AIAA Paper: Fully-Parabolized Prediction of Hypersonic Sonic Boom

Abstract: Hypersonic flight-vehicles create shock and expansion waves that propagate through the atmosphere and are observed on the ground as sonic booms. We present a methodology to predict the near-field aerodynamic pressure and sonic boom signature using approximately 1% of the computational cost relative to fully-nonlinear computational fluid dynamics and state-ofthe-art sonic boom propagation solvers. …

Reflection on Twenty Years Since the Loss of Columbia

Graduate Student Garrison S. Osborne and Steven A. E. MillerUniversity of Florida Department of Mechanical and Aerospace Engineering Well before the loss of Columbia, the NASA Office of Technology Assessment wrote, “Shuttle reliability is uncertain, but has been estimated to range between 97 and 99 percent. If the Shuttle reliability is 98 percent, there would …

Aeroacoustic and Aerodynamic Interaction Effects Between eVTOL Rotors

My student presented his MS thesis on the aerodynamics and aeroacoustics of rotors. Abstract: Electric vertical take-off and landing (eVTOL) aircraft are characterized by their unconventional wing and electric rotor configurations, which involve both side-by-side and tandem rotor configurations. These configurations create unique aerodynamic and aeroacoustic flow-fields. We numerically investigate the interaction effects between rotor …

On Large Language Models (AI) and Aerospace Education

Artificial intelligence (AI) is changing all aspects of our lives, much like the internet did when it became widely available to consumers in the mid-1990s. There are many discussions about how the AI revolution has affected different areas, including the workplace, art, culture, writing, and academics. Recently, the “ChatGPT: Optimizing Language Models for Dialogue” has …