the signal’s spectrum after 5 s of

propagation, which we call the near-source signal. The black line is the received signal at the

observer. Notable nonlinear phenomena are shown for all the upwind propagation cases, as

evidenced by the generation of harmonics. For the MCI case, the upwind propagation altered by

the nonlinear propagation effect which causes three harmonics at 6 Hz, 9 Hz, and 12 Hz, while

the downwind case in MCI is a pure linear propagation. To investigate the different nonlinear

effects in MCI’s upwind and downwind cases, the nonlinear coefficients along the ray paths are

shown in Fig. 3-12. The difference of nonlinearity between the upwind and downwind

propagation can be understood clearly with this figure. The y-axis is the nonlinear coefficient, and

the x-axis is the propagation time. The red dash line in Fig. 3-12 is the nonlinear coefficient of the

downwind propagation, and the black line is the upwind case. After 10 s of propagation, the

nonlinear coefficient of the upwind propagation is approximately 100 times larger than the

downwind case. This can be explained with the ray tube concept, where the ray tube is

compressed as acoustic wave propagates in the upwind direction, which results in a smaller

convective volume and greater nonlinear coefficient.

For tornadic infrasound, the SPL is unlikely ever to reach 140 dB, so we use a 5 Hz and 120

dB sine infrasound as the source signal and propagate it in the MCI region. The spectra for this

case are shown in Fig. 3-13. For this 120 dB case, there is no apparent nonlinear effect for both

upwind and downwind cases. The geometric spreading and attenuation effects have the largest

effect on the infrasound propagation.

Besides the single frequency test, we also conduct a broadband signal propagation test. To

build a broadband tornadic infrasound signal, we use the mathematical model of Talmadge and
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Figure 3-11. A 140 dB and 3 Hz sine wave signal propagation.

Waxler [130]. The modeled Stillwater tornadoes infrasound spectrum [130] is applied, and the

rebuilt infrasound propagation results in MCI region are shown in Fig. 3-14. In the left subfigure

of Fig. 3-14, the red spectrum is captured at propagation time t = 100 s, and the black spectrum is

obtained at the observer location. The right subfigure is the pressure time history related to the

spectra in the left subfigure, with the dual y-axis of different amplitude magnitudes. Similar to the
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Figure 3-12. Nonlinear coefficient in the near source region (MCI).
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Figure 3-13. 120 dB 5 Hz signal propagation in MCI area.

120 dB and 5 Hz sine wave case, the nonlinear effects are negligible for this broadband signal’s

propagation. The peaks near τ = 0.1 s, τ = 4.8 s, and τ = 6.3 s decrease significantly lager

(23.3950 dB) than the peaks at other location, which is caused by the atmospheric attenuation,

since the coefficient of attenuation increases with increasing frequency.

The source signal of the last test case is modeled from a CFD simulated tornado [129] by

using Lighthill’s acoustic analogy [50]. The simulated tornado is shown as the left subplot in Fig.

3-15 as a u-component contour. The radial vibration of the vortex structure located at the height

range from 100 m to 200 m contributes to the major infrasound energy. The spectrum is shown on

the right. Two humps are clearly captured in the spectrum at frequencies of 6 Hz and 7 Hz.
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Figure 3-14. Broadband signal propagation in MCIE case.
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Figure 3-15. CFD simulated tornado and the spectrum of its tornadic infrasound, courtesy of
Penn State University. .

The CFD simulated tornadic infrasound signal is input into the propagation solver and

propagates in the HAV region. The pressure time history of the source signal and the received

signal are shown in Fig. 3-16 by the black and red lines, respectively. Similar to the pressure time

history of the mathematically modeled source signal, the major effects on the propagation are the

geometric spreading and the atmospheric attenuation.
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Figure 3-16. CFD tornadic infrasound signal propagation result; Black: source signal, Red: signal
at observer.

3.3 Summary

In this chapter, the numerical techniques described in Chapter 2 are implemented and

validated. The ray tracing solver is validated by comparing with the Hallberg et al. [82] solver.

Nonlinearity and atmospheric attenuation of the propagation solver are validated with the BBF

and Sutherland and Bass [68] model, respectively. Four regions’ acoustic ray tracing simulations

are conducted with HWM93 and NRLMSISE-00 models. Four types of source signals are used

with the propagation solver, and the related results are demonstrated and analyzed. For the

tornadic infrasound propagation, the nonlinearity is no longer the primary effect to be

investigated. While the attenuation is the main focus for the tornadic infrasound propagation, the

turbulent scattering attenuation will be studied by experimental techniques in Chapter 4. These

measurements will then be used to improve the prediction of the turbulent scattering effect.
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CHAPTER 4
WIND TUNNEL EXPERIMENTS AND MEASUREMENTS

To evaluate the effect of turbulence on long-range propagation, a series of experiments are

conducted to investigate the turbulent scattering models for acoustic propagation (Chapter 2). The

experiments are designed to propagate a sound signal through the UFBLWT with different

turbulent flows. By recording the alternation of the sound signal, the turbulent effects on acoustic

propagation can be determined. In the experimental campaign, there are three major objectives to

be measured accurately, and these objectives are shown as following.

• The first objectives is the initial acoustic source signal. This signal is launched by a
commercial speaker, which introduces distortion to the signal because of the speaker’s
impulse response. Therefore, we tested the speaker in an anechoic chamber to obtain the
precise test signal without any reflection and environmental disturbance. The UFBLWT is
acoustically characterized to avoid the interaction between wind tunnel background noise
and the initial acoustic source signal. Once the test signal and the UFBLWT are prepared
for the acoustic test, the test signal is propagated through carefully-controlled turbulent
flows in the UFBLWT.

• The second objects is the turbulent statistics, which are measured by a velocity probes’
system. These probes are mounted on an automated mechatronic gantry system that moves
in three dimensions, and are controlled from outside the tunnel. In this manner, vertical
turbulence profiles are measured at a series of locations through the depth of the UFBLWT
(from fans to the exit).

• The third objectives is the turbulent-altered acoustic signals, which are recorded by a
microphone system during the propagation experiments. These recorded signals are
compared with the initial signal to evaluate the physical effects on the propagation.

The entire experimental procedure is constructed in three experimental stages corresponding to

the three objectives, and these stages are described in detail in this chapter.

In this chapter, the introduction of the UFBLWT and anechoic chamber are presented first

(in Section 4.1). The three stages of the experiment campaign are introduced separately in Section

4.2, with detailed experiment setups and experimental designs. The results are presented and

analyzed in Section 4.3.

4.1 University of Florida Turbulent Boundary Layer Wind Tunnel

The UFBLWT (see Fig. 4-1) is a low-speed wind tunnel with a 6 m wide by 3 m high test

section. Eight 1.5 m Aerovent vane axial fans with adjustable pitch blades can generate up to 16

m/s tunnel velocities. The 40 m long tunnel has an adjustable ceiling pitch to regain static pressure

76



Speaker Location

Microphone Location

Ground Roughness Element

Figure 4-1. University of Florida Boundary Layer Wind Tunnel, acoustic configuration, and a
roughness element (Photo courtesy of author).

lost from friction. The floor of the tunnel has mechanical devices (right-bottom corner in Fig. 4-1)

that rise to a pre-determined height to control the roughness layer within the turbulent boundary

layer (see [131] for details). Roughness elements at the bottom of the boundary layer can be

reconfigured to simulate artificial terrain. Many diverse terrain configurations and associated

turbulent flows can be rapidly investigated. Each of the 1,116 roughness elements are individually

automated to control height and aspect ratio, providing the ability to rapidly reconfigure the tunnel

to produce a large range of profiles and scales (see terraformer video at [132]). Validation studies

of the flow-field and its relationship to the roughness element configuration have recently been

published. These include floor to free stream mean and turbulent velocity for 33 homogeneous

terrain configurations [133, 134] and measured longitudinal velocity spectra [135, 133, 131].

The UFBLWT does not have anechoic treatment [136] and is not considered a tunnel that is

typically useful for acoustic tests. Wind tunnels created for acoustic testing often have open or

partially open test sections [137, 138], anechoic treatment [139], and special baffles to dampen

the acoustic waves from the compressor or electric motor system [140, 141]. The present facility

is primarily designed to create excellent repeatable measurements of the atmospheric turbulent

boundary layer with varying roughness. Roughness elements themselves scatter noise that
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propagates throughout the tunnel [142], however, this scattered noise lags the incident wave.

Furthermore, the walls of the UFBLWT have very little to no acoustic absorption properties, and

therefore we treat them as hard walls that approximate perfectly reflected acoustic waves [143].

Nonetheless, the UFBLWT can be used for acoustic testing to ascertain the alteration of waves by

turbulence through a carefully designed experiment, which is described in Subsection 4.2.1 and

Subsection 4.2.3.

Near the exit of the tunnel, a meteorological station is used to monitor the local atmospheric

conditions. The ambient pressure, humidity, and temperature data are collected during the tests

from the meteorological station measurements.

4.2 Stages of the Experiment Campaign

4.2.1 Stage 1: UFBLWT Acoustic Conditions, Test Signal Design, and Anechoic Chamber
Test

We first characterize the background noise of the wind tunnel. The background noise

spectra are shown in Fig. 4-2 with the reference wind speeds of 3.474 m/s, 6.853 m/s, and 10.619

m/s, respectively. The corresponding wind tunnel RPM are 240, 480, and 720. The four spectral

measurements within the tunnel test section show significant broadband SPL increases from low

RPM to high RPM, while the peaks at 3 kHz, 6 kHz, and 9 kHz are captured and these peaks stay

nearly at the same level regardless of the RPM variation. The broadband background noise

increase of the tunnel is primarily due to the turbulence within the tunnel. The characteristic peak

frequencies may due to the electric motors and the fan blades.

After the background noise and background characteristic frequencies are obtained, a test

signal is designed to remove the acoustic reflection and the background noise in the wind tunnel.

The test signal is produced by a speaker system, so a speaker test is also necessary to obtain the

accurate output of the speaker in the anechoic condition.

