Processing math: 100%

Linear to Nonlinear Relations in Wave Science (Acoustics)

In the realm of acoustics or wave science, the transition from linear to nonlinear physics marks a significant evolution in the understanding of tones and their generation. The foundation of this understanding dates back to Pythagoras, who established a linear relationship between the length of a plucked string and the resultant musical tone. This principle posited that the pitch produced by a string can be modulated linearly by altering its length.

A shift occurred in the 1580s with Vincenzo Galilei, the father of the renowned Galileo, challenging the prevailing linear thinking. Galilei’s experiments revealed a more complex, nonlinear relationship in the production of musical tones, particularly when it came to varying the tension of a string. Contrary to the linear assumption that increasing tension produced higher pitches in a directly proportional manner, Galilei discovered that the pitch interval was related to the square of the string’s tension, T2. This finding showed a nonlinear relationship in the generation of acoustic tones, extending beyond strings to wind instruments, where the pitch interval varied as the cube of the vibrating air volume, V3.

The implications of Galilei’s discovery were profound, demonstrating that an interval of a perfect fifth could be achieved through multiple nonlinear pathways: strings differing in length by a ratio of 3:2, in tension by a factor of 9:4, or wind instrument air volumes by a ratio of 27:8. This nonlinear understanding fundamentally altered the approach to musical acoustics, showing a method for a exploration of the intricate relationships that govern the generation of musical tones. This led to the study of nonlinear systems.