https://doi.org/10.2514/1.J063425 Abstract: We present a methodology to predict the aerodynamic near-field and sonic boom signature from slender bodies and waveriders using a fully parabolized approach. We solve the parabolized Navier–Stokes equations, which are integrated via spatial marching in the streamwise direction. We find that unique physics must be accounted for in the hypersonic regime relative …
Category Archives: Students
Toward Exascale Computation for Turbomachinery Flows
Citation: Yuhang Fu, Weiqi Shen, Jiahuan Cui, Yao Zheng, Guangwen Yang, Zhao Liu, Jifa Zhang, Tingwei Ji, Fangfang Xie, Xiaojing Lv, Hanyue Liu, Xu Liu, Xiyang Liu, Xiaoyu Song, Guocheng Tao, Yan Yan, Paul Tucker, Steven Miller, Shirui Luo, Seid Koric, and Weimin Zheng, “Toward Exascale Computation for Turbomachinery Flows,” Gordon Bell, High Performance Computing, …
Continue reading “Toward Exascale Computation for Turbomachinery Flows”
AIAA Paper: Fully-Parabolized Prediction of Hypersonic Sonic Boom
Abstract: Hypersonic flight-vehicles create shock and expansion waves that propagate through the atmosphere and are observed on the ground as sonic booms. We present a methodology to predict the near-field aerodynamic pressure and sonic boom signature using approximately 1% of the computational cost relative to fully-nonlinear computational fluid dynamics and state-ofthe-art sonic boom propagation solvers. …
Continue reading “AIAA Paper: Fully-Parabolized Prediction of Hypersonic Sonic Boom”