Rodi examined nonlinear algebraic stress models by approximating the convective transport terms of the Reynolds stress tensor and normalizing Reynolds stress with turbulent kinetic energy, coupled with a transport equation for turbulent kinetic energy. This approach simplifies the Reynolds stress transport terms, resulting in an algebraic equation essential for determining the Reynolds stress tensor. This led to the development of algebraic stress models, where Reynolds stress is normalized by turbulent kinetic energy and includes a production and dissipation term. This introduces a nonlinear relationship with the dissipation tensor and pressure strain correlation tensor. These models, referred to as algebraic stress models in turbulence literature, have been further developed, showing their capability in predicting secondary flow effects in ducts and other applications. However, nonlinear equation solvers cause numerical issues in implementation in CFD codes.