The test signal is a lumped sound of a series of single cycles sine waves. The sine waves are
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Figure 4-2. Example of four different RPMs wind tunnel background noise spectra.

constructed as

Ss(t) =



sin(2π f1t), 0 ≤ t < 36;

sin(2π f2t), 36 ≤ t < 72;

sin(2π f3t), 72 ≤ t < 108;

sin(2π f4t), 108 ≤ t < 144,

(4-1)

where f1 = 800 Hz, f2 = 1250 Hz, f3 = 1600 Hz, and f4 = 2000 Hz, respectively. To obtain the

single cycles, a window is applied by using Heaviside function as

W (t) =



H(t −N1)−H(t −N1 − 1
800), t < 36;

H(t −N2)−H(t −N2 − 1
1250), 36 ≤ t < 72;

H(t −N3)−H(t −N3 − 1
1600), 72 ≤ t < 108;

H(t −N4)−H(t −N4 − 1
2000), 108 ≤ t < 144;

(4-2)
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where H(x) is the Heaviside function. N1, N2, N3, and N4 are constant coefficients and equal to 0,

36, 72, and 108, respectively. By multiplying the window function W with the Ss signal, the test

signal St is obtained as

St(t) =W (t)Ss(t). (4-3)

and the structure of the test signal is shown in the Fig. 4-3. For each frequency, there are 36

repeated single cycles, which are combined with blank periods to assemble the one-second

segments for each single cycle. In Figure 4-3, the 36 single cycles of the 800 Hz are in period 3 s

to 39 s, while period 39 s to 75 s is the 1250 Hz, period 75 s to 111 s is the 1600 Hz, and 111 s to

147 is the 2000 Hz, respectively. At the end of the signal, there are four reminder tones indicating

the end of the signal.
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Figure 4-3. Raw anechoic chamber source signal recording at 2 m from the speaker.
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This single-cycle test signal is designed to remove the acoustic reflections by producing

phase difference between the direct wave and reflected waves. As the reflected wave travels

longer distance than the direct wave, the arriving time of the reflected wave is later than the direct

wave. If the additional propagation distance caused by reflection is larger than the wave length of

the test signal, the phase difference can guarantee a separation in time between the direct wave

and reflected waves. To eliminate the background noise, 36 identical single cycles are played for

each frequency. By taking the ensemble average of the single cycles, the turbulence-induced

background noise can be removed efficiently. With this single-cycle test signal, the reflection and

background noise caused by the wind tunnel can be countered, and the source signal can be

extracted at the measurement location at the tunnel test section before reflections arrive.

The test signal is coded within a MATLAB script, and played by a commercial speaker. To

obtain the accurate output sound of the speaker, we conducted a speaker test in the anechoic

chamber as shown in Fig. 4-4. The anechoic chamber is located in the UF Mechanical and

Figure 4-4. Acoustic system (Left: speaker; Right: microphone) in anechoic chamber with the
propagation distance = 3 m (Photo courtesy of author).

Aerospace Engineering Building A. The chamber is designed for the open-jet aeroacoustic test

[144]. Anechoic treatments are applied to all the sidewalls, including the floor and the ceiling to

minimize the wall reflection in the chamber. The interior dimensions of the chamber are 5.5 m

long by 5 m wide by 2.3 m high, which provides the propagation distance for the speaker test

approximately from 1 m to 4 m. Fiberglass wedges enclosed by steel meshes can provide a cut-off
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frequency of approximately 100 Hz, which is satisfying because the frequency of the test signal is

approximately 1000 Hz. More detailed information can be found in Mathew [145]. During the

anechoic chamber test, all the microphone and speaker setups are identical to the following wind

tunnel test to generate the identical output of the speaker.
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Figure 4-5. Single cycle signals at 2 m away from speaker.

Figure 4-5 shows the measured one-second segments of the test signal from the anechoic

chamber speaker test. For the first crests of all the frequencies, the amplitudes are 2 Pa as

designed. The impulse responses are observed at the troughs of all three signals, as the amplitudes

of the troughs are -3.326 Pa, -2.928 Pa, and -2.657 Pa for 800 Hz, 1250 Hz, and 1600 Hz,

respectively. It is expected that the lower frequency signal has a stronger impulse response, as the

trough of the 800 Hz signal has the maximum magnitude. In Fig. 4-5, the response time of the

speaker is also obtained. The diaphragm takes about 20 milliseconds to rest after the 800 Hz sine

pulse, while the response time for 2000 Hz is approximately 13 milliseconds. Because of the

impulse response, a zero-padding region created by the Heaviside function is employed to

eliminate the leading-and-tailing single cycles’ interaction caused by the impulse response. In this
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figure, the 800 Hz, 1250 Hz, and 1600 Hz one-second segments are recorded at 2 m from the

speaker.

4.2.2 Stage 2: Turbulent Measurement in the UFBLWT

Typically in the UFBLWT, turbulent flow-fields are measured using an automated

multi-degree-of-freedom instrument gantry capable of traversing longitudinally, laterally, and

vertically nearly the entire length, height, and width of the test section [146]. As shown in Fig.

4-6, the Three-Cobra-Probe [147] (TCP) system is employed. The TCP system consists of three

identical Cobra probes from Turbulent Flow Instrument [147] (TFI), and each of the Cobra probes

is a fast-response-four-hole probe and capable of measuring the u, v, and w fluctuating velocity

components with the sampling frequency at 2 kHz and accuracy of ± 0.5 m/s (TFI Catalogue

[147]). All three Cobra probes collect data simultaneously and store the data by using TFI

software. In Fig. 4-6, from the bottom to the top, these Cobra probes are labeled Bot, Mid, and

Top, respectively. To monitor the vertical cross correlations of the turbulent structure, the spacing

between probe Bot and Mid is 40 mm while the spacing between Mid and Top is 60 mm. With

this spacing arrangement, we can capture the cross-correlations for 40 mm, 60 mm, and 100 mm

vertical length scales. To minimize the interaction and flow-blocking effects, probe Bot is placed

horizontally, probe Top is align vertically, and probe Mid is aligned with a 45 degree angle to the

ground. The TCP is mounted on the gantry system that is connected to the ceiling of the tunnel.

The gantry moves in the streamwise direction of the tunnel. This allows movement of the TCP in

the x direction of the tunnel and for turbulence measurements to be made at various positions. An

example of a single probe measurement is shown in Fig. 4-7. As shown in this figure, an

anisotropic turbulent field is captured as the dependency between the velocity fluctuation and the

reference of the rotation.

At the height of z = 1.48 m and x = 2.5 m, a Pitot tube (Dwyer; Series 600) is used to

measure the flow velocity. This Pitot-tube measured velocity is used as the reference wind speed

for the test matrices to indicate the working condition of the wind tunnel.

The turbulent test matrix contains 128 tests. Each one of the tests is defined by 4 different
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Figure 4-6. Coordinates calibration of Three-Cobra-Probe (TCP) system at Z = 590 mm (Photo
courtesy of author).
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Figure 4-7. Turbulent Field at EH = 30 mm, EL = 900 mm, and WS = 5.3 m/s.
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parameters: estimated wind speed (WS), terraformer element height (EH), cobra probe position in

x-direction (X) and cobra probe position in z-direction (Z). Because both acoustic and turbulent

measurements are conducted in the same coordinates system, the z-location (Z) is used to

represent the height of the flow measuring point different from the acoustic test’s elevation (EL)

shown in Fig. 4-1. To get the turbulent statics along the ray path, Z are kept identical to the EL of

the acoustic system. The TCP position in the UFBLWT in the x-direction is defined as the

distance from the test section in the UFBLWT to the TCP location in meters. 2 m, 10 m, 16 m,

and 22 m were the values of X for all the tests performed. The TCP positions in the UFBLWT in

the z-direction are defined as the vertical distance from the floor of the UFBLWT to the center of

the horizontal cobra probe Bot. 170 mm, 590 mm, 740 mm, and 900 mm are the positions of the

cobra probe Bot in the z-direction for the turbulence tests. In these turbulent tests, there are a total

of 4 different estimated reference wind speed in the wind tunnel: 4 m/s, 6 m/s, 8 m/s, and 10 m/s.

The terraformer configurations considered in this set are uniform with all the elements with the

same height. The terraformer element heights are defined from the floor to the top of the

terraformer elements, and are set at 0 mm and 30 mm for turbulent test.

4.2.3 Stage 3: Acoustic Propagation Experiment in the Wind Tunnel

The UFBLWT acoustic experiments are conducted with modified a wind tunnel

configuration as shown in Fig. 4-8, along with the coordinate system. The airflow is generated by

the fan bank from the left side and combed by the Flow Field Modulator (FFM) and honeycomb.

After the Irwin Spires, the airflow is adjusted to a boundary layer profile in vertical direction.

Then the boundary layer flow passes the terrainformer to generate different turbulent boundary

layers at the test section. The coordinates of the tunnel and the associated dataset is located at the

center of the test section, which is also the base of the microphone. We define the upstream

direction as x direction, the cross-stream direction as the y direction, and the vertical direction

(toward the ceiling of the tunnel), as the z direction. As shown in Fig. 4-8, the distance from the

microphone to the speaker is fixed at 22 m in the x direction. There is no refraction of acoustic

waves because the temperature variation is negligible in the tunnel. Therefore, the vertical
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Figure 4-8. Microphone location and speaker location.

positions of the speaker and microphone vary but are always at the same height, which results in a

horizontal straight-line ray path of the direct acoustic wave between the speaker face and the

microphone. For the acoustic test, we use the elevation (EL) to represent the height of the

microphone-speaker system. The EL is adjusted to propagate the test signal through different

regions in the turbulent boundary layer. This configuration of the wind tunnel achieves a

multi-turbulent conditions for the acoustic propagation test.

The acoustic system consists of the source signal generation system and the sound

recording system. The source signal generation system is constructed by a speaker and its

supporting structure, along with a controlling laptop. Figure 4-9 shows the speaker system in the

UFBLWT. The supporting structure is mounted on the tunnel floor and provides a vertical degree

of freedom to the speaker. The audio cable (taped on the floor) connects the speaker to the

controlling laptop located outside the wind tunnel near the fanbank. The sound recording system

consists of the microphone set, inflow nose-cone, supporting structure, signal amplifier,

data-acquisition (DAQ) system, and recording collecting computer in the control room. The

microphone set is a GRAS CCP free-field 46BE 1/4 inch microphone set consisting of an IEC

61094 WS3F standardized GRAS 40BE 1/4 inch Prepolarized Free-Field Microphone and a

GRAS 26CB 1/4” CCP Standard Preamplifier. The microphone frequency range is 4 Hz to 80

kHz, and the dynamic range is from 35 dB to 160 dB. The microphone is placed at the center of

the test section and points in the upstream direction with a zero degree angle relative to the

incident acoustic wave. When the wind tunnel flow passes the microphone, the turbulence
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Figure 4-9. Speaker at EL = 590 with the supporting system (Photo courtesy of author).

generated by the microphone produces unwanted pressure variations on the microphone

diaphragm (see Allen and Soderman [148] for details). Therefore, a GRAS RA0022 1/4 inch

nose-cone is placed on the microphone face to reduce the microphone-turbulence interaction

noise. Figure 4-10 shows the microphone set mounted on the height-adjustable supporting

structure. This structure allow the microphone’s height to be adjusted between 0 mm to 1200 mm.

A BNC cable connects the microphone to an amplifier, which transmits a voltage signal to a the

DAQ system. The acoustic sampling frequency of the DAQ system is 40 kHz, and the DAQ

system is controlled by LabView on the computer in the control room. The microphone is

calibrated before and after each acoustic test by a GRAS 42AG Multifunction Sound Calibrator.

