Remembering Professor Olga Alexandrovna Ladyzhenskaya Twenty Years On

It has been approximately twenty years since Professor Olga Alexandrovna Ladyzhenskaya passed away. An eminent mathematician and member of several Academies of Science, passed away in January 2004. Her distinguished career was marked by significant contributions to partial differential equations, particularly the Navier–Stokes equations and nonlinear elliptic and parabolic equations. Born in 1922 in Kologriv, …

AIAA SciTech 2024 – Parametric Study of the Hypersonic Near-Field and Sonic Boom from Waveriders using a Fully-Parabolized Approach

Citation: King, C. B., Shepard, C. T., and Miller, S. A. E., “Parametric Study of the Hypersonic Near-Field and Sonic Boom from Waveriders using a Fully-Parabolized Approach,” AIAA SciTech, Orlando, FL, Jan. 8-12, AIAA 2024-2106, 2024. DOI: 10.2514/6.2024-2106 Abstract: A parametric study is performed to understand the relationship between volume displace- ment, lift, near-field signature, …

Analytical Closed-Form Solution of the Navier-Stokes Equations for the Aerodynamic Near-field and Sonic Boom from Axisymmetric Bodies

I completed my Acoustical Society work and returned to the United States. Abstract: An analytical closed-form solution is presented for the aerodynamic near-field and ground signature from an axisymmetric body with a low thickness ratio. The Navier-Stokes equations are formulated as a boundary value problem that incorporates the incoming ambient flow-field and the aerodynamic properties …

Toward Exascale Computation for Turbomachinery Flows

Citation: Yuhang Fu, Weiqi Shen, Jiahuan Cui, Yao Zheng, Guangwen Yang, Zhao Liu, Jifa Zhang, Tingwei Ji, Fangfang Xie, Xiaojing Lv, Hanyue Liu, Xu Liu, Xiyang Liu, Xiaoyu Song, Guocheng Tao, Yan Yan, Paul Tucker, Steven Miller, Shirui Luo, Seid Koric, and Weimin Zheng, “Toward Exascale Computation for Turbomachinery Flows,” Gordon Bell, High Performance Computing, …

Split-Step Simulations to Assess the Effects of Atmospheric Boundary Layer Turbulence on the Dose Variability of N-Waves and Shaped Booms

My former student, Dr. Alex Carr, along with Dr. J. Lonzaga, who are both of NASA Langley Research Center, and myself published an article on the propagation of sonic boom through the turbulent atmosphere. Abstract: The effects of atmospheric boundary layer turbulence on the loudness variability of a sonic boom N-wave and shaped boom are …

DARPA Director’s Fellow

I am very fortunate to be awared the 2023-2024 DARPA Director’s Fellowship. The linked article from my department is at the following link: https://mae.ufl.edu/2023/08/09/darpa-directors-fellowship-awarded-to-steven-a-e-miller/ The article text is below Associate Professor Steven A. E. Miller, Ph.D., is awarded the Director’s Fellowship from the Defense Advanced Research Projects Agency (DARPA) for 2023-2024. The award recognizes technical …

AIAA Paper: Fully-Parabolized Prediction of Hypersonic Sonic Boom

Abstract: Hypersonic flight-vehicles create shock and expansion waves that propagate through the atmosphere and are observed on the ground as sonic booms. We present a methodology to predict the near-field aerodynamic pressure and sonic boom signature using approximately 1% of the computational cost relative to fully-nonlinear computational fluid dynamics and state-ofthe-art sonic boom propagation solvers. …

Codex Arundel

While reading Leonardo da Vinci’s Codex Arundel last evening, I noticed that the Codex had less scholars examining it relative to others. The fluid dynamics of da Vinci have been extensively studied, with entire dissertations dedicated to the subject. I came across a curious drawing that exhibited turbulent flow. The text is written backward in …

Additional Thoughts on Pressure

I am obsessed with pressure, particularly the internal pressure of fluids. Unlike viscosity, it is absent of frictional forces, and it is a key driving force in both human behavior and aerospace flows. Pressure is an essential component of a perfect fluid and appears on the right-hand side of the Navier-Stokes equations. Without pressure, fluid …