AIAA Paper: Fully-Parabolized Prediction of Hypersonic Sonic Boom

Abstract: Hypersonic flight-vehicles create shock and expansion waves that propagate through the atmosphere and are observed on the ground as sonic booms. We present a methodology to predict the near-field aerodynamic pressure and sonic boom signature using approximately 1% of the computational cost relative to fully-nonlinear computational fluid dynamics and state-ofthe-art sonic boom propagation solvers. …

Codex Arundel

While reading Leonardo da Vinci’s Codex Arundel last evening, I noticed that the Codex had less scholars examining it relative to others. The fluid dynamics of da Vinci have been extensively studied, with entire dissertations dedicated to the subject. I came across a curious drawing that exhibited turbulent flow. The text is written backward in …

Additional Thoughts on Pressure

I am obsessed with pressure, particularly the internal pressure of fluids. Unlike viscosity, it is absent of frictional forces, and it is a key driving force in both human behavior and aerospace flows. Pressure is an essential component of a perfect fluid and appears on the right-hand side of the Navier-Stokes equations. Without pressure, fluid …

A simplified semi-empirical model for long-range low-frequency noise propagation in the turbulent atmosphere

My student, Dr. Tianshu Zhang, and myself recently published a modified long range acoustic propagation model that handles turbulence in the atmosphere. The abstract is We present a semi-empirical long-range low-frequency acoustic propagation model, which accounts for atmospheric turbulence. Ostashev and Wilson’s scattering model is combined with a ray-theory based refraction model to account for …

Acoustical Society of America – December 2022

This year my research group had a good showing at the Acoustical Society of America, Dec. 2022. I was happy to give a 20 minute talk myself on jet and rocket coherence and loading. My student, Dr. Alex Carr, who is now a Research Aerospace Engineering at NASA reported on his sonic boom predictions. My …

Chairing Turbulence Theory at APS Division of Fluid Dynamics – Highlight of the year

All our presenters were present and traveled internationally. DNS is the tool of choice for numerical simulations. Theory emerged from results, and I hope that new relations will guide those making turbulence models today. High-order inertial range scaling exponents in incompressible turbulence using generalized extended self-similarityPresenter: Sualeh Khurshid, Massachusetts Institute of Technology, Author: Sualeh Khurshid, …

APS Presentation – Alternative Analytical Solution for Planar Oblique Shock Waves

Abstract: One now famous analytical solution for shock waves was developed by Dr. Theodore Meyer within his Ph.D. dissertation under advisement of Professor Ludwig Prandtl. The original solution relies on analysis via control volume of the equations of motion. This approach has limited future development of analytical solutions for more complex flow-fields. In this presentation, …