The calibrator produces a sinusoidal signal of 250 Hz (251.19 ± 0.30 Hz) or 1 kHz (1000 ± 1

Hz), at 94 dB (± 0.2 dB) or 114 (± 0.2 dB). The microphone is calibrated by the 1000 Hz signal

and use the 250 Hz calibration as a reference. The DAQ records both the voltage in V and

acoustic pressure in Pa based on the acoustic calibration. With the wind tunnel configured and

acoustic system setup, the acoustic propagation test is conducted based on an acoustic test matrix.
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Figure 4-10. GRAS 46BE 1/4 inch CCP free field standard microphone at EL = 590 mm with the
supporting system (Photo courtesy of author).

The acoustic test matrix includes 144 different tests. Each one of the tests is defined by 4

different parameters: estimated wind speed (WS), terraformer element height (EH), microphone

elevation (EL), and frequency ( f ). In this set of tests there are a total of 9 different estimated wind

speed in the wind tunnel: 0 m/s , 2 m/s , 4 m/s, 5 m/s, 6 m/s, 7 m/s, 8 m/s, 9 m/s, and 10 m/s. The

terraformer configurations considered in this set were all uniforms with all the elements at the

same height. The terraformer element heights were 0 mm, 10 mm, 30 mm, and 50mm from the

floor to the top of the terraformer elements. The microphone elevation in the UFBLWT is defined

as the vertical distance from the floor of the UFBLWT to the center of the microphone. 170 mm,

590 mm, 740 mm, and 900 mm were considered as the positions of the microphone in the y

direction for the acoustic matrix.

4.3 UFBLWT Experimental Results

As mentioned in the previous section, there are two test matrices for the acoustic and

turbulent tests, respectively. Table 4-1 is a summary of these two matrices.
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Table 4-1. Acoustic and turbulent test matrices.
Acoustic Test

(144 Total Cases)
Turbulent Test

(128 Total Cases)
Elevation (EL)

(mm)
170, 590,
740, 900

Z-Locaiton (Z)
(mm)

170, 590,
740, 900

Element Height (EH)
(mm) 0, 10, 30, 50

Element Height (EH)
(mm) 0, 30

Wind Speed (WS)
(m/s)

2, 4, 5, 6,
7, 8, 9, 10

X-Locaiton (X)
(mm) 2, 10, 16, 20

Frequency (Frq)
(Hz) 1250, 1600, 2000

Turbulent Statics
(4 Wind Speed Lumped

for Each Parameter)

TKE, Time Scale,
Integral Time Scale

Mean Velocity,
Integral Length Scale

In Table 4-1, the parameters for acoustic and turbulent wind tunnel tests described

previously are shown with the values for all the tests. All 144 acoustic tests and 128 turbulent

tests are included in this table. In this section, the acoustic test results are presented with a

post-processing method, and the turbulent measurements are shown, which are used to create the

scattering model.

C
ro
ss
-s
ec
ti
o
n
 

In
le
t

Inlet Flow

E
x
it

Ceiling

Floor Terraformer (Fetch Length = 18.3 m)

x = 20 m x = 16 m x = 10 m x = 2 m

Speaker 
(x = 22 m) Microphone

(x = 0)

Origin of the 
coordinates

Total Propagation Distance = 22 m EL = 170, 
590, 740, 
900 mm

TCP supporting rake, 
at x = 20, 16, 10, 2 m

TCP, at z
b
 = 170, 590, 740, 900 mm for x = 2, 20 m

at z
b
 = 170, 490, 640, 800 mm for x = 10, 16 m

x 

z 

Ceiling Rail

Ground Element 
(EH)

Figure 4-11. Experimental schematic from the UFBLWT acoustic propagation tests.[149]

The experimental procedure is summarized in Fig. 4-11, which shows the setup of the wind

tunnel tests. The source signal is generated by a speaker located near the inlet of the wind tunnel,

and the microphone is located near the wind tunnel exit. The x coordinate is aligned with the

ground center line of the tunnel, and the z direction points to the ceiling. The total propagation

distance is 22 m for the acoustic tests. Both the microphone and speaker have adjustable height so
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that their elevation height (EL) can vary. The turbulence in the wind tunnel is measured by a

Three-Cobra-Probe system (TCP) with both vertical and longitudinal degrees of freedom. The

TCP is not present during acoustic tests, so that they do not scatter the acoustic wave. All the

ground elements are set at the identical height (EH) to the floor and identical angle to the flow for

each test.

4.3.1 Turbulent Measurements

As discussed in the previous sections, the turbulent measurements are conducted in the

wind tunnel and the measured data is demonstrated in this subsection. We measure the

instantaneous velocity with three orthogonal components. By calibrating zero mean velocity for

the y and z direction, we re-orientate the three components to align the TCP with the wind tunnel

coordinates in the x direction (Method described in [150]).
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Figure 4-12. PSD of x-direction turbulent velocity.

Fig. 4-12 presents the power spectral density (PSD) of the fluctuating component of wind in

the x direction defined as the turbulent velocity u′ for a test at zb = 170 mm, WS = 10 m/s, x = 2

m, and EH = 0 and 30 mm. E(k) is the energy-spectrum function and k is the wavenumber of the

u-component turbulent velocity. As expected, k−5/3 energy decay is observed in the inertial range.

Fig. 4-13 illustrates the boundary layer mean velocity profiles at x = 20 m, 16 m, 10 m, and 2 m,

respectively, with the coordinate system provided in Fig. 4-11. In this figure, the x-axis Uprobe
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Figure 4-13. Boundary layer profiles along the x-direction, with EH = 30 mm and WS = 6 m/s.

represents the wind velocity measured by each single Cobra probe. The longitudinal turbulent

intensity profiles are shown in Fig. 4-14. The x-axis represents the longitudinal turbulent intensity
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Figure 4-14. Longitudinal turbulent intensity Iu with EH = 30 mm, WS = 6 m/s.

Iu. From this figure, the turbulent intensity decreases with increasing z for all four x locations. The

vertical-spatial-averaged turbulent intensity drops from 12.42% at x = 20 m to 7.42% at x = 2 m.

We multiply the integral time scale with the mean local velocity to obtain the integral length

scale. The integral time scale is captured from the auto-correlation coefficient. The auto
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correlations of Probe 272 with the EH = 30 mm and WS = 10 m/s case are shown in Fig. 4-15.

The left figure is the auto-correlation coefficients obtained at X = 20 m, while the right figure is
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Figure 4-15. Auto correlation with EH = 30 mm.

obtained at X = 2 m. Here we use the value of 1/e to intercept the correlation coefficient plots. A

total of 24 cases are selected for the integral time scale calculation, the detailed results are

presented in the next chapter.

In Fig. 4-16 the TKE measurements along the ray path are presented for different x

locations. The title of each subplot is the x location, and the x-axis represents the Uprobe and the

y-axis is the TKE. At each x location, the TKE decreases with increasing z, which agrees with

previous measurements. From the upstream location of x = 20 m to the location nearest to test

section at x = 2 m, the TKE decreases dramatically because of the dissipation effect on the wind

tunnel flow. The maximum TKE at the near inlet location (x = 20 m) is 0.7756 m2/s2, while the

TKE at the location closest to the test section (x = 2 m) is 0.1507 m2/s2.
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Figure 4-16. TKE measurements with EH = 0.

4.3.2 Acoustic Recording and Post Processing

Figure 4-17 shows an example recording from the wind tunnel with a 3.26 m/s reference

wind speed. The entire acoustic signal consists of five parts as designed. The period from 4 s to

40 s is the 800 Hz signal, which contains 36 single-cycle sine waveforms. After the 800 Hz

signal, there are 1250 Hz, 1600 Hz, and 2000 Hz signals located at 41 to 76 s, 77 to 112 s, and

113 to 148 s periods, respectively. At the end of the signal, four one-second-long tones with 800

Hz, 1250 Hz, 1600 Hz, and 2000 Hz are set as a reminder to indicate the end of the signal play.

The overall structure of the test signal is identical to the recording from the anechoic chamber test

in Subsection 4.2.1. The left-side zoom-in figure shows a part of the 1250 Hz signal, in which the

periodic signal is clearly observed. The right-side zoom-in figure is an example of recorded
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Figure 4-17. Wind tunnel recording with EH = 10 mm, EL = 170 mm, and wind speed = 3.26 m/s.

single-cycle wave segment. For this low wind speed case, the first crest is apparent, even with

trailing reflected waves. For higher wind speeds, the background noise rises significantly, and the

signal-to-noise ratio can be lower than 1, which makes the first crest hard to recognize. We

ensemble 36 single-cycle signals to remove the background noise for 1250 Hz, 1600 Hz, and

2000 Hz signals.

Figure 4-18 is an example of a recorded signal at 1250 Hz. The source signal is identical to

the anechoic 1250 Hz signal. By performing an ensemble average, the background noise is

reduced significantly. An example is the setpoint 61 case shown in Fig. 4-18. In this case, the

signal-to-noise ratio increases from 0.229 to 2.817 for the setpoint 61 case with wind speed at 7.8

m/s. Compared to the anechoic signal, the first sine wave is clearly recognized, along with the
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Figure 4-18. Ensemble signal of 1250 Hz with EH = 30 mm, and EL = 590 mm.

trough’s impulse response causing about 50% increment on magnitude. After 2.5 milliseconds,

the signals completely lose their original wave form, which we believe is the reflected sound

waves’ interference. We can clearly see the signal’s amplitude drops with increasing wind speed

from 0 to 7.0 m/s.

