You will never be anything but a philosopher – and what is that but an ass who plagues himself all his life, that he may be talked about after he is dead. ~ Madame Rousseau on d’Alembert

## Gödel and Time

$\mathrm{LL}$ cosmological solutions with non-vanishing density of matter known at present ${ }^1$ have the common property that, in a certain sense, they contain an “absolute” time coordinate, ${ }^2$ owing to the fact that there exists a one-parametric system of three-spaces everywhere orthogonal on the world lines of matter. It is easily seen that …

## Underlying Assumptions

How Can Any Part of Mathematics Be Proven? The answer lies in demonstrating that a mathematical statement must be true if the underlying simpler math is also true. It is a great difficulty to show the increment from 1 to 2. Between 1910 and 1913, a three-volume work was published on this subject. Titled Principia …

## Boole and Laws of Thought

George Boole, in the 1840s, proposed that variables could represent more than just numbers. Boole’s work, published in “An Investigation of the Laws of Thought” (1854), introduced algebra with two values: 1 (true) and 0 (false). Instead of traditional algebraic operations, Boolean algebra uses AND, OR, and NOT, also known as conjunction, disjunction, and complement. …

## Fechner-Weber

The Fechner-Weber law states that for a sensation’s intensity to increase in an arithmetic progression, the stimulus must increase in a geometric progression. This relation describes sensory perceptions and physical stimuli for hearing. Human hearing can detect noise so quiet that the eardrum moves less than an atom’s width, and noise 10 trillion times more …

## Liouville and Numbers

In 1844, Joseph Liouville demonstrated that the decimal representations of certain numbers were infinitely long and lacked pattern. This idea, which suggests that numbers do not necessarily have an exact and finite value, was first proposed by Greek philosopher Zeno in the 5th century BCE. Zeno’s paradoxes are based on the infinite divisibility of space. …

## On the Computer

Down the rabbit hole on digital calculations. Computers, as programmable tools, trace their origins to the 1800s. Joseph Jacquard’s loom, which used punched cards for pattern storage, indirectly influenced the field (1800s). C. Babbage, inspired by the loom, built the Difference Engine in 1822 for mathematical calculations and later designed the Analytical Engine, the first …

## Complex Polynomials

The Fundamental Theorem of Algebra states that the field of complex numbers is algebraically closed, implying that every polynomial equation of degree n has n roots within the complex numbers, with at least one being a solution where the polynomial evaluates to zero. Historically, the theorem’s origin traces back to the conjectures by Albert Girard …

## Personal Equation

1796, Maskelyne, Astronomer Royal of Britain, dismissed his assistant for what he believed to be persistent inaccuracies in the timing of observations, specifically delays of approximately half a second. This decision unknowingly set the stage for the development of an important concept in measurement science: the personal equation. Maskelyne’s published their mixed observational results. After …

## Origins of Graph Theory

Graph theory emerged in the 18th century, connecting geometry with fields like topology and set theory. Leonhard Euler formulated graph theory during his time in Königsberg, now Kalingrad. His seminal work began with the 1736 paper, “The Seven Bridges of Königsberg.” Residents of Königsberg enjoyed crossing the city’s seven bridges in one outing – considered …