With this background noise canceling approach, the test signal’s amplitude is obtained for

different turbulent flows. Figure 4-19 is a plot of the three frequencies’ amplitude versus the

estimated wind speed at EH = 0 mm. From the top left to the right bottom, the subplots’ titles

represent different EL and the colors represent the different frequencies. The overall trend of the

four subplots is that the signal’s amplitude decreases with increasing wind speed. In the first

subplot, the data quality of the 1600 Hz and 2000 Hz signals are unsatisfying because of the

unexpected amplitude increase, especially comparing with the 1250 Hz signal. In the other three

subplots, the similar patterns are observed with all three frequencies’ signals. For the EL = 590

mm case, the maximum amplitude drop happened near the WS = 3 m/s, and the amplitudes for

1250 Hz, 1600 Hz, and 2000 Hz signals reach a flat region after the WS greater than 5 m/s. The

amplitude plots of the three frequencies’ signals in EL = 740 mm subplot are in a more apparent

pattern, with a little bump appeared near WS = 5 m/s. Within the frequency domain, the

amplitude of higher frequency’s signal is smaller than the lower frequency. On average, the

95



0 2 4 6 8 10

0.12

0.14

0.16

0.18

0.2

0.22
EL = 170 mm

0 2 4 6 8 10

0.14

0.16

0.18

0.2

0.22

0.24

EL = 590 mm

0 2 4 6 8 10

0.1

0.15

0.2

0.25
EL = 740 mm

0 2 4 6 8 10

0.12

0.14

0.16

0.18

0.2

0.22

0.24
EL = 900 mm

Figure 4-19. Amplitudes of the test signal at EH = 0 mm.

signal’s amplitude of the 1600 Hz is 0.15 Pa smaller than the 1250 Hz, while the amplitude of

2000 Hz is 0.1 Pa smaller than 1600 Hz. This amplitude-frequency relation is caused by the

atmospheric attenuation, which is predominately dependent on frequency. However, the

amplitude decrease caused by increasing turbulent intensity is not frequency independent,

because the average amplitude reduction is almost same regardless the frequency variation. To

change the turbulent flow’s features, the EH increased to 50 mm and the related results are shown

in Fig. 4-20. Similar to the results in Fig. 4-19, the amplitude reduction plots in Fig. 4-20 are in

the similar patterns for each EL. To investigate the effect of the EH, we use the ratio of the

amplitude reduction to the initial amplitude, σa = ∆Aamp/Aini, as the indicator, where ∆Aamp is

the amplitude drop between WS = 0 and WS = 10, and Aini is the amplitude at WS = 0. From EH

= 0 mm case to EH = 50 mm case, the σa increases from 0.3195 to 0.5473 with EL = 170 mm.

In the acoustic propagation experiment results, the relation between the amplitude reduction

and wind speed is clearly evident, along with the effects of the EH and EL variations. All these

parameters (WS, EH, EL) can be considered as sorts of inducement the turbulent flow variations.
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Figure 4-20. Amplitudes of the test signal at EH = 50 mm.

Thus, the turbulent statistics’ measurements are necessary for further investigation.

4.4 Field Measurements of Infrasound and Weather Data from Tornadoes

Besides the numerical prediction solver and wind tunnel experimental investigation, our

research program involves field tests of tornadoes in the American south east and south to capture

the tornado infrasound in the field. The goal of the field measurements is to capture infrasound

from tornadoes while simultaneously capturing weather and radar data to provide the numerical

solver with realistic source signal and propagation conditions. This way, we completely capture

the sound source, weather, radar, and other thermodynamic conditions of actual tornadoes. This

portion of the research program is conducted by a joint team at TTU. With two Ka radars and

Sticknet weather monitor station, TTU is able to capture the formation and movement of

tornadoes.

The infrasound measurement system contains 2 G.R.A.S. 46AZ 1/2” CCP free-field

Microphone sets [151] (Fig. 4-21a). These microphones can measure frequencies in the range of

0.5 Hz to 20 kHz with ± 3 dB precision. Our data collection system is shown in Fig. 4-21b. A
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(a) G.R.A.S. low f requency with wind cap (b) DAQ enclosure

Figure 4-21. Field experiment equipment (Photo courtesy of author).

BNC cable from each microphone connects to a KRYPTONi-1xACC DAQ, which is powered by

an AC power battery. The signal is transferred to the DAQ system and recorded by a surface

laptop with DEWEsoft X3 software. This whole data collection system is self-contained within a

water proof case.

4.5 Summary

In this chapter, the entire experimental procedure is introduced by the logical stages of the

experimental campaign. The experimental approaches for three stages are introduced, and the

equipment used in the experiment campaign is demonstrated. From the experimental results, the

acoustic-turbulent interaction is observed as an attenuation effect, as the amplitude of the

recorded acoustic signal decreases with increasing turbulent intensity. On average, near 0.6 Pa

amplitude reduction is observed at EH = 0 mm with the wind speed increasing from 0 to 10 m/s.

For the EH = 50 mm cases, the amplitude reduction is approximately 0.8 Pa for the same wind

speed increases. For different frequencies, the recorded signals show the similar amplitude

reduction pattern with respect to the wind speed at same EH and EL. The obtained experimental

data provides the solver development with an reliable data base to modify the scattering model.

The data in this chapter is published in the Journal of Structure Engineering [152].
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CHAPTER 5
VALIDATION, SENSITIVITY, NUMERICAL ANALYSIS OF THE BRIDGING MODEL

In this chapter, the author validated the bridging scattering model via UFBLWT

experimental data, and investigated the model’s sensitivity and applications via numerical

approaches. The validation of the model is presented in the Section 5.1. The author numerically

propagates an identical source signal through the same boundary layer flows as the UFBLWT

tests. By comparing with the experimental recording, the accuracy of the perdition model is

obtained. The results of the bridging model are compared with the Ostashev’s model. The

bridging model is implemented into the Burgers’ equation solver (which is introduced in Chapter

III) for further propagation tests. In Section 5.2.1, the bridging model’s sensitivity is studied with

numerical tests in which the model’s dependency on the turbulent parameters (TKE and length

scale) are addressed. The author also numerically investigates the model’s behaviors with the

TKE and length scale varying in the designed ranges and compare these behaviors with

Ostashev’s model. In the last section, Apsley’s model [153] is employed to generate a turbulent

atmosphere from ground to the altitude of 20 km. Then the author applied the bridging model to

this modeled atmosphere to obtain the turbulent absorption coefficient map for the acoustic

frequency range from 0.25 to 1024 Hz. The coefficient is presented as contours within the altitude

and frequency domain in the Section 5.3. In Section 5.4, the content of this chapter is

summarized, and the conclusion is presented.

5.1 Validation by the UFBLWT Experimental Data

As introduced in the Chapter 4, a series of boundary layer propagation experiments are

conducted, and the experimental data is collected and published. The purpose of these

experiments is to guide the creation and subsequently validate the turbulent attenuation

coefficient. The detailed experimental procedure and calibration of the UFBLWT propagation

experiments are decribed in details in Zhang et al. [152].The experimental data is publicly

available through the DesignSafe cyberinfrastructure [149]. In this section, the author focuses on

the data analysis and the comparison between the prediction and experiments. The validation of

turbulent attenuation coefficient are presented through these comparisons.
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5.1.1 UFBLWT Experiments Setup

Recall from the previous chapter, the three objectives of the experiment are critical for our

model validation. The first involves the careful construction of the source acoustic signal within

the tunnel. The second involves the measurements and characterization of the turbulent statistics

within the tunnel. The third involves measuring the acoustic signal altered by the turbulence.

The first objective that involves the source signal, is created by a speaker. The

anechoic-chamber measured source signal is presented here in Fig. 5-1 with the original signal

generated by MATALB. The Matlab-generated source signal of 800 Hz is shown as the blue-dash
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Figure 5-1. Output single cycle signals at 2 m from speaker.

line in the figure inset. We recorded 800 Hz, 1250 Hz, 1600 Hz, and 2000 Hz pulses at a 2 m

distance from the speaker. For the first crests of each source signal, the over-pressure amplitudes

are 2 Pa. By comparing with the source signal trough at -2 Pa, the impulse responses are observed

at the troughs for all four signals in the anechoic chamber, since the amplitudes of the troughs are

-3.393 Pa, -3.136 Pa, -2.857, and -2.657 Pa for 800 Hz, 1250 Hz, 1600 Hz, and 2000 Hz,

respectively [152].The 800 Hz pulse had the most intense response since its trough had the
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highest magnitude of 3.393 Pa. The anechoic chamber measured signal is the actual source signal

in the wind tunnel test, thus the author uses these measured signal as the source signal for the

numerical propagation solver.

The second objective is accomplished via measuring turbulent statistics via Cobra probes

within the tunnel. These probes are mounted on an automated mechatronic gantry system that

moves in three dimensions. Via this approach, both mean flow and turbulent statistics are

measured through the turbulent boundary layer. Probes are moved downstream and in the

cross-stream direction at multiple locations. The wind tunnel has the ability to control boundary

layer roughness via individually controllable roughness elements on the floor. In this way, our

results encompass a wide range of realistic atmospheric conditions with varying turbulent

statistics, ground roughness, and mean flow velocities. The probe-measured wind velocity, TKE,

and length scale, along with the humidity, and temperature, are imported into the propagation

solver as the path-dependent parameters. These detailed temperature, humidity, static pressure,

and turbulence measurements are available via DesignSafe [149].

The third objective involving measuring the turbulent-distorted acoustic signal, is obtained

by a G.R.A.S. [151] microphone system. The detailed pressure-time history of these microphone

recordings are presented in the following subsection. The author compares the solver’s

predictions to the wind tunnel recordings to evaluate the solver’s accuracy.

5.1.2 Predictions Compared to UFBLWT Measurements

In this subsection, the author compares the bridging-model embedded solver’s predictions

to the experimental data. All the wind tunnel measurements including flow velocities, static

pressure, humidity, temperature, TKE, and length scales are input directly into the propagation

solver. Then the experimental source signal in Fig. 5-1 is sent into the solver to propagate through

the same medium and distance as the wind tunnel test. Finally, the solver predicted signal at the

receiver is compared to the experimental recording.

Reflections of the source signal on the tunnel walls and the background tunnel noise reduce

the quality of our measurements. To reduce these effects, the author implements a ensemble
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averaging technique and a linear reflection wave prediction to reduce and remove these

disturbances, respectively. By taking the ensemble average of the 36 repeated single cycles for

each frequency, the broadband turbulent noise can be efficiently removed, and the signal-to-noise

ratio is improved to 2.8 and higher for acoustic measurements. To isolate the portion of the

received signal that resulted from reflection from the tunnel walls, the single-cycle signal is also

propagated by a linear wave propagation solver with the walls’ reflections. There are minimal

temperature gradients in the tunnel and the velocity gradient is small, which means the refraction

in wind tunnel is negligible. For the purpose of predicting reflection, the ray path is assumed to be

a straight line, and the reflections are considered as sound hard reflections. The reflection surfaces

are the ceiling, two sidewalls, and the ground. The ceiling and side walls are made of painted

plywood, and the ground is made of phenolic plywood. For the ground reflection, the angle of

incidence is between 85.3 to 89.1 degrees (varying due to increasing EL), which causes a grazing

effect [154]. The ground reflection is not included due to the roughness elements, which scatter

and destroy the reflected wave.

For the validation purpose, 24 cases from the wind tunnel experiments are selected for the

numerical solver. The case number, EH, EL, TKE, and Lv are listed in the Table. 5-1. Figure 5-2

shows four example comparisons between the numerical predictions and the recordings from

UFBLWT. The black lines are the experimental measurements, the dash-dot red lines are the

predictions from the nonlinear propagation solver, the dot blue lines are the results of the linear

wave prediction, and the bars represent the uncertainty of the experiment.To emphasize the time

of arrival of reflected waves, the vertical dash blue lines representing the arrival time are placed in

the figures. Tests 1, 2, and 3 are measured at the same EL of 170 mm with the mean wind speed

of 5.16 m/s, 6.86 m/s, and 8.64 m/s, while Test 10 is measured at the EL of 900 mm with the wind

speed of 5.16 m/s. The EHs of these four cases are set at 30 mm. More cases are accessible via

the DesignSafe data depot [149]. The linear wave prediction successfully captures the reflections

since the waveform of the prediction matches the experimental data. From the experimental

results in Test 10, we can clearly see two reflections with the first reflected crest at +1.2 s of 0.36
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Table 5-1. Validation Cases from UFBLWT
Case Number EH (mm) EL (mm) TKE (m2/s2) Lv (m)
1 0 170 0.285497439 1.89229835
2 0 590 0.489045006 2.55338616
3 0 740 0.746791184 3.17293199
4 0 900 0.245965851 1.99618983
5 0 170 0.473571295 2.70437004
6 0 590 0.673486221 3.38440037
7 0 740 0.232772216 2.03943488
8 0 900 0.39870511 2.76364275
9 0 170 0.558109027 3.41604406
10 0 590 0.18105005 2.06054768
11 0 740 0.316720206 2.80264579
12 0 900 0.466614857 3.47699021
13 30 170 0.353873967 1.78445229
14 30 590 0.63734585 2.40364506
15 30 740 0.956740539 2.98005391
16 30 900 0.270380982 2.00620386
17 30 170 0.508913882 2.70243448
18 30 590 0.676676571 3.40066319
19 30 740 0.233836928 2.0537407
20 30 900 0.413122501 2.77636998
21 30 170 0.600274472 3.43597764
22 30 590 0.190015219 2.07592138
23 30 740 0.333646917 2.81281356
24 30 900 0.474984052 3.48962781

Pa and the second reflected crest at +2.4 s of 0.4 Pa.

Predictions shown in Fig 5-2 are the results from the propagation solver without

considering reflections. The turbulent attenuation effect is captured by the solver as the predicted

amplitudes of the first crest in Test 1, 2, and 3 are 0.18 Pa, 0.11 Pa, and 0.09 Pa, which are all

located in the uncertainty range of the experimental results. A 0.09 Pa amplitude decrease is

observed with increasing mean TKE from 0.27 m2/s2 to 0.75 m2/s2. The turbulent length scale

of Test 1 and Test 10 are 1.89 m and 2.06 m, respectively, while the TKE of Test 1 and Test 10 are

0.27 m2/s2 and 0.18 m2/s2. The different reflection patterns between Test 10 and the other tests

shown in Fig. 5-2 are caused by the different ELs, while the EL is 900 mm for the Test 10 and

170 mm for the Test 1, 2, and 3. The decrease in TKE and increase in length scale cause a 0.005

Pa amplitude increase from Test 1 to Test 10.
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Figure 5-2. The comparison between the experimental results and numerical predictions with
reflection isolated.

Figure 5-3. The error comparison between the bridging model (top) and Ostashev’s model
(bottom).
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Errors of the 24 predictions relative to experiments are shown in Fig. 5-3. The dots

represent the percentage error between the prediction and experiment, and the outliers (prediction

not located within the uncertainty band) are colored as red dots and labeled by their test number.

The average error of Oshtashev’s model is 24.32%, and the average error of the Bridging model is

22.45 %. By removing the outliers from the results, the error of Ostashev’s model decreases to

12.67%, while the bridging model’s error is 11.9%. The average error of the model is 11.9%,

which is approximately a 1% improvement relative to Ostashev’s model. However, this prediction

improvement is over a distance of 22 m, while propagation in an atmosphere would be

approximately 100 km. Turbulent attenuation is observed in the experimental results and is

captured by the propagation solver.

5.2 Sensitivity Analysis

A numerical sensitivity analysis is conducted to investigate the new model’s (Eqns. 2-79

through 2-80) characteristics and performance for predicting turbulent scattering. For each test, a

1% perturbation is applied to each parameter while all other parameters remain constant. The

resulting variation caused by the 1% perturbation is investigated to ascertain each parameter’s

influence in the propagation process. In this section, the sensitivity tests are divided into two parts:

the model sensitivity and the solver sensitivity. By analyzing the absorption coefficient (converted

from the cross-section σtot), the sensitivity of the parameters in the scattering model is obtained.

By obtaining the sound pressure level (SPL) variations with each corresponding parameters’

perturbation, the most and least sensitive parameters can be identified for the propagation solver.

5.2.1 Parameter Sensitivity in the Scattering Model

The turbulent field is constructed via the von Kármán spectrum (Eqn. 2-67). The total

cross-section is calculated by Eqn. 2-68 from Ostashev’s model and Eqn. 2-80 from the bridging

model by integrating the equations over the entire scattering angle. For both models, the

limited-length k− ε model by Apsley and Castro [153] is employed to reconstruct the

atmospheric turbulence for this test. An acoustic ray is constructed as a straight-line horizontal

path with an altitude of 100 m to grantee the constant value of the TKE and length scale.
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Figure 5-4. Turbulent kinetic energy and length scale predicted by Apsley’s model.

Fig. 5-4 is the TKE and length scale profiles from Apsley’s model Apsley and Castro [153].

The TKE at 100 m altitude is 0.07 m2/s2, and the length scale is 7.17 m. Then the scattering

attenuation coefficients along the ray path are obtained by implementing the TKE and length

scale to the scattering model. Fig. 5-5 shows the results of the sensitivity analysis of the scattering

models.

The y-axis on the left represents the normalized sensitivity (variation over original value) of

the parameters. The total cross-section is converted to the classic absorption coefficient with the

unit of dB/km, which is represented by the right y-axis. The solid line is the coefficient obtained

from the bridging model, while the dash line is the coefficient calculated by Ostashev’s model.

Here, αt represents the turbulent absorption coefficient. Both models agree with each other from 0

to 200 Hz, while the gradient of increasing absorption coefficient in the bridging model decreases

when the frequency is higher than 200 Hz. Sensitivity is normalized with its corresponding

non-perturbation value. The TKE is represented by the square of the fluctuating velocity σ2
v . For

Ostashev’s model, the perturbation introduced by TKE is steady at 2.012%, which is reasonable

considering the TKE in Eqn. 2-67 can be extracted via integration in Eqn. 2-68. The TKE’s
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Figure 5-5. The sensitivity of the scattering models.

sensitivity in the bridging model shows a similar trend below the frequency of 1 kHz. When the

frequency is higher than 1 kHz, the TKE in the bridging model has a stronger influence with

2.025% coefficient variation. The difference between those two models on the length scale’s

sensitivity starts from the low-frequency region (around 1 Hz) and increases with frequency. The

minimum normalized sensitivity of the Lv is 1.003% at 1000 Hz in Ostashev’s model, while the

minimum sensitivity of Lv in the bridging model reaches as low as 0.073% at 800 Hz.

From the comparison between those two models, the overall sensitivity of those parameters

are similar in those two models, while the bridging model shows 10% stronger length-scale

sensitivity than Ostashev’s model at 2048 Hz. Meanwhile, the σv sensitivity of the bridging

model is 56% less than Ostashev’s model at 2048 Hz.

5.2.2 Effects of Parameters in Numerical Propagation Solver

A numerical sensitivity analysis is also applied on the propagation solver. A shock wave

and a synthetic tornadic infrasound signal are employed for this analysis. The turbulent

atmospheric conditions for the propagation sensitivity study are identical to the modeled

turbulence in the previous subsection. All the propagation cases are set as plane wave
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propagation. The 1% perturbation is applied to six different parameters in the propagation solver.
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Figure 5-6. Predicted received waveform relative to N wave source.

For the shock wave propagation case, a left-running N-wave is constructed with an

amplitude of 20 Pa and time-span of 0.30 s with sampling frequency of 16,384 Hz. Because a 10

sample-point wide Lanscoz resampling is applied to the solver to remove the Gibbs’ phenomenon

at the end of the time marching, frequencies higher than 819 Hz are not examined. For this case,

the total propagation distance is 1.0 km, the propagation altitude is 100 m, the humidity is 50 %,

and the temperature is 20 ◦C. The predictions of the pressure time history are shown in Fig. 5-6,

where the solid line signal is the source signal, and the dashed line signal is the received signal.

The sensitivity analysis for the shock propagation case is shown as Fig. 5-7.

The six parameters tested are the amplitude of the shock (pmag), the propagation distance

(R), the atmospheric nonlinear coefficient (β ), the atmospheric attenuation coefficient (α), the

turbulent length scale (Lv), and the turbulent velocity variance (σv). The solid line represents the

source signal’s spectrum, while the dotted line is the spectrum of the received signal at the
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Figure 5-7. Shock wave propagation results and sensitivity analysis.

observer. A significant broadband reduction is observed with the frequency higher than 80 Hz.

The parameters are most sensitive in the region between 10 Hz to 1000 Hz. Frequency-dependent

absorption is also observed in this region. We observe that the least influenced parameter among

those examined is the atmospheric attenuation, whose highest sensitivity is about 3×10−3 dB at

20 Hz. The nonlinearity coefficient’s sensitivity reaches its highest value near 30 Hz with a 0.1

dB influence on the signal. The velocity variance σv and the length scale Lv show similar trends

over the entire spectrum. σv and Lv initially decrease from 10−2 dB and 7×10−3 dB at 2 Hz to

3×10−4 dB and 6×10−4 at 20 Hz, respectively. Then the σv and Lv’s hump-like sensitivity

increases are observed from 20 Hz to 1024 Hz with a similar profile as α . The difference between

the sensitivity of σv and Lv almost stay at the same value over the entire frequency domain. The

most sensitive parameter is the amplitude of the signal pmag. In the entire frequency range, the

sensitivity of pmag is 0.1 dB except for the region near 200 Hz, where a slight increase to 0.2 dB is

observed. The propagation distance R is the only parameter that does not have the hump-like

sensitivity profile. The amplitude of fluctuation of R’s sensitivity increases with increasing
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frequency.

All the parameters show relatively higher sensitivity near the frequency at 200 Hz for the

shock propagation case. The most sensitive parameter is the amplitude of the shock wave, while

the least sensitive parameter is the atmospheric attenuation. The turbulent attenuation model’s

two critical parameters, σv and Lv, have the same order of magnitude sensitivity. The average

value of σv and Lv’s sensitivity is higher than R, β , and α , which imply the importance of the

turbulent effects during the shock propagation.

We now turn our attention to the sensitivity of broadband tornadic infrasound propagation.

A tornadic broadband signal is reconstructed with the model of Frazier et al. [55] as

S(ω) = A f ω
−7/3 +

Asω
2
n ω2

ω4 +4ξ ω2
n ω2 +ω4

n
ga(ω)+An. (5-1)

The first term represents the atmospheric background noise, the second is the characteristic

tornadic infrasound, and the last is the spectrum magnitude baseline. Here, we isolate the tornadic

signal by removing the first term since the atmospheric background noise is not the primary focus

of the study. To emphasize the characteristics of the tornadic infrasound, the parameters are

chosen here are: As = 1.051, ωn = 9.3, ξ = 0.057, and An = 5.11×10−4. The spectrum of the

reconstructed signal is shown in Fig. 5-8.

The reconstructed signal is constructed by linear superposition of the tonal noise of all

frequencies with energy provided by the modeled red spectrum in Fig. 5-8. The black spectrum is

obtained from the reconstructed pressure time history of the tornadic infrasound signal. The

reconstructed signal matches with the modeled spectrum, and the average error is 1.3 dB per Hz.

The modeled tornadic infrasound signal is propagated over 1 km with identical altitude,

humidity, temperature, and turbulent statistics to the shock propagation test. The prediction of the

pressure time history of this tornadic infrasound case is shown in Fig. 5-9.

The upper solid line is the pressure time history of the source signal. The dashed line

represents the received signal. In Fig. 5-9, we observe that the maximum amplitude drop is about

3.5 Pa, which is mainly caused by the high-frequency energy decay. This frequency dependent
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Figure 5-8. Reconstructed tornadic infrasound spectrum via Frazier et al. [55]’s model.

energy decay is easily observed in Fig. 5-10, where the solid line represents the source spectrum

and the dashed line represents the received spectrum.

The largest SPL drop in the spectrum occurs in the range of 30 Hz to 1000 Hz. Unlike the

shock wave propagation case, the sensitivity of amplitude pmag remains at a constant level of 0.1

dB for all frequencies. The sensitivity of propagation distance R follows almost the same trend as

pmag with the value fixed at 10−2 from 0.25 Hz to 100 Hz. When the frequency is higher than 100

Hz, the sensitivity of R surges from 10−2 at 100 Hz to 10−1 at 1000 Hz. The nonlinear coefficient

β is the least sensitive parameter when the frequency is higher than 30 Hz, which is reasonable

since the overall SPL of the tornadic infrasound is 99.46 dB, and there is no nonlinear component

in the source signal. The sensitivities of atmospheric attenuation α and length scale Lv are the

same order of magnitude for the frequency range from 20 Hz to 300 Hz, while fluctuations of α

and Lv are observed between 10−6 dB and 10−4 dB from 0.25 Hz to 20 Hz. From 20 Hz to 1000

Hz, the sensitivities of α and Lv increase on the order of 10−4 dB to 10−2 dB. The sensitivity of

ω2
v follows a similar trend as α and Lv, but with higher sensitivity, which increases from 10−4 dB
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Figure 5-9. Numerical Prediction of the Tornadic Infrasound Propagation.

at 10 Hz to 0.12 dB at 1000 Hz.

From those two sensitivity analyses, σv and Lv are as significant as other propagation

parameters. From the macroscopic perspective, parameters are more sensitive with higher

frequency in this tornadic infrasound case.

5.3 Numerical Model Analysis and Parametric Study of the Propagation Solver

The author examines propagation trends with the new bridging model to understand its

behavior within more realistic scenarios. In particular, the TKE and Lv are examined since they

are the key factor of the bridging model. For this subsection, the absorption coefficient αt

quantifies the effects of TKE and Lv. We examine the source that corresponds to the synthetic

tornadic signal propagation case.

Figure 5-11 shows the distribution of αt with frequency range of 0.25 Hz to 1024 Hz and

TKE range from 0.1 to 10 m2/s2. In Fig. 5-11, the x-axis is the acoustic frequency in Hz, the

y-axis is the TKE in m2/s2, and the colors represent the value of the turbulent absorption
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Figure 5-10. Sensitivity analysis of the tornadic infrasound case.

coefficient. The integral length scale Lv for this prediction is fixed at 1.2 m. The coefficient

contours are in log scale ranging from 10−15 to 1 dB/km. The overall trend of αt is increasing

with increasing TKE, as expected. Turbulent absorption shows a linear increase with frequency,

which is similar to the trend involving the atmospheric absorption coefficient Sutherland and Bass

[68]. In the low frequency region, f < 20 Hz, the maximum αt is below 10−4 dB/m, even with

the maximum TKE at 10 m2/s2. For a 20 Hz acoustic signal, the atmospheric absorption

coefficient is 2×10−5 dB/m. Even for the minimum TKE at 0.1 m2/s2, the turbulent absorption

coefficient is approximately 6−6 dB/m. Based on this prediction, the turbulent absorption can

strengthen the overall acoustic attenuation by a factor ranging from 30% to 500% during

propagation in the turbulent atmosphere.

The distribution of the turbulent absorption coefficient αt in the frequency-Lv domain is

presented in Fig. 5-12. Unlike Fig. 5-11, the x-axis is linear to illustrate a clearer insight into the

dependency between the Lv and αt . The TKE for this prediction is set at 0.2 m2/s2. The Lv’s

range is from 0.5 to 500 meters, while the frequency range is kept the same as in Fig. 5-11.
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Figure 5-11. Absorption coefficient with respect to TKE and acoustic frequency.

Contour lines are solid. By using the linear x-axis, the αt’s profile for high frequency shows a

hill-like shape with increasing Lv. The Lv of the turning point of these hill-like profiles decreases

with increasing frequency. This behavior is caused by the integration of Eqn. 2-80, where Lv can

alter the integrating area in wavenumber space. Therefore, the correlation between Lv and

acoustic frequency contributes to the curve in Fig. 5-12. Similar behavior is also observed in the

predictions of Ostashev’s model, and the detailed difference between these two models are shown

in Fig. 5-13. An αt difference contour map is presented in Fig. 5-13 by subtracting the turbulent

absorption coefficients from Ostashev’s model with the bridging model. Here, the turbulent

statistics are identical to those presented in Fig. 5-12.

In Fig. 5-13, the difference of αt between αt from the bridging model and Ostashev’s model

is normalized with the turbulent absorption coefficient from Ostashev’s model. At f > 100 Hz,

the difference between these two models are negligible. At infrasonic frequencies, the difference

114



Figure 5-12. Absorption coefficient as a function of turbulent length scale and frequency.

approaches 3% to 4%. The maximum difference appears from f at 10 Hz and Lv at 0.5 m to f =

0.25 Hz and Lv at 100 m. This indicates that the effect of the bridging model is more apparent at

low frequencies, and that the new model is not required for higher frequency signals.

Figures 5-14a and 5-14b show the results of the OASPL difference with and without

turbulence. The tornadic signal shown in Fig. 5-9 is employed as the source signal. The ∆OASPL

is the difference between the OASPL of the propagation within a turbulent field and without,

respectively. For the first test, the TKE of the turbulent model is fixed at 0.0285 m2/s2, while the

Lv varies from 2.5 to 250 m. A ± 5% perturbation is applied to evaluate the sensitivity of the

model. As shown in Fig. 5-14a, the effects of Lv on the ∆ OASPL are linear, while the effects of

the perturbation also follows a linear variation.

Finally, we examine an atmosphere with varying TKE and Lv. Variation is governed by the

model of Apsley and Castro [153] in an altitude range of 0 to 20 km. Fig. 5-15 shows on
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Figure 5-13. Coefficient difference between the bridging model and Ostashev’s model.

(a) (b)

Figure 5-14. ∆OASPL of the bridging model with varying Lv and TKE.

representative example of the turbulent attenuation distribution from 0 to 20 km. The dark blue

line represents the maximum absorption, and also represents the height of maximum absorption

for each frequency. The dependency of the absorption coefficient on frequency is clearly observed
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Figure 5-15. Absorption coefficient distribution in frequency and altitude.

as the overall trend of the coefficient increases from 10−10 dB/km to 10−1 dB/km with increasing

frequency from 0.2 to 1000 Hz at 2 km high. For f higher than 20 Hz, the absorption decreases

with increasing altitude monotonically. The connection between maximum absorption and

altitude is illustrated by the line. For infrasound frequencies (less than 20 Hz), the maximum

turbulent absorption altitude increases with decreasing frequency, and this maximum occurs near

8 km at 0.25 Hz. For f > 20 Hz, αt decreases with increasing altitude monotonically. This is due

to a combined effect of increasing Lv and decreasing TKE as altitude increases.

5.4 Summary and Conclusion

In this Chapter, the bridging model of acoustic-turbulent interaction for long-range

propagation is experimentally validated and numerically investigated. The bridging model is

implemented into a generalized Burgers’ equation solver for long-range propagation. The

solver-predicted signals at the receiver are compared to the UBFLWT experimental recordings.

Sensitivity analyses are conducted for both the model and solver. The TKE shows more influence

than the length scale in both Ostashev’s model and the bridging model. The overall sensitivity of

the turbulent length scale in the bridging model is less than in Ostashev’s models. The sensitivity

of TKE and length scale are also compared with other propagation parameters, including
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nonlinear coefficient β , atmospheric absorption α , signal amplitude pmag, and propagation

distance R. The TKE and length scale show stronger influence than atmospheric absorption and

even reach the maximum sensitivity with the same magnitude as the pmag at 1000 Hz for the

tornadic infrasound case.

A series of wind tunnel propagation experiments are conducted in the NSF UFBLWT to

validate the newly developed bridging model. The experiments successfully captured the

turbulent attenuation. The peak amplitude of the received signal varies from 0.22 Pa to 0.084 Pa,

with the mean wind tunnel speed from 0 to 8.56 m/s. These results showed that both Ostashev’s

and the new model make excellent predictions, and that there is a slight improvement in

prediction accuracy with the new model by approximately 1 to 2%. This error is dimensional over

the length of the tunnel, and would be amplified over longer distances.

A series of numerical studies are conducted to investigate the new model’s characteristics

and its influence on the propagation of signals. The TKE and Lv’s effects on predictions are

presented, where the TKE primarily effects absorption, and Lv alters αt . The OASPL of the

received tornadic signal is used to analyze the overall influence of the bridging model. Both TKE

and Lv contribute to larger decrease of OASPL. By implementing a realistic turbulent atmospheric

model with the bridging model, a maximum absorption line is observed within the αt contour.

The content of this chapter is submitted to the Journal of Acoustic Society of America [? ].
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CHAPTER 6
CONCLUSION AND FUTURE WORK

In this dissertation, infrasound propagation in the atmosphere is investigated by theoretical

studies, numerical models, and experimental tests. A new bridging model for acoustic-turbulent

interaction is developed. Ostashev’s model [11] is modified with the classic acoustic ray theory to

account for turbulent refraction effects. To predict the propagation of waves over long distances,

this bridging model is implemented into a validated Burgers’ equation solver to account for the

turbulent effects in the atmosphere. Together, the combined numerical approach represents a

fast-responding early-warning tornado prediction system by coupling it with the ray tracing

method. It can be incorporated into the NOAA prediction network for early warning of tornadoes.

A series of unique boundary layer experiments are conducted in the NSF funded UFBLWT to

evaluate the bridging model’s accuracy and behavior. A specially-designed microphone-speaker

system and three-cobra-probe system successfully collected acoustic and turbulent statistics

during the boundary layer tests, respectively.

In this chapter, the summary of the results and outcomes of the presented work is shown.

The overall outcomes and summary are presented at the beginning of Section 6.1. Then the author

summarizes the mathematical details of the bridging model, the accuracy of the ray tracing solver,

the validation of the Burgers’ equation solver, the UFBLWT experimental results, and the

numerical investigation of the bridging model in Section 6.1. In Section 6.2, potential

improvements and applications of the solver are discussed.

6.1 Summary of Results

This dissertation employs experimental techniques to investigate the turbulent-acoustic

interaction via propagating a specific test signal through turbulent flows within the UFBLWT. A

positive correlation is observed between the acoustic signal’s amplitude reduction and the TKE,

where the amplitude drops from 0.237 Pa to 0.134 Pa with the increasing TKE from 0.246 m2/s2

to 0.467 m2/s2 at EL = 900 mm. To numerically model this turbulent-acoustic interaction, a

solver is developed to evaluate a modified Ostashev’s turbulent scattering model [11]. The

Burgers’ equation solver is capable of capturing the nonlinearity, attenuation, and dispersion of

acoustic propagation. Also, by applying the acoustic ray tracing approach, the numerical package
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is able to capture the refraction caused by wind and temperature variations. The modified

scattering model provides the Burgers’ equation solver with the capability of capturing turbulent

effects. Thus the final numerical package can capture the effects of nonlinearity, atmospheric

attenuation and dispersion, refraction, and turbulence in propagation.

The Burgers’ equation propagation solver and the ray tracing solver are presented in

Chapter 3. The propagation solver is validated by comparing it with the Blackstock’s [57]

bridging function. The acoustic ray tracing solver is validated through comparison with

Hallberg’s [82] solver. Four propagation cases are presented in the Kansas City region, Oklahoma

City region, Havana region, and Anchorage region. The eigenrays are captured, and related

infrasound propagation are performed. For an intensive 3 Hz infrasound signal at 140 dB, the

effect of wind on the nonlinearity of propagation is captured. The acoustic harmonics are

captured for all upwind propagation within these four regions. For the downwind propagation

cases, the nonlinearity only appears in the OKC region case. A broadband 120 dB infrasound

propagation shows that atmospheric attenuation and geometric spreading are the main effects of

infrasound propagation from a tornado.

Chapter 4 introduces the acoustic propagation experiment in the UFBLWT to investigate the

turbulent-acoustic interaction. This interaction is clearly observed as the amplitude of the signal

decreases with increasing turbulent intensity. The amplitude reduction parameter, σa, is used to

quantify the turbulent attenuation. By increasing the EH from 0 to 50 mm, σa increases

approximately 71.4%. For different frequencies, similar amplitude reductions are observed for the

same combination of EH and EL.

In Chapter 5, the author numerically investigates the developed bridging model by

performing sensitivity analysis and parameter dependence study. The validation of the bridging

model is also included in this chapter, and a 2% improvement is obtained comparing to

Ostashev’s model when analyzing the UFBLWT data.
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6.1.1 Summary of The Bridging Model for Acoustic-Turbulent Interaction

Acoustic-turbulent interaction has been studied since the 1950s to evaluate the role of

turbulence during acoustic propagation. Lighthill [85] developed his scattering model by starting

from the acoustic energy conservation and his acoustic analogy. Ostashev and Wilson [11]

successfully developed a scattering model by solving the Helmholtz equation within the turbulent

medium. Although the two models use different approaches, their final expressions converge to a

similar equation as functions of TKE and integral length scale.

In present dissertation, a bridging model is developed to explore the turbulent scattering

related to the low-frequency acoustic waves and large-scale turbulent structures. The refraction

caused by the large-scale turbulence is included in the new model by using the classic ray theory

and decomposed turbulent field. The author conducts a sensitivity analysis of the model to

investigate the parameters’ effects on the turbulent absorption coefficient. The acoustic

propagation experiments within the UFBLWT are employed for model validation. The author

also numerically investigates the model’s behavior with the varying TKE and Lv. The results from

the bridging model are compared with the results from Ostashev’s model. The major outcomes

from the mathematical derivation of the new bridging model are:

• The new concept, a subray tube, is created to account for the turbulent scattering with small
scattering angle. The acoustic energy contained in the subray tube is expressed as a
function of acoustic wave length λ , geodisc elements X, and the turbulent fluctuation strain
rate si j as λ

8π
X1,iX2,i si jsi j cos(X1,X2).

• The Ostashev’s model [11] (improved version of Tartaski’s orginal model [88]) is modified
and bridged with the new subray tube model. For small scattering angles, the bridging
model switches to a turbulent refraction model, which is derived from the classic ray theory
by decomposing the turbulent medium into a mean and fluctuating velocity.

• A sine function is used to bridge Ostashev’s model and the turbulent refraction model. A
characteristic turbulent wave number, kl , represents the turbulent integral length scale. For
scattering wavenumbers larger than kl , the bridging model converges to Ostashev’s
scattering model for the cross-section calculation. For scattering wavenumbers smaller than
kl , the refraction model replaces the scattering model.

• The refracted cross-section σr is expressed by σv, Lv, and partial integration of the turbulent
spectrum E(k).
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6.1.2 Summary of The Ray Tracing Solver and Burgers’ Equation Solver

The acoustic ray tracing algorithm from Gainville [10] is implemented into a solver with the

capability of importing realistic discrete weather information. A well-designed validation

procedure is conducted to guarantee the ray tracing solver’s accuracy. As a benchmark ray tracing

solver, the solver of Hallberg et al. [82] is employed to validate the author’s ray tracing solver via

numerical comparisons. For the ray tracing solver, the validation and grid independence studies

are conducted to explore the solver’s accuracy. The Burgers’ equation solver is validated by

performing a nonlinear wave propagation case with varying conditions and comparing with the

results of the Blackstock [57] bridging function. The attenuation effects of the developed solver

are validated by comparing with the tabulated results of the Sutherland & Bass [68]. The cases

examined for validation include tonal and broadband signals’ propagation are conducted by the

validated Burgers’ equation solver. The main outcomes of the solver validation are:

• The results of the ray tracing solver are compared with Hallberg’s solver. The turning point
location is selected as the parameter to quantify the difference between the two solvers.
Good agreement is observed between these two solvers as the maximum difference is
5.23%.

• The time-step-size dependency and mesh dependency is investigated for the ray tracing
solver. Both tests show the convergent trends to a same turning point with increasing
resolution.

• The Burgers’ equation solver is validated with the results from Blackstock bridging
function. Predicted shock formation distance is compared with the result from Blackstock
bridging function to validate the solver. The L2 norm of the error of the solver is 1.82%.

• The atmospheric attenuation model is compared with Table IV in Sutherland and Bass [68].
For a 2000 Hz signal, the error is less than 1.02%.

6.1.3 Summary of the UFBLWT Propagation Experiments

The three stages of the experiments are introduced, and the equipment used in the

experiment campaign is described. From the experimental results, the acoustic-turbulent

interaction is observed as an attenuation effect, as the amplitude of the recorded acoustic signal

decreases with increasing TKE. The major results and findings of the wind tunnel experiments

are:
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• On average, a 0.6 Pa amplitude reduction is observed at EH = 0 with the wind speed
increasing from 0 to 10 m/s.

• For different frequencies, the recorded signals show a similar amplitude reduction pattern
with respect to the wind speed at same EH and EL.

• For the EH = 50 mm cases, the amplitude reduction is approximately 0.8 Pa for the same
wind speed increases as the EH = 0 cases. From EH = 0 to EH = 50 mm, the normalized
variation of the amplitude (∆Aamp/Asource) increases from 0.3195 to 0.5473 at EL = 170
mm.

• The obtained experimental data provides the solver development with an reliable data base
to modify the scattering model.

• The database of the UFBLWT experiments is published and well-documented on
DesignSafe [152].

6.1.4 Summary of the Numerical Investigation of the Bridging Model

A series of numerical studies are conducted to investigate the new model’s characteristics

and its influence on the pressure time history of signals as they propagate. The bridging model is

implemented into the generalized Burgers’ equation solver for long-range propagation.

Sensitivity analyses are conducted for both the model and solver. Varying TKE shows more

influence than the length scale in both Ostashev’s model and the bridging model as the

normalized sensitivity of TKE is 2% for Ostashev’s model and 2.012% for the bridging model,

while the normalized sensitivity of Lv is lower than 1.1% for both models with frequency higher

than 100 Hz. The overall sensitivity of the turbulent length scale in the bridging model is less than

Ostashev’s models. The sensitivity of TKE and length scale are also compared with other

propagation parameters, including nonlinear coefficient β , atmospheric absorption α , signal

amplitude pmag, and propagation distance R. The TKE and length scale show stronger influence

than atmospheric absorption as the sensitivity of TKE and Lv are larger than atmospheric

attenuation. The major outcomes and results of the numerical investigations are:

• A characteristic turbulent wave number, kl , represents the turbulent integral length scale.
For scattering wavenumbers larger than kl , the bridging model converges to Ostashev’s
scattering model for the cross-section calculation. For scattering wavenumbers smaller than
kl , the refraction model replaces the scattering model.
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• The refracted cross-section σr is expressed by σv, Lv, and partial integration of the turbulent
spectrum E(k). A sine function bridges the refraction model and scattering model by
matching its maximum value to the maximum cross-section.

• The OASPL of the received tornadic signal is used to analyze the overall influence of the
bridging model. Both TKE and Lv contribute to a larger decrease of OASPL.

• These results showed that both Ostashev’s and the new model make excellent predictions,
and that there is a small improvement in prediction accuracy with the new model by
approximately 1 to 2% over 22 m propagation.

• The TKE and Lv’s effects on predictions are presented, where the TKE primarily effects
absorption, and Lv alters αt .

• By implementing a realistic turbulent atmospheric model with the bridging model, a
maximum absorption line is observed within the αt contour. The maximum turbulent
absorption for the 0.25 Hz is located at altitude of 8.2 km. As the frequency increases to 10
Hz, this maximum absorption altitude drops to 1.6 km. This variation is caused by the
integrative action of the increasing Lv and decreasing TKE with the increasing altitude.

• A series of wind tunnel propagation experiments are conducted in the NSF UFBLWT to
validate the newly developed bridging model. The experiments successfully captured the
turbulent attenuation. The peak amplitude of the received signal varies from 0.22 Pa to
0.084 Pa, with the mean wind tunnel speed from 0 to 8.56 m/s.

6.2 Future Work

In the presented dissertation, the major innovations are the bridging acoustic-turbulent

interaction model and the boundary layer wind tunnel propagation experiments. This unique

model and corresponding experiment represent a new technique to capture turbulent effects

during long-range propagation. However, there are still some limitations in the present approach.

Currently, there is no wind tunnel that can create perfectly scaled atmospheres relative to the full

atmospheric turbulent boundary layer (see [155, 156, 157]). The turbulent boundary layer created

within the UFBLWT does not capture atmospheric temperature and air density fluctuations.

Therefore, we do not expect the acoustic data from the UFBLWT to include the effects of acoustic

refraction [158] due to the mean density gradients that are present in the atmosphere. However,

the tunnel does allow acoustic waves to be modified by turbulence as observed in the present

measurements. Furthermore, the wind tunnel is not an anechoic facility. The acoustics contain

reflections from the walls of the tunnel. Waves in the facility follow a system described by Vaidya
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and Dean [159], which correspond to duct acoustics [143]. To overcome this tunnel limitation, an

ensemble averaging technique to capture the direct ray (geometric acoustics) and its effects from

turbulence is implemented. This method allows us to remove the reflected waves from the tunnel

walls, floor, and ceiling. Such reflections can in practice be eliminated from three of the walls of a

wind tunnel by performing similar acoustic experiments in a wall-jet facility [160], but no such

wall-jet wind tunnel with roughness elements exists. Finally, only a limited number of

measurements along the ray paths of the acoustic waves from source to observer have been

captured by the TCP system. This limitation is not a major issue because of the nature of the

slowly varying boundary layer [161] after its initial rapid development near the tunnel entrance.

In practice, these profiles are interpolated between measurement positions to approximate the

entire profile for the validation of acoustic prediction codes. In the future, more boundary layer

wind tunnel tests can facilitate further validation of the solver, or use tests in real atmosphere to

help modelling the inhomogeneity of humidity and temperature. For the potential applications of

the solver, explosion infrasound propagation and sonic boom propagation can be investigated and

discussed. The detailed research discussion about these two solver applications are listed as the

following.

6.2.1 Explosion Infrasound Propagation

Besides tornadic infrasound, an explosion is another major source of atmospheric

infrasound. High power explosions generate powerful infrasound waves that propagate thousands

of kilometers from the source. Therefore, infrasound from explosions are appropriate application

for our numerical solver. Previous research [119, 162] mainly focuses on the propagation path

and nonlinearity of the explosion infrasound. By applying the newly developed turbulent

scattering model, our solver can capture the turbulent effects that occurs during long-range

propagation. The source signal, as an “N” wave, needs to be resolved as the initial condition for

the numerical solver. Based on previous studies [163, 164], the initial waveform can be calculated

with the known trinitrotoluene (TNT) mass of the explosion.

In the future, the numerical replica of several famous high power explosions [165, 166, 162]
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will be produced by our numerical solver. The solver’s predictions will be compared with the

recordings from the International Monitor System (IMS). The IMS is designed and established to

monitor any future entry into force of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) by

detecting and locating nuclear explosions [167]. As a part of the IMS, the infrasound monitoring

network can provide us with the recorded infrasound signals related to the explosions via an

Incorporated Research Institutions for Seismology (IRIS) data management system [168]. In the

final dissertation, the turbulent-involved simulation results will be demonstrated and compared

with the IMS recordings.

6.2.2 Sonic Boom Propagation

Another potential application of our solver is for sonic boom propagation. A sonic boom is

a nonlinear acoustic wave associated with the shockwave created when an object travels through

the air at supersonic speed [169]. Presently, potential low-boom aircraft are widely investigated as

a commercial supersonic transportation solution while minimizing the signature on the ground.

The ground signature of the low-boom aircraft is significantly more “acceptable” than the

previous supersonic commercial jets. The ground signature is not only affected by the initial

shockwave, but the effects of the propagation can also alter the waveform. The generalized

Burgers’ equation is widely used for the sonic boom propagation [170]. However, one limitation

of the generalized Burgers’ equation is that the turbulent effects cannot be captured by this

one-dimensional approach directly. By applying our numerical solver, the attenuation of turbulent

scattering can be included in the sonic boom propagation prediction.

In the future, the sonic boom study with our solver will be conducted in two stages. In the

first stage, we will compare our prediction with a current state-of-the-art solver, which is

PCBOOM [102]. The Sonic Boom Prediction Workshop (SBPW) hosted by the American

Institute of Aeronautics and Astronautics (AIAA) published two cases of the sonic boom

propagation predicted by PCBOOM [171]. We will calibrate our solver to reproduce the results to

match PCBOOM results without the turbulence model.
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APPENDIX
DATA ORGANIZATION AND DESIGNSAFE STORAGE

All the experiment data is organized and stored in the DesignSafe Cyber Infrastructure as a

published data repository. Figure A-1 shows the layout of the data and metadata files and how

they are organized on the DesignSafe-CI Data Depot repository. The Data Depot repository

Doc Folder

Acoustic Experiment Sheet

Turbulent Experiment Sheet

Turbulent Flow Insturment Cobra 
Probe.pdf 

Metadata

UFBLWT Configuration.jpg

3 Cobra Probe Gantry System.jpg 

Structure of Acoustic.mat

Structure of Turbulent.mat

Structure of Real Time Data

Data Folders

Real Time Data Folder

Static Data Folder

Raw Data Folder

Real Time u Velocity

Real Time v Velocity

Real Time w Velocity

Acoustic Data (Acoutic.mat)

Turbulent Statics Data (Turbulent.mat)

Raw Acoustic Data

Raw Turbulent Data

Prediction of Long-
Range Infrasound 

Propagation from 

Tornadoes Based on 

New Atmospheric 
Boundary Layer Wind
Tunnel Experiments

Figure A-1. Data Depot Structure

consists of three major sections: the Metadata, Document Folder, and Data Folder. The Metadata

is a document which explains the content of the components of all the files included in the

DesignSafe-CI Data Depot repository. It includes a brief introduction of the experimental setup,

the experimental configuration, describes the content of the Matlab files, the type of data and

resolution for both types: acoustic and turbulent, and finally explains the instrumentation and data

processing. The Document Folder includes three different files: two sheets with the acoustic and

the turbulent matrix (the Acoustic test sheet and the Turbulent test sheet), and a manual with the

technical specifications of the cobra probes used in this set of experiments (TFI Cobraprobe).
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The acoustic and turbulent data are included in the Data Folder section, which is organized

in three different folders according to the nature of the data: Real Time Data Folder, Static Data,

and Raw Data Folder. The Real Time Data Folder includes the instantaneous flow velocity

measurements, and the source signals recorded in the anechoic chamber. The instantaneous flow

is stored in three separate Matlab files corresponding to each one of the three different

components: u, v and w (Realtime u Velocity.mat, Realtime v Velocity.mat and

Realtime w Velocity.mat). The first index of the velocity measurement is the setpoint number,

which can be found in the Turbulent test sheet and the unit of the measurement is m/s. The source

signals recorded in the anechoic chamber are contained in two Matlab files (SourceSignal 2m.mat

and SourceSignal 3m.mat) for 2 m and 3 m away from the speaker, respectively.

Post-processed acoustic data (Acoustic.mat) and turbulent data (Turbulent.mat) are stored

separately in the Static Data folder. The acoustic data is structured in 4 different fields:

Microphone Elevation (EL), terraformer element height elevation (EH), estimated wind speed

(WS) and the Frequency of the signal (Fr). In the first field, the tests are divided according to the

microphone elevation, those values are 170 mm, 590mm, 740 mm and 900 mm. Once the

microphone elevation of the test that the user wants to open is selected, it is possible to choose the

second field, which is the terraformer element height elevation. In this case the options to select

are 0 mm, 10 mm, 30 mm and 50 mm. The third field to select is the estimated wind speed of the

test. As mentioned previously, for the acoustic tests there are 9 different wind speeds: 0 m/s, 2

m/s, 4 m/s, 5m/s, 6 m/s, 7 m/s, 8 m/s, 9 m/s and 10 m/s. Once each one of the fields is selected,

the last field correspond to the frequency of the sound source. The values of the frequency per

each one of the tests included in the acoustic portion are: 1250 Hz, 1600 Hz and 2000 Hz. For

example, if the user requires data from the Acoustic.mat file, with a microphone elevation of 590

mm, terraformer elements height of 30 mm, estimated wind speed of 5 m/s and a frequency of

1250, it is possible access to the time series information through the next prompt once the Matlab

file has been loaded: Acoustic.EL590.EH30.Wind5.Fr1250.

The turbulent data is structured in a similar way to the acoustic data, but in this case, in 3
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different fields: the cobra probe location in z-direction (Z), terraformer element height elevation

(EH) and cobra probe location in x-direction (X). In the first field, the tests are sorted according

to the microphone elevation, those values are 170 mm, 590mm, 740 mm and 900 mm. Once the

microphone elevation of the test that the user wants to open is selected, it is possible to choose the

second field, which is the terraformer element height elevation. In this case the options to select

are 0 mm and 30 mm. The third field to select is the cobra probe location in X-direction. The

options for this are 2 m, 10 m, 16 m, and 20 m. Once each one of the fields is selected, it is

possible to access different parameters for the group of tests such as the TKE, the time scale

(Timescale), the integral time scale (IntegralTimeScale), the mean velocity U (MeanVelocityU)

and the Integral length scale (IntegralLengthScale). For example, if the user requires data from

the turbulence.mat file, with a cobra probe location at 590 mm in z-direction, terraformer

elements height of 30 mm and a location of the cobra probes at 20 m in X-direction, it is possible

access to the information through the next prompt once the Matlab file has been loaded:

Turbulence.Z590.EH30.X20

The raw data of both turbulence and acoustics are stored in the Raw Data folder. For the

acoustic raw data, there are 144 recordings in the compressed file. The name of the recordings is

designed as setpoint number - date - time format. For the setpoints from 1 to 156, the recordings

are the same 144 acoustic tests used in the dataset, while the rest of the recordings are the

calibration tests and the additional tests. The Acoustic test sheet is the acoustic test matrix, in

where every acoustic recording can be tracked with its setpoint number along with the operating

conditions like temperature, humidity and environmental static pressure. For the raw turbulent

data, there are 128 subfolders insider the compressed turbulent raw data file. The name of the

subfolder is the constructed by a letter “T” and a number. The “T” represents the turbulent test

while the number is the setpoint number for the turbulent test. Similar to the raw acoustic data,

the turbulent test subfolder can be tracked by the setpoint number in the Turbulent test sheet file

under Doc folder. For each subfolder, there are three measurements with the extensions of .thA,

.thB, and .thC, which represent the measurements of Probe 272, Probe 266 and Probe 256,
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respectively, for subfolders from T1 to T42. For subfolders T42 to T144, The extensions .thA,

.thB, and .thC represent the measurements of Probe 256, Probe 266 and Probe 272, respectively,

due to the DaQ channel exchange